首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key research area in underwater acoustic (UWA) communication is the development of advanced modulation and detection schemes for improved performance and range-rate product. In this communication, we propose a variable-rate underwater data transmission system based on direct sequence spread spectrum (DSSS) and complementary code keying (CCK), particularly for shallow-water acoustic channels with severe multipath propagation. We provide a suboptimum receiver that consists of a bidirectional decision feedback equalizer (BiDFE) to cancel both postcursor and precursor intersymbol interference (ISI). We also develop iterative signal processing and time-reversal (TR) diversity processing to mitigate the effect of error propagation in BiDFE. We present performance analysis on bit error rate (BER) for different data rates. Our works show that this new variable-data-rate DSSS-CCK is a suitable candidate for UWA communications over varying channel conditions and distance.   相似文献   

2.
Underwater acoustic communications (UAC) at the reverberation-limited range results in severely distorted information signals. Wide-band signals are subject to both intermodal and intramodal-type of dispersions. The underwater acoustic channel impulse response and the sidelobes strongly depend on the waveguide structure and the source and receiver positions. The motion and displacement from this position, as well as other environmental variabilities impose a real-time adaptivity for the receiver operation to keep track of the fluctuations. To increase the system's reliability and data rate, there is a need to employ adaptive equalizers and diversity techniques to improve the margins against noise, and intersymbol interference (ISI). Blind adaptive equalization (BAE) is the ideal adaptive compensation when operating point-to-multipoint networks, and centralized communication systems in general. Inherent optimum multiple resonant modes within the ocean acoustic waveguide can be exploited judiciously via a new proposed parallel data multicarrier modulation (MCM) scheme by sending data over the multiple subcarriers. MCM might eventually obviate equalization which introduces higher-order computational complexity to the receiver. The above modulation eliminates multipaths and allows operation at multiples of the single-carrier transmission rate. The system's immunity to distortions such as ISI, fast fades, and impulsive noises, is increased due to incorporation of symbol guard space. Direct comparisons with single carrier schemes (such as higher-order statistics (HOS)-based equalization) are of great interest, since the proposed new receiver configuration has low-complexity to provide a compact, portable and low-power practical acoustic modem. Finally, network topology issues are considered to determine optimum network architectures for underwater acoustic LANs. A central topology (CT) supported by BAE and MCM transmission is proposed  相似文献   

3.
The life duration of underwater cooperative network has been the hot topic in recent years. And the problem of node energy consuming is the key technology to maintain the energy balance among all nodes. To ensure energy efficiency of some special nodes and obtain a longer lifetime of the underwater cooperative network, this paper focuses on adopting precoding strategy to preprocess the signal at the transmitter and simplify the receiver structure. Meanwhile, it takes into account the presence of Doppler shifts and long feedback transmission delay in an underwater acoustic communication system. Precoding technique is applied based on channel prediction to realize energy saving and improve system performance. Different precoding methods are compared. Simulated results and experimental results show that the proposed scheme has a better performance, and it can provide a simple receiver and realize energy saving for some special nodes in a cooperative communication.  相似文献   

4.
提出了将具有比声学高达几倍的数据通信速率,良好的安全性和隐蔽性的光学无线通信技术应用于海军、海洋科学研究和水下工程等领域,实现高速率的水下无线通信技术实现海量数据的信息交换.基于生物光学特性的水下光学信道模型,建立了水下光学通信系统性能分析方法.并对基于发光二极管(LED)的水下光学无线通信系统进行了仿真,其结果表明所建立的方法可以进行各种海域水质环境的模拟,便于时水下光学无线通信系统性能进行预测评估,为水下光学无线通信系统的设计方案的评估提供了依据.  相似文献   

