首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
Geochemical processes were identified as controlling factors of groundwater chemistry, including chemical weathering, salinization from seawater and dry sea-salt deposition, nitrate contamination, and rainfall recharge. These geochemical processes were identified using principal component analysis of major element chemistry of groundwater from basaltic aquifers in Jeju Island, South Korea, a volcanic island with intense agricultural activities. The contribution of the geochemical processes to groundwater chemistry was quantified by a simple mass-balance approach. The geochemical effects due to seawater were considered based on Cl contributions, whereas the effects due to natural chemical weathering were based on alkalinity. Nitrogenous fertilizers, and especially the associated nitrification processes, appear to significantly affect groundwater chemistry. A strong correlation was observed between Na, Mg, Ca, SO4 and Cl, and nitrate concentrations in groundwater. Correspondingly, the total major cations, Cl, and SO4 in groundwater were assessed to estimate relative effect of N-fertilizer use on groundwater chemistry. Cl originates more from nitrate sources than from seawater, whereas SO4 originates mostly from rainwater. N-fertilizer use has shown the greatest effect on groundwater chemistry, particularly when nitrate concentrations exceed 6–7 mg/L NO3–N. Nitrate contamination significantly affects groundwater quality and 18% of groundwater samples have contamination-dominated chemistry.  相似文献   

2.
The Kopaida plain is a cultivated region of Eastern Greece, with specific characteristics related to the paleogeographic evolution and the changes in land use of the area. This study examines the geochemical conditions of the groundwater and soil, and the correlations between them. 70 samples (50 samples of groundwater and 20 samples of soil) were collected in order to asses the geochemical status and the major natural and manmade affecting processes in the region. Extended chemical analyses were carried out including the assessment of 28 parameters for groundwater and 13 for soil samples. The results revealed that groundwater geochemistry is influenced primary by natural processes such as the geological background, and secondary by manmade impact mainly deriving from the extended use of Nitrogen-fertilizers and the over-exploitation of boreholes. Soil geochemistry is influenced exclusively by natural processes, such as weathering of the prevailing geological formations. Chemical analyses and the statistical processing of data revealed that the major factor for the geochemical status of soils is the weathering of the karstic substrate, as well as the existing lateritic horizons and a weak sulfide mineralization.  相似文献   

3.
The study on the evolution of groundwater sources has arisen because of growing concern about deterioration of groundwater resources due to overexploitation. The chemical nature of a coastal aquifer depends on the initial composition of aquifer media, internal geochemical processes and external chemical inputs. Therefore, geochemical characteristics of an aquifer can be used as indicative components on elaborating the origin of aquifer media and its evolutionary processes. This study was aimed at understanding the evolution of Quaternary coastal aquifers of the Kalpitya area, Sri Lanka, by studying groundwater quality and aquifer media. The textural, mineralogical and chemical characteristics of aquifer media and chemical nature of groundwater of the area imply that the aquifer media may not have been derived from marine processes and paleo coastal formations of the western coast but are indicative of a fluvial origin due to past strong fluvial processes. Fluviatile sand depositions had taken place initially and with the gradual sea level rise, deposits were transported, sorted and then re-deposited to form barrier islands parallel to the coast. These have evolved to the present state during the Quaternary period. Intermittent climatic changes caused several changes in the depositional pattern of the aquifer material and the chemical nature of the aquifer. Present day groundwater geochemistry indicates an evolution of a fresh water aquifer with relics of ionic constituents showing paleo geochemical processes that were active during the evolution. In addition, anthropogenic activities have also significantly altered the geochemical nature of groundwater in the present aquifer system.  相似文献   

