首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An anomalous enhancement of brightness of the lunar surface was observed on March 26, 1970, during photometric and polarimetric observations of the Moon made by the 91-cm reflector of the Dodaira Station of the Tokyo Astronomical Observatory. The region near the Aristarchus was 0.3 mag. brighter compared with that corresponding to the ordinary brightness variation curve. The polarimetric results also showed evidence quite consistent with the phenomenon of the luminescence. The colour index diminished by about 0.1 mag. The results of the photographic photometry also confirmed the enhancement of brightness over a wide part of the lunar surface that night. This brightening may be related to the large solar flare observed on March 25, 12h UT, 1970, twenty-nine hours before our observations.  相似文献   

2.
Absolute photoelectric intensity measurements of 104 selected lunar regions are given in five interference filters 4035 Å, 4765 Å, 5538 Å, 6692 Å and 7922 Å. Among these regions, eighteen lunar regions have been measured repeatedly for several phase angles between +86° and ?43°. They include observations made very close to the full Moon. A catalogue has been compiled to serve as a basin for possible investigations of colour contrasts of lunar grounds, variation of the ratio of reflectivity with wavelengths and phase angles for morphological studies. The study can be extended for the brightness phase variation, opposition effect and radiance factors at zero phase in five colours.  相似文献   

3.
The solar millimeter continuum between 1 and 20 mm is recalibrated using observations of the average lunar brightness temperature at the center of lunar disk and new Moon brightness temperatures. The solar data are placed on a common scale according to the average lunar brightness temperature distribution proposed by Linsky. A least-squares parabolic regression curve is proposed for the solar millimeter continuum. A small departure from this regression curve near 8 mm may indicate the existence of an absorption feature.Staff member, Laboratory Astrophysics Division, National Bureau of Standards.  相似文献   

4.
Raju  K.P.  Singh  Jagdev 《Solar physics》2002,207(1):11-16
In an earlier paper by Raju, Srikanth, and Singh (1998), the average size of chromospheric network cells has been shown to have a dependence on the solar latitude. This was presumed to be due to the reduction of supergranular length-scales by network magnetic field enhancements. It has been found that the network brightness enhancements over solar latitude support this finding. Significant negative correlations have been found between the average cell size and the network brightness enhancements. Since the brightness enhancements are essentially due to the magnetic field concentrations, it is suggested that the network magnetic fields reduce the network cell sizes. We have also obtained the variations of skewness of network brightness distributions over solar latitude, which follow the network field variations. This complements the findings of Caccin et al. (1998) that skewness of brightness distribution follows the solar cycle. The findings suggest that the dependence of supergranular sizes, network brightness, and skewness of network brightness distribution on solar latitude or on the phase of the solar cycle is due to the associated variation of network magnetic fields.  相似文献   

5.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   

6.
With a sensitive photoelectric photometer, observations of the sky twilight brightness have been carried out at different positions in the sky during high solar activity period. The measurements have been obtained using blue and red wide band glass filters centered at 4410 and 7900 Å, respectively. The variation of the (B-R) colour index of the sky twilight with Sun's depression have been investigated at different altitudes in the sky above the horizon and various bearing angles from the solar vertical.  相似文献   

7.
An astrophotometer was used for measurements of lunar sky brightness in visible and ultraviolet range during day and night. The data obtained showed unexpectedly high values of brightness during the lunar day in the visible region. From measurements during lunar ‘twilight’ conditions and from the dependence of excessive flux on cosZ⊙ we have concluded that the effect is due to scattering of solar radiation by dust particles above the surface of the Moon. Some evidence in favour of dust clouds around the Moon is presented.  相似文献   