5.
High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation  相似文献   

6.
Multiuser underwater acoustic communication is one of the enabling technologies for the autonomous ocean-sampling network (AOSN). Multiuser communication allows vehicles, moorings, and bottom instruments to interact without human intervention to perform adaptive sampling tasks. In addition, multiuser communication may be used to send data from many autonomous users to one buoy with RF communications capability, which will then forward the information to shore. The two major signaling techniques for multiuser acoustic communication are phase-shift keying (PSK) direct-sequence spread-spectrum (DSSS) and frequency-shift keying (FSK) frequency-hopped spread-spectrum (FHSS). Selecting between these two techniques requires not only a study of their performance under multiuser conditions, but also an analysis of the impact of the underwater acoustic channel. In the case of DSSS, limitations in temporal coherence of the channel affect the maximum spreading factor, leading to situations that may be better suited to FHSS signals. Conversely, the multipath resolving properties of DSSS minimize the effects of frequency-selective fading that degrade the performance of FSK modulation. Two direct-sequence receivers potentially suitable for the underwater channel are presented. The first utilizes standard despreading followed by decision-directed gain and phase tracking. The second uses chip-rate adaptive filtering and phase tracking prior to despreading. Results from shallow water testing in two different scenarios are presented to illustrate the techniques and their performance  相似文献   

7.
对当前典型的水下无线通信网进行分析,针对水声、光、射频3种通信模式在水下无线通信中的优缺点,提出基于软件无线电技术的多模式自适应水下无线通信网络的概念及其框架结构,并对其中的自适应调制解调方式展开研究.结合MAC层协议,提出一种跨层的自适应调制解调解决方案,即通过收发双方的握手信息携带当前信道状态,由发射方根据握手信息,判断双方通信距离,预计信道未来状态,结合需要传输的数据量,自适应选择合适的通信模式和调制方式,并利用握手信号通知接收方,从而实现在通信网络范围内数据或指令的快速可靠传输.  相似文献   

8.
Spatial diversity equalization applied to underwater communications   总被引:1,自引:0,他引:1  
Underwater acoustic digital communication is difficult because of the nature of the fading multipath channels. Digital signal processing, such as adaptive equalization, is known to greatly improve the communication data rate by limiting intersymbol interference (ISI). However, existing underwater acoustic equalization studies are limited to single-channel techniques, and spatial diversity processing is limited to selection or combining. In this paper, we design minimum mean-square error (MMSE) equalizers jointly among all spatial diversity channels. We call this spatial diversity equalization (SDE). Results are based on a very sparse vertical array in a midrange underwater acoustic channel. We study the effect of element number and placement, the length of the equalization filters, and linear feedforward versus nonlinear decision feedback algorithms. A suboptimum equalizer combiner (EC) is studied to alleviate the computational intensity of JCE. We first design the system for a known acoustic channel; later, some results are verified using adaptive algorithms. Results are presented both in terms of the mean-square error (MSE) and the probability of a symbol error. The latter is important as it is the ultimate interest for a digital communication system. We found that system performance improves rapidly with an increase in the number of spatial channels  相似文献   

9.
Recent advances in high-speed underwater acoustic communications   总被引:4,自引:0,他引:4  
In recent years, underwater acoustic (UWA) communications have received much attention as their applications have begun to shift from military toward commercial. Digital communications through UWA channels differ substantially from those in other media, such as radio channels, due to severe signal degradations caused by multipath propagation and high temporal and spatial variability of the channel conditions. The design of underwater acoustic communication systems has until recently relied on the use of noncoherent modulation techniques. However, to achieve high data rates on the severely band-limited UWA channels, bandwidth-efficient modulation techniques must be considered, together with array processing for exploitation of spatial multipath diversity. The new generation of underwater communication systems, employing phase-coherent modulation techniques, has a potential of achieving at least an order of magnitude increase in data throughput. The emerging communication scenario in which the modern underwater acoustic systems mill operate is that of an underwater network consisting of stationary and mobile nodes. Current research focuses on the development of efficient signal processing algorithms, multiuser communications in the presence of interference, and design of efficient modulation and coding schemes. This paper presents a review of recent results and research problems in high-speed underwater acoustic communications, focusing on the bandwidth-efficient phase-coherent methods. Experimental results are included to illustrate the state-of-the-art coherent detection of digital signals transmitted at 30 and 40 kb/s through a rapidly varying one-mile shallow water channel  相似文献   