4.
Groundwater resources of Sohag, Egypt are currently threatened by contamination from agricultural and urbanization activities. Groundwater in Sohag area has a special significance where it is the second source for fresh water used for agricultural, domestic, and industrial purposes. Due to growing population, agriculture expansion, and urbanization, groundwater quality assessment needs more attention to cope with the increasing water demand in this arid zones and limited water resources. The aim of this paper is to address the integrated role of geochemical processes, agriculture and urbanization in evolution of groundwater composition, and their impact on groundwater quality to help in management and protection of groundwater resources of study area using geochemical modeling techniques and geographical information systems. Spatial variation of groundwater hydrochemical properties, rock–water interaction, ion exchange, and assessment of groundwater quality were investigated. Results indicated that groundwater properties are varied spatially and its evolution in the study area is generally controlled by the prevailed geochemical processes represented by leaching, dissolution, and precipitation of salts and minerals, ion exchange, in addition to human activities represented by agriculture and urbanization as well as climatic and poor drainage conditions. Management alternatives should be followed in the study area to avoid degradation of groundwater quality and provide sustainable development.  相似文献   

5.
Saline seepage zone development and hence dryland salinity is a major environmental problem which many arid to semiarid landscapes in Australia are experiencing. Due to the geological complexity of the regional aquifer system and the heterogeneous nature of the local groundwater system, each groundwater seepage zone in the Spicers Creek catchment, central west, New South Wales, Australia possesses different mechanisms which control its development. Saline seepage zones have formed adjacent to a fault zone, and two experimental sites were established through these groundwater discharge zones to understand geochemical processes which have led to the development of soil sodicity, gully erosion and the flushing of salts into the surface water systems. Seepage zone groundwaters contain a distinctive geochemical signature with elevated concentrations of Na, Cl, HCO3, Ca, Sr, B, As and Li. The mixing of deep saline groundwaters together with ion exchange processes lead to a distinctive seepage zone groundwater chemistry being developed. Altering the landscape features within this rural groundwater system has developed water toxicity for crops, soil sodicity leading to land degradation, and waterlogging problems.  相似文献   

6.
A general model is presented for geochemical processes occurring in the unsaturated zone of a carbonate-depleted, pyritic tailings deposit. Quantification of slow geochemical reactions, using published, empirical rate laws from small-scale experiments on monomineralic samples, and geochemical equilibrium reactions successfully reproduced the relative rates of field processes in the case study, Impoundment 1 in Kristineberg. Reproduction of absolute rates was achieved by scaling down all laboratory-derived mineral weathering rates by two orders of magnitude. The sensitivity of the modelled groundwater composition and pH to rates of pH-buffering processes and redox reactions indicated that inclusion and accurate quantification of all dominant geochemical processes on the field scale is necessary for reliable prediction of groundwater composition and pH.  相似文献   

7.
Kinmen Island is principally composed of low permeable granitoid and covered by a very thin sedimentary layer. Both surface and groundwater resources are limited and water demand is increasing with time. The groundwater in the granitoid has been surveyed as an alternative water source for daily use. Two to five highly fractured zones in the granitoid aquifer for each site were first determined by geochemical well logging. Accordingly, ten samples were collected from three sites. Using environmental isotopes and geochemical modeling, geochemical processes occurring due to water–rock interaction in the granitoid aquifer can be quantitatively interpreted. The stable isotopes of oxygen and hydrogen in groundwaters cluster along Taiwan’s local meteoric waterline, indicating evaporation does not have considerable effect on groundwaters. Given such a high evaporation rate for Kinmen Island, this result implies that infiltration rate of groundwater is high enough to reduce retention time through a well-developed fracture zone. NetpathXL is employed for inverse geochemical modeling. Results determine gypsum as being the major source of sulfate for deep groundwaters. The contribution from pyrite is minor. In addition, the weathering of albite to kaolinite is the dominant water–rock interaction characterizing geochemical compositions of deep groundwater in Kinmen Island.  相似文献   