8.
The effects of vertical variations in density and dielectric constant on nadir-viewing microwave brightness temperatures are examined. Stratification models as well as models of a continuous increase in density with depth are analyzed. Specific applications address the vertical structure of the lunar frontside regolith, utilizing combined constraints from Apollo data, bistatic radar signatures, and Earth-based measurements of the lunar microwave brightness temperature.Results have been analyzed in terms of the effects on the zeroth and first harmonic of the lunar disk-center brightness temperature variation over a lunation, and their wavelength dependence. Lunation-mean brightness temperatures, which are diagnostic of emissivity and steady-state sub-surface temperatures, are sensitive to both near-surface soil density gradients and single high-impedance dielectric contrasts. Models of the rapid density increase in the upper 5–10 cm of the lunar regolith predict brightness temperature decreases of 2–10°K between λ0 = 3 and 30 cm. The magnitude of this spectral variation depends upon the thickness of a postulated low-density surface coating layer, and the magnitude of the density gradient in the transition soil layer. Comparable decreases in brightness temperature can be produced by a stratified two-layer model of soil overlaying bedrock if the high-density substrate lies within 1–2 m of the surface. Multiple soil layering on a centimeter scale, such as is observed in the Apollo core samples, is not likely to induce spectral variations in mean brightness temperature due to rapid regional variations in layer depths and thicknesses.The fractional variation in disk-center brightness temperature over a lunation (first harmonic) can be altered by vertical-structure effects only for the case in which a larger and abrupt dielectric contrast exists within the upper surface layer where the significant diurnal variations in physical temperature occur. Soil density variations do not cause scattering effects sufficient to significantly alter the microwave emission weighting function within the diurnal layer. For the Moon, this layer consists of the upper 10 cm. Since no widespread rock substrate as shallow as 10 cm exists in the lunar frontside, only volume scattering effects, due to buried shallow rock fragments, can explain the apparent high electrical loss inferred from Earth-based measurements of the amplitude of lunation brightness temperature variations.Representative models of the lunar frontside vertical structure have also been examined for their effects of radar cross-section measurements and resultant inferences of bulk dielectric constant. Models of the near-surface density gradient predict a significant increase in the remotely inferred dielectric constant value from centimeter to meter wavelengths. Such a model is in general agreement with the dielectric constant spectrum inferred from Earth-based brightness temperature polarization measurements, but is difficult to reconcile with the Apollo bistatic radar results at λ0 = 13 and 116 cm.  相似文献   

9.
双行根数(Two Line Element, TLE)作为一类广泛使用的空间物体编目数据, 其预报精度和误差特性是TLE编目 在空间碎片研究中所要关注的问题之一. TLE编目需要配合SGP4/SDP4 (Simplified General Perturbations 4/Simplified Deep Space 4)模型进行轨道预报, 对深空物体来说, 主要考虑带谐项$J_2$、$J_3$、$J_4$摄动、 第三体日月摄动和特殊轨道共振问题修正等. 其中, SGP4/SDP4模型第三体摄动计算时, 对日月轨道近似采用了长期进动根数和 简单平运动的方式, 在外推10d时存在约2$^\circ$--3${^\circ  相似文献   

10.
The solar wind velocity near Earth shows systematic structure in and around the heliospheric current sheet. The solar wind velocity measurements at IMF sector boundary crossings at 1 AU during 1972–1977 have been used to infer the azimuthal structure of the solar wind velocity in the current sheet. We found that the solar wind velocity in the in-ecliptic portion of the current sheet varies from longitude to longitude, where it originates from the corona. Also, the yearly average value of solar wind velocity in the HCS is found to vary with the phase of the solar cycle; with a maximum value around 1974. TheK-corona brightness on the source surface corresponding to the IMF sector boundary crossings during the period of study also shows a similar but opposite pattern of variation when the data are averaged over a long period. However, this relation is not observed when we considered them individually. So, we conclude that there exists a longitudinal variation of solar wind velocity in the heliospheric current sheet.  相似文献   

11.
Evren  S.  Ibanoğlu  C.  Tunca  Z.  Tümer  O. 《Astrophysics and Space Science》1986,120(1):97-106
The light curves of V471 Tau obtained in four successive years from 1981 to 1984 are presented. The light variations due to the tidally distorted red dwarf have been computed and subtracted out from the light curves obtained so far. A pure shape of the wave-like distortion has therefore been derived. The period of the retrograde migration has been found to be 182.17 days. On the other hand, the mean brightness of the system seems to vary with a period of about 18 years. The amplitude of the variation is greater at longer wavelength. The periodic variation of the mean brightness resembles the solar cycle of about 11.2 years, which depends upon the number of spots or spot groups.  相似文献   

12.
Ruzmaikin  A. 《Solar physics》1998,181(1):1-12
We report observations of the large-scale spatial dependence of the Sun's luminosity variations over the period 1993–1995. The measurements were made using a new scanning disk solar photometer at Big Bear Solar Observatory, specially designed to measure large-scale brightness variations at the 10–4 level. Since the level of solar activity was very low for the entire observation period, the data show little solar cycle variation. However, the residual brightness signal I/I (after subtracting the mean, first, and second harmonics) does show a strong dependence on heliocentric angle, peaking near the limb. This is as one would expect if the residual brightness signal (including the excess brightness coming from the active latitudes) were primarily facular in origin. Additional data over the next few years, covering the period from solar minimum to maximum, should unambiguously reveal the large-scale spatial structure of the solar cycle luminosity variations.  相似文献   

