首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sediment-hosted base metal sulfide deposits in the Otavi Mountain Land occur in most stratigraphic units of the Neoproterozoic Damara Supergroup, including the basal Nosib Group, the middle Otavi Group and the uppermost Mulden Group. Deposits like Tsumeb (Pb–Cu–Zn–Ge), Kombat (Cu–Pb–Zn), Berg Aukas (Zn–Pb–V), Abenab West (Pb–Zn–V) all occur in Otavi Group dolostones, whereas siliciclastic and metavolcanic rocks host Cu–(Ag) or Cu–(Au) mineralization, respectively. The Tsumeb deposit appears to have been concentrated after the peak of the Damara orogeny at around 530 Ma as indicated by radiometric age data.Volcanic hosted Cu–(Au) deposits (Neuwerk and Askevold) in the Askevold Formation may be related to ore forming processes during continental rifting around 746 Ma. The timing of carbonate-hosted Pb–Zn deposits in the Abenab Subgroup at Berg Aukas and Abenab is not well constrained, but the stable (S, O, C) and Pb isotope as well as the ore fluid characteristics are similar to the Tsumeb-type ores. Regional scale ore fluid migration typical of MVT deposits is indicated by the presence of Pb–Zn occurrences over 2500 km2 within stratabound breccias of the Elandshoek Formation. Mulden Group siliciclastic rocks host the relatively young stratiform Cu–(Ag) Tschudi resource, which is comparable to Copperbelt-type sulfide ores.  相似文献   

2.
Lead isotope ratios of galena from the carbonate-hosted massive sulphide deposits of Kabwe (Pb-Zn) and Tsumeb (Pb-Zn-Cu) in Zambia and Namibia, respectively, have been measured and found to be homogeneous and characteristic of upper crustal source rocks. Kabwe galena has average isotope ratios of 206/204Pb = 17.997 ± 0.007, 207/204Pb = 15.713 ± 0.010 and 208/204Pb = 38.410 ± 0.033. Tsumeb galena has slightly higher 206/204Pb (18.112 ± 0.035) and slightly lower 207/204Pb (15.674 ± 0.016) and 208/204Pb (38.276 ± 0.073) ratios than Kabwe galena. The isotopic differences are attributed to local differences in the age and composition of the respective source rocks for Kabwe and Tsumeb. The homogeneity of the ore lead in the two epigenetic deposits suggests lead sources of uniform isotopic composition or, alternatively, thorough mixing of lead derived from sources with relatively similar isotopic compositions. Both deposits have relatively high 238U/204Pb ratios of 10.31 and 10.09 for Kabwe and Tsumeb galenas, respectively. These isotope ratios are considered to be typical of the upper continental crust in the Damaran-Lufilian orogenic belt, as also indicated by basement rocks and Cu-Co sulphides in stratiform Katangan metasediments which have a mean μ-value of 10.25 ± 0.12 in the Copperbelt region of Zambia and the Democratic Republic of Congo (formerly Zaire). The 232Th/204Pb isotope ratios of 43.08 and 40.42 for Kabwe and Tsumeb suggest Th-enriched source regions with 232Th/235U (κ-values) of 4.18 and 4.01, respectively. Model isotopic ages determined for the Kabwe (680 Ma) and Tsumeb (530 Ma) deposits indicate that the timing of the mineralisation was probably related to phases of orogenic activity associated with the Pan-African Lufilian and Damaran orogenies, respectively. Galena from the carbonate-hosted Kipushi Cu-Pb-Zn massive sulphide deposit in the Congo also has homogeneous lead isotope ratios, but its isotopic composition is comparable to that of the average global lead evolution curve for conformable massive sulphide deposits. The μ (9.84) and κ (3.69) values indicate a significant mantle component, and the isotopic age of the Kipushi deposit (456 Ma) suggests that the emplacement of the mineralisation was related to a post-tectonic phase of igneous activity in the Lufilian belt. The isotope ratios (206/204Pb, 207/204Pb, 208/204Pb) of the three deposits are markedly different from the heterogeneous lead ratios of the Katangan Cu-Co stratiform mineralisation of the Copperbelt as well as those of the volcanogenic Nampundwe massive pyrite deposit in the Zambezi belt which typically define radiogenic linear trends on lead-lead plots. The host-rock dolomite of the Kabwe deposit also has homogeneous lead isotope ratios identical to the ore galena. This observation indicates contamination of the Kabwe Dolomite Formation with ore lead during mineralisation. Received: 8 September 1997 / Accepted: 21 August 1998  相似文献   

3.
The Rammelsberg polymetallic massive sulphide deposit was the basis of mining activity for nearly 1000 y before finally closing in 1988. The deposit is hosted by Middle Devonian pelitic sediments in the Rhenohercynian terrane of the Variscan Orogen. The deposit consists of two main orebodies that have been intensely deformed. Deformation obscures the original depositional relationships, but the regional setting as well as the geochemistry and mineralogy of the mineralisation display many characteristics of the SHMS (sediment-hosted massive sulphide) class of ore deposits. Rammelsberg is briefly compared to the other massive sulphide deposits in the European Variscan, including Meggen and those deposits in the Iberian Pyrite Belt. Received: 28 September 1998 / Accepted: 5 January 1999  相似文献   

4.
Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran   总被引:1,自引:0,他引:1  
Mineralisation at the Zarshuran, NW Iran, occurs on the flank of an inlier of Precambrian rocks hosted in black silty calcareous and carbonaceous shale with interbedded dolomite and limestone varying in thickness from 5 to 60 m and extending along strike for approximately 5–6 km. Two major, steeply dipping sets of faults with distinct trends occur in the Zarshuran: (1) northwest (310–325) and (2) southwest (255–265). The main arsenic mineralisation occurs at the intersection of these faults. The mineral assemblage includes micron to angstrom-size gold, orpiment, realgar, stibnite, getchellite, cinnabar, thallium minerals, barite, Au-As-bearing pyrite, base metal sulphides and sulphosalts. Hydrothermal alteration features are developed in black shale and limestone around the mineralisation Types of alteration include: (1) decalcification, (2) silicification, (3) argillisation, (4) dolomitisation, (5) oxidation and acid leaching and (6) supergene alteration. The early stage of mineralisation involved removal of carbonates from the host rocks, followed by quartz precipitation. The main stage includes massive silicification associated with argillic alteration. In the late stage veining became more dominant and the main arsenic ore was deposited along fault cross cuts and gouge. These characteristics are typical of Carlin-type sediment-hosted disseminated gold deposits. The early stage of mineralisation contains only two-phase aqueous fluid inclusions. The main stage has two groups of three-phase CO2-bearing inclusions with minor CH4 ± N2, associated with high temperature, two-phase aqueous inclusions. During the late stage, fluids exhibit a wide range in composition, salinity and temperature, and CH4 becomes the dominant carbonic fluid with minor CO2 associated with a variety of two-phase aqueous fluid inclusions. The characteristics of fluids at the Zarshuran imply the presence of at least two separate fluids during mineralisation. The intersections of coexisting carbonic and aqueous inclusion isochores, together with stratigraphic and mineral stability evidence, indicate that mineralisation occurred at 945 ± 445 bar and 243 ± 59 °C, implying a depth for mineralisation of at least 3.8 ± 1.8 km (assuming a lithostatic pressure gradient). Fluid density fluctuations and the inferred depth of formation suggest that the mineralisation occurred at the transition between overpressured and normally pressured regimes. Geochronologic studies utilising K/Ar and