8.
The Çeltikçi (Burdur) plain is located in the southwest of Turkey and is a semi-closed basin. Groundwater is densely used as drinking, irrigation and domestic water in the plain. Hydrogeochemical processes controlling groundwater chemistry and geochemical assessment of groundwater were investigated in the Çeltikçi (Burdur/Turkey) plain. In this study, groundwater samples for two seasons were analyzed and major ion chemistry of groundwater was researched to understand the groundwater geochemistry. Two major hydrochemical facies (Ca–HCO3 and Ca–Mg–HCO3) were determined in the area. Various graphical plots and multivariate statistical analysis were used for identifying the occurrence of different geochemical processes. In the study area, weathering is one of the key geochemical processes which controlled the solute concentration in groundwater. Chemical indexes such as sodium adsorption ratio, %Na, residual sodium carbonate, magnesium hazard and permeability index were calculated and results show that groundwater is suitable for irrigation purpose except for permeability index values. Concentrations of Mn, NO3 and total hardness exceed the prescribed limits of WHO and are the major limiting parameters of groundwater use for potable and domestic purposes.  相似文献   

9.
This paper presents the enrichment tendency and spatial distribution of metals in the groundwater which is pumped out from the granitic aquifers in South Africa. Groundwater is the sole source of water supply for the local community in the study area (Namaqualand), and hence, it was necessary to understand the controlling geochemical processes and interrelationship of metals in the groundwater. The geochemical association of metals has been assessed based on the geostatistical methods. The results show that geochemical processes such as oxidation, leaching, and evaporation besides water–rock interaction are very important in controlling metal enrichment in the groundwater from highly mineralized rocks. The metal enrichment index for selected toxic metals in groundwater increases in the order of Cd > U > Cr > Pb. The observed enrichment trend could be considered as a result of mineralization of basement rocks which is facilitated by active geochemical process in the arid environment. The lack of aquifer flushing due to negligible recharge helps the metals to concentrate at shallow groundwater zones supported by severe evaporation process.  相似文献   

10.
Continental Flood Basalts (CFB) occupy one fourth of the world’s land area. Hence, it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development. A model assisted isotope, geochemical, geospatial and geophysical study was conducted to understand the monsoonal characteristics, recharge processes, renewability and geochemical evolution in one of the largest continental flood basalt provinces of India. HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics. Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge. Lumped parameter models (LPM) were employed to quantify the mean transit time (MTT) of groundwater. Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path. A geophysical model was used to understand the geometry of the aquifer. The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea. Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned; (i) quick and direct recharge by precipitation through fractured and weathered basalt, (ii) low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge. Tritium data showed that the groundwater is a renewable source and have shorter transit times (from present day to <30 years). The hydrogeochemical study indicated multiple sources/processes such as: the minerals dissolution, silicate weathering, ion exchange, anthropogenic influences etc. control the chemistry of the groundwater. Based on the geo-electrical resistivity survey, the potential zones (weathered and fractured) were delineated for the groundwater development. Thus, the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.  相似文献   

11.
Extensive agricultural, residential, and industrial activities have increased demand for water supplies, which can lead to groundwater quality degradation. The integration of geochemical methods, multivariate statistical analysis, and geostatistical approaches were carried out on 169 groundwater samples to elucidate the regional factors and processes that influencing the geochemical composition of groundwater in coastal shallow aquifer of Terengganu, Malaysia. Hydrochemical modelling revealed that the abundance of Ca and Mg was contributed by carbonate and silicate weathering while higher HCO3 and Cl were resulted from reverse ion exchange reaction. Therefore, the dominant hydrogeochemical facies of groundwater was Ca-Mg-HCO3-Cl type. The influence of salinization resulting from seawater mixing to the groundwater was corroborated by Cl/HCO3 ratio, which affected around 50.9% of the groundwater samples slightly or moderately. Spatial mapping using ordinary kriging found that the threat of sea water intrusion is more prominent in the major river confluence especially around Terengganu and Marang River in the northeast and Dungun and Kemaman River confluence in southeast of study area. Moreover, factor analyses concluded that salinization, anthropogenic activities, reverse ion exchange, weathering processes, agricultural impact, and seasonal variations were the factors that regulate 63% of the major ion chemistry in study area. Finally, these findings showed the importance of understanding the hydrochemical characteristics for effective utilization, aquifer protection, and prediction of changes to minimize the effects of salinization and reduce human pollution such as agriculture and urbanization. It is essential steps in order to safeguard the utilization of groundwater resources for future generations.  相似文献   