13.
Hourly means of the geomagnetic elements recorded at Lerwick have been analysed to determine the effect of monthly sunspot number on the solar and lunar daily variations. The diurnal term of the solar variation in declination is found to have a distinct semiannual component that is independent of sunspot number. Thus this semiannual variation is not generated by the heliographic latitude or axial process proposed by Cortie (1912).  相似文献   

14.
Slitless spectra of the chromosphere, observed cinematographically at the total solar eclipse of 10 July 1972, were reduced. The surface brightness distribution of the helium D3 line in the undisturbed chromosphere was obtained in agreement with results by other observers. The available eclipse data on the D3 absolute brightness was analysed by means of theoretical curves of growth. Intensity data by some observers were found to be certainly too high. A trend was found that the D3 absolute brightness in the quiet chromosphere decreases with the increasing solar activity (sunspot number). This perhaps indicates a variation of the spicule number over the solar surface during a sunspot cycle.  相似文献   

15.
It is suggested that the observed differences in the periods of variation of some solar phenomena (solar brightness, appearance of sunspot maximum and interplanetary sector structure) occurring close to 27 days are due to differences in the rotation periods of the solar regions in which these phenomena are originated. Changes in periods during the solar cycle can be attributed to changes in the solar energy generation. On the basis of these considerations changes in the sign of the gradient of the Sun's angular velocity can be expected.  相似文献   

16.
Stephen J. Keihm 《Icarus》1982,52(3):570-584
The effects of volume scattering on the lunar microwave brightness temperature spectrum are evaluated for a broad range of plausible scattering fragment populations. Mie-scattering phase functions and the radiative transfer method are utilized. Results indicate that emission darkening of ~1–7°K is to be expected over the wavelength range 3–30 cm, dependent on the total volume fraction of centimeter-sized and larger fragments. Spectral variations can occur if the size distribution of scatterers is nonuniform in a power law sense. For mare regions representative of the Surveyor III, V, and VI sites, an increase in brightness temperature with wavelength is predicted which is smaller than the predicted spectral variation due to planetary heat flow. The amplitude of lunation variation in brightness temperature is particularly sensitive to the fraction of fragments in the upper 10-cm diurnal layer. Deductions of electrical loss based on purely absorptive models can overestimate loss tangent values by a factor of 1.5 or more if scattering effects are not accounted for. The absence of anomalies exceeding ~2°K in lunar night-time γ3.55-cm brightness temperature maps requires a remarkable uniformity of the surface layer (upper 10 cm) scattering properties on a 250-km scale.  相似文献   

17.
We present observations of what may be the inner region of a lunar mini-magnetosphere. If so, these likely represent the first such observations. Previous studies of solar wind interaction with lunar crustal magnetic fields found increased particle fluxes associated with magnetic amplifications, suggesting a shock/sheath region. The central density cavity expected in the inner mini-magnetosphere (if analogous to other planetary magnetospheres) has proven elusive. We now present Lunar Prospector fly-throughs of a density cavity near a strong crustal magnetic source in the solar wind, and compare these unique observations with typical orbits in the solar wind and wake. We observed the density cavity on two consecutive orbits on July 14, 1999 with optimal viewing geometry, downstream from one of the strongest lunar crustal sources (an anomaly centered at 235E, 20S), during very unusual solar wind conditions. We found no other similar features in the solar wind in 7 months of low-altitude orbits, suggesting that fully formed lunar mini-magnetospheres are rare and/or difficult to observe from orbit.  相似文献   

18.
19.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

20.
A passive and multi-channel microwave sounder onboard the Chang’e-2orbiter has successfully acquired microwave observations of the lunar surface and subsurface structure. Compared with the Chang’e-1 orbiter, the Chang’e-2 orbiter obtained more accurate and comprehensive microwave brightness temperature data,which are helpful for further research. Since there is a close relationship between microwave brightness temperature data and some related properties of the lunar regolith,such as the thickness, temperature and dielectric constant, precise and high resolution brightness temperature data are necessary for such research. However, through the detection mechanism of the microwave sounder, the brightness temperature data acquired from the microwave sounder are weighted by the antenna radiation pattern, so the data are the convolution of the antenna radiation pattern with the lunar brightness temperature. In order to obtain the real lunar brightness temperature, a deconvolution method is needed. The aim of this paper is to solve the problem associated with performing deconvolution of the lunar brightness temperature. In this study, we introduce the maximum entropy method(MEM) to process the brightness temperature data and achieve excellent results. The paper mainly includes the following aspects: first, we introduce the principle of the MEM; second, through a series of simulations, the MEM has been verified as an efficient deconvolution method; and third, the MEM is used to process the Chang’e-2 microwave data and the results are significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号