10.
何秋银  王世练  张炜  许涛 《海洋工程》2018,36(1):138-144
水声信道的多径时延扩展和时变特性对信道估计和均衡技术的研究带来了很大的挑战,同时也决定了水声信道是一种时频双扩展信道,提出一种水声OFDM通信系统中基于软信息的迭代信道估计技术,利用基于复指数基扩展模型(CE-BEM)进行信道估计。OFDM系统本身可以消除由于多径引起的符号间干扰(ISI)。基于导频的BEM信道估计,可以实现对时变信道的估计,结合基于软信息迭代的迭代均衡模块,将每次迭代生成的符号软判决信息作为辅助导频用于信道估计。同时,为了防止由于信道时变引起的信道子载波间干扰(ICI)对导频符号的影响,采用基于保护间隔的导频插入法插入导频。仿真结果显示基于BEM的软信息迭代信道估计性能较非迭代信道估计时明显提升。  相似文献   

11.
Multichannel Detection for Wideband Underwater Acoustic CDMA Communications   总被引:4,自引:0,他引:4  
Direct-sequence (DS) code-division multiple access (CDMA) is considered for future wideband mobile underwater acoustic networks, where a typical configuration may include several autonomous underwater vehicles (AUVs) operating within a few kilometers of a central receiver. Two receivers that utilize multichannel (array) processing of asynchronous multiuser signals are proposed: the symbol decision feedback (SDF) receiver and the chip hypothesis feedback (CHF) receiver. Both receivers use a chip-resolution adaptive front end consisting of a many-to-few combiner and a bank of fractionally-spaced feedforward equalizers. In the SDF receiver, feedback equalization is implemented at symbol resolution, and receiver filters, including a decision-directed phase-locked loop, are adapted at the symbol rate. This limits its applicability to the channels whose time variation is slow compared to the symbol rate. In a wideband acoustic system, which transmits at maximal chip rate, the symbol rate is down-scaled by the spreading factor, and an inverse effect may occur by which increasing the spreading factor results in performance degradation. To eliminate this effect, feedback equalization, which is necessary for the majority of acoustic channels, is performed in the CHF receiver at chip resolution and receiver parameters are adjusted at the chip rate. At the price of increased computational complexity (there are as many adaptive filters as there are symbol values), this receiver provides improved performance for systems where time variation cannot be neglected with respect to the symbol rate [e.g., low probability of detection (LPD) acoustic systems]. Performance of the two receivers was demonstrated in a four-user scenario, using experimental data obtained over a 2-km shallow-water channel. At the chip rate of 19.2 kilochips per second (kc/s) with quaternary phase-shift keying (QPSK) modulation, excellent results were achieved at an aggregate data rate of up to 10 kb/s  相似文献   

12.
A multi-element receiver strategy is proposed in this paper for a multi-user shallow-water acoustic network (SWAN). The base station receiver, equipped with prior knowledge of the synchronization and training sequences of all intended users, has the task of demodulating the received signals of each user independent of the presence of other users. The adopted receiver strategy enables robust communications through the challenging underwater environment which is limited by both environmental and system factors. The channel is characterized by inter-symbol interference due to multipath propagation and multiple access interference. In this paper, we propose a number of multi-user detection receiver structures employing adaptive decision feedback equalization and spatial diversity to mitigate the effect of these two types of interference. Computer simulations and experimental sea trials conducted in the North Sea in 1999 were used to test the receiver strategies' performance for a two user near far scenario. Amongst a number of strategies tested, the structure based on recursive successive interference cancellation demonstrated improved performance overall  相似文献   