12.
An investigation was carried out to evaluate the geochemical processes regulating groundwater quality in a coastal region, Barka, Sultanate of Oman. The rapid urban developments in Barka cause depletion of groundwater quantity and deterioration of quality through excessive consumption and influx of pollutants from natural and anthropogenic activities. In this study, 111 groundwater samples were collected from 79 wells and analysed for pH, EC, DO, temperature, major ions, silica and nutrients. In Barka, water chemistry shows large variation in major ion concentrations and in electrical conductivity, and implies the influence of distinguished contamination sources and hydrogeochemical processes. The groundwater chemistry in Barka is principally regulated by saline sources, reverse ion exchange, anthropogenic pollutants and mineral dissolution/precipitation reactions. Due to ubiquitous pollutants and processes, groundwater samples were classified into two groups based on electrical conductivity. In group1, water chemistry is greatly influenced by mineral dissolution/precipitation process and lateral recharge from upstream region (Jabal Al-Akdar and Nakhal mountains). In group 2, the water chemistry is affected by saline water intrusion, sea spray, reverse ion exchange and anthropogenic pollutants. Besides, high nitrate concentrations, especially in group 2 samples, firm evidence for impact of anthropogenic activities on groundwater quality, and nitrate can be originated by the effluents recharge from surface contamination sources. Ionic ratios such as SO4/Cl, alkalinity/Cl and total cation/Cl indicate that effluents recharged from septic tank, waste dumping sites and irrigation return flow induce dissolution of carbonate minerals, and enhances solute load in groundwater. The chemical constituents originating from saline water sources, reverse ion exchange and mineral dissolution are successfully differentiated using ionic delta, the difference between the actual concentration of each constituent and its theoretical concentration for a freshwater–seawater mix calculated from the chloride concentration of the sample, and proved that this approach is a promising tool to identify and differentiate the geochemical processes in coastal region. Hence, both regular geochemical methods and ionic delta ensured that groundwater quality in Barka is impaired by natural and human activities.  相似文献   

13.
A sound understanding of groundwater recharged from various sources occurring at different time scales is crucial for water management in arid and semi-arid river basins. Groundwater recharge sources and their geochemical evolution are investigated for the Heihe River Basin(HRB) in northwest China on the basis of a comprehensive compilation of geochemical and isotopic data. Geochemical massbalance modeling indicates that mountain-block recharge accounts for a small fraction(generally less than 5%) of the shallow and deep groundwater sustaining the oasis, whereas infiltration of rivers and irrigation water contribute most of the groundwater recharge. Dedolomitization is the primary process responsible for the changes in groundwater chemical and carbon isotope compositions from the piedmont to the groundwater discharge zone, where the dedolomitization is very likely enhanced by modern agricultural activities affecting the shallow groundwater quality. Analysis of radioactive isotopes suggests that these primary recharge sources occur at two different time scales. Radiocarbon-derived groundwater age profiles indicate a recharge rate of approximately 12 mm/year, which probably occurred during 2000–7000 years B.P., corresponding to the mid-Holocene humid period. The recharge of young groundwater on the tritium-dated time scale is much higher, about 360 mm/year in the oasis region. Infiltration from irrigation canals and irrigation return flow are the primary contributors to the increased young groundwater recharge. This study suggests that groundwater chemistry in the HRB has been influenced by the complex interaction between natural and human-induced geochemical processes and that anthropogenic effects have played a more significant role in terms of both groundwater quantity and quality.  相似文献   

14.
A study of the hydrogeochemical processes in the Morsott-El Aouinet aquifer was carried out with the objective of identifying the geochemical processes and their relation with groundwater quality as well as to get an insight into the hydrochemical evaluation of groundwater. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation have been carried out using chemical and isotopic data to deduce a hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies and factors controlling groundwater quality. The ionic speciation and mineral dissolution/precipitation was calculated by WATEQF package software. The increase in salinity is related to the dissolution and/or precipitation processes during the water–rock interaction and to the cationic exchange reactions between groundwater and clay minerals. The isotopic analysis of some groundwater samples shows a similarity with the meteoric waters reflect their short residence time and a lowest evaporation phenomenon of infiltrated groundwater.  相似文献   

15.
The groundwater quality detoriation due to various geochemical processes like saline water intrusion, evaporation and interaction of groundwater with brines is a serious problem in coastal environments. Understanding the geochemical evolution is important for sustainable development of water resources. A detailed investigation was carried out to evaluate the geochemical processes regulating groundwater quality in Cuddalore district of Tamilnadu, India. The area is entirely underlined by sedimentary formations, which include sandstone, clay, alluvium, and small patches of laterite soils of tertiary and quaternary age. Groundwater samples were collected from the study area and analyzed for major ions. The electrical conductivity (EC) value ranged from 962 to 11,824 μS/cm, with a mean of 2802 μS/cm. The hydrogeochemical evolution of groundwater in the study area starts from Mg-HCO3 type to Na-Cl type indicating the cation exchange reaction along with seawater intrusion. The Br/Cl ratio indicates the evaporation source for the ion. The Na/Cl ratios indicate groundwater is probably controlled by water-rock interaction, most likely by derived from the weathering of calcium-magnesium silicates. The plot of (Ca+Mg) versus HCO3 suggests ions derived from sediment weathering. The plot of Na+K over Cl reflects silicate weathering along with precipitation. Gibbs plot indicates the dominant control of rock weathering. Factor analysis indicates dominance of salt water intrusion, cation-exchange and anthropogenic phenomenon in the study.  相似文献   

16.
Geochemical fluxes from watersheds are typically defined using mass-balance methods that essentially lump all weathering processes operative in a watershed into a single flux of solute mass measured in streamflow at the watershed outlet. However, it is important that we understand how weathering processes in different hydrological zones of a watershed (i.e., surface, unsaturated, and saturated zones) contribute to the total geochemical flux from the watershed. This capability will improve understanding of how geochemical fluxes from these different zones may change in response to climate change. Here, the geochemical flux from weathering processes occurring solely in the saturated zone is investigated. This task, however, remains exceedingly difficult due to the sparsity of subsurface sampling points, especially in large, remote, and/or undeveloped watersheds. In such cases, springflow is often assumed to be a proxy for groundwater (defined as water residing in fully saturated geologic formations). However, springflow generation may integrate different sources of water including, but not limited to, groundwater. The authors’ hypothesis is that long-term estimates of geochemical fluxes from groundwater using springflow proxies will be too large due to the integrative nature of springflow generation. Two conceptual models of springflow generation are tested using endmember mixing analyses (EMMA) on observations of spring chemistries and stable isotopic compositions in a large alpine watershed in the San Juan Mountains of southwestern Colorado. In the “total springflow” conceptual model, springflow is assumed to be 100% groundwater. In the “fractional springflow” conceptual model, springflow is assumed to be an integration of different sources of water (e.g., groundwater, unsaturated flow, preferential flow in the soil, etc.) and groundwater is only a fractional component. The results indicate that groundwater contributions in springflow range from 2% to 100% overall and no springs are consistently composed of 100% groundwater; providing support for the fractional springflow conceptual model. Groundwater contributions are not strongly correlated with elevation, spring contributing area, spring discharge, or seasonality. This variability has a profound effect on long-term geochemical fluxes. The geochemical fluxes for total springflow overestimate long-term solute release by 22–48% as compared to fractional springflow. These findings illustrate that springflow generation, like streamflow generation, integrates many different sources of water reflecting solute concentrations obtained along many different geochemical weathering pathways. These data suggest that springs are not always ideal proxies for groundwater. Springs may be integrating very distinct portions of the groundwater flow field and these groundwater contributions may become mixed at the spring emergence with much younger sources of water that have never resided in the groundwater system.  相似文献   

17.
Geochemical signatures of groundwater in Kalpakkam plant site were used to identify the geochemistry of the unconfined coastal aquifer. Ground water samples collected from 14 borewells around the study area were studied for four different seasons viz. Summer, South-west monsoon, North-east monsoon and Post-monsoon to identify the major geochemical processes activated in the study area. Data obtained through chemical analyses of groundwater samples were used for graphical plots and geochemical calculations. Piper, Chloro alkaline indices and Chadda’s diagram were determined for geochemical classification of the groundwaters. Identified geochemical processes were verified and quantified using hydrogeochemical aqueous speciation model, PHREEQC to find out the Saturation Indices (SI) of the possible minerals of the study area. It was observed that majority of the bore well samples were under saturated with respect to minerals such as Gypsum, Aragonite and oversaturated with respect to dolomite and calcite. Parameters such as ion exchange and reverse ion exchange, saline water incursion were observed due to the presence of saline water bodies in addition to dissolution of minerals.  相似文献   

18.
《Applied Geochemistry》1997,12(5):625-636
Processes controlling the groundwater chemical composition were studied in the River Danube deposits, in the southeastern part of Hungary. PHREEQM, a combined geochemical and one-dimensional transport model and PHREEQE, NETPATH and WATEQF geochemical computer codes were used to simulate these processes. The main processes controlling water chemistry are equilibrium with calcite, undersaturation in dolomite and albite weathering in the recharge area, ion exchange along the flow path, and ion exchange and mixing with old water at the end of the flow path. Ion exchange seems to be the most important process controlling groundwater chemistry along the flowpath in the fluvial sediments studied. Isotopic data support the geochemical model. The groundwater ages, adjusted for the modeled C mass transfer range from 3300 to 20 200 a B.P. Cation exchange suggests that displacement of a former aqueous solution by the present groundwater occurred. This displacement is attributed to tectonic and paleoclimatic events at the end of the Pleistocene.  相似文献   

19.
A study has been carried out in KT (Cretaceous-Tertiary) boundary along the contact zones of hard rock, limestone and sedimentary formations to discern the geochemical processes governing the groundwater chemistry. A total of sixty-three groundwater samples were collected from the handpumps covering the entire study area and measured for hydrochemical species. Principal component analysis of the hydrochemical data inferred three major processes governing the geochemistry of the groundwater of the region as leaching, ion exchange and weathering. It was also inferred that there are few samples depicting the mixtures of these processes (what are they mention it) and few samples not representing any of these processes with adequate statistical significance. Hence, in order to know the geochemical behaviour of the samples representing each process, their combinations along with the samples which are not- representative samples of these processes were inferred using various standards plots to get an insight into their geochemical characteristics and affinity. This also inferred the samples representing different processes have a significant signature of geochemical facies. The major ions and the stable isotopes of groundwater were used to understand these processes. The carbonate and sulphate saturation states of these samples were calculated by PHREEQC and compared with major variations with the identified three geochemical processes. The state of saturation of Halite, Anhydrite, Gypsum, Aragonite, Dolomite, Calcite, Talc and Chrysolite were determined in all the samples. Inverse modeling was carried out considering the non-representative samples as initial solution and the samples representing each factor as final solution to understand the phase mole transfer in each process. An attempt was also made in this study to compare the geochemical behaviour of groundwaters from different KT boundaries. The samples representing these processes were plotted on an integrated map representing lithology, lineaments, drainage and elevation to determine their interrelationships. The study groups the samples into anthropogenic or geogenic. The leaching process is controlled by lithology and landuse, ion exchange processes is influenced by lithology and drainage patterns whereas weathering processes were controlled by lithology, drainage and lineaments. Non representation of samples (NRS) were mainly controlled by drainage and lineaments of the region.  相似文献   

20.
Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: ‘excellent’, ‘good’ and ‘poor’ and seven hydrochemical facies are assigned to three broad types: ‘fresh’, ‘mixed’ and ‘brackish’ waters. The ‘fresh’ water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich ‘brackish’ groundwater represents freshening of modified connate water. The ‘mixed’ type groundwater has possibly evolved due to hydraulic mixing of ‘fresh’ and ‘brackish’ waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号