13.
就水下彩色图像传输这一研究课题,提供了其调制和传输控制部分的DSP解决方案,详细分析了针对水声信道这一特殊传输介质,所采用的特殊调制方法和传输发送机理,并提供了硬件原理图及相应的软件算法流程。  相似文献   

14.
The underwater acoustic image transmission system based on the high-speed DSP device TMS320C549 has been studied.We use Goertzel algorithm for source decoding and MFSK for modulation.Turbo code is used for channel coding and decoding.The purpose is to implement underwater video image data transmission.  相似文献   

15.
High-throughout multiple-access communication networks are being considered for use in underwater acoustic channels. Bandwidth limitations of underwater acoustic channels require receivers to process broad-band communications signals in the presence of several active users. To deal with the resulting multiple-access interference in addition to high intersymbol interference, the spatial variability of ocean multipath is exploited in a multichannel multiuser receiver. Two configurations of such a receiver, a centralized and a decentralized one, are presented in fully adaptive modes of operations. While greatly reducing intersymbol and multiple-access interference, spatial diversity implies high increase in adaptive multiuser receiver complexity. To reduce the complexity of the optimal multichannel combiner, spatial structure of multipath is exploited. The complexity of resulting adaptive decentralized multichannel multiuser receiver is reduced at almost no cost in performance. Comparison of proposed multichannel receivers in an experimental shallow water channel demonstrates superior performance of spatial signal combining. The use of multiple input channels is shown to provide high level of tolerance for the near-far effect in both centralized and decentralized receivers. Decentralized receiver with reduced-complexity combining is found to satisfy the performance/complexity trade-off required for practical receiver realization in shallow water networks  相似文献   

16.
Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA0 SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA0 SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.  相似文献   

17.
水声信道高速率数据传输技术   总被引:2,自引:0,他引:2  
许肖梅  许鹭芬 《台湾海峡》1997,16(3):325-330
本文介绍近年来水声信道高速率数所传输技术的一些研究进展,并结合本所研究的水声数据遥测,数字语音通讯和视频图像传输实验样机,讨论了具有抗多途干扰的声传输系统在调制信号设计及信号处理上所采用的关键技术。  相似文献   

18.
水声数据通信系统研究   总被引:4,自引:0,他引:4  
提出一种基于并行传输体制的水声数据通信系统设计方案,发射端采用纠错能力很强的级联码和MFSK调制,分集技术采用抑制载波的双边带调制方式,接收端对接收信号利用快速频谱分析进行解调,并进行硬判决Viterbi译码和BM迭代译码。实验表明,该水声数据通信系统的传输波特率为200bits/s。误码率达到10^-5~10^-6以下。  相似文献   

19.
The major obstacle to underwater acoustic communication is the interference of multi-path signals due to surface and bottom reflections. High speed acoustic transmission over a shallow water channel characterized by small grazing angles presents formidable difficulties. The reflection losses associated with such small angles are low, causing large amplitudes in multi-path signals. In this paper we propose a simple but effective model for multi-path interference, which is then used to assess the performance of a digital communication system operating in a shallow water channel. The results indicate that transmission rates in excess of 8 kbits/s are possible over a distance of 13 km and channel depth of only 20 meters. Such a system offers improved performance in applications such as data collection from underwater sensors  相似文献   

20.
The spatial and temporal focusing properties of time-reversal methods can be exploited for undersea acoustic communications. Spatial focusing mitigates channel fading and produces a high signal-to-noise ratio (SNR) at the intended receivers along with a low probability of interception elsewhere. While temporal focusing (compression) reduces significantly intersymbol interference (ISI), there always is some residual ISI depending upon the number of transmitters, their spatial distribution (spatial diversity), and the complexity of the channel. Moreover, a slight change in the environment over the two-way propagation interval introduces additional ISI. Using multilevel quadrature amplitude modulation (M-QAM) in shallow water, we demonstrate that the performance of time-reversal communications can be improved significantly by cascading the received time series with an adaptive channel equalizer to remove the residual ISI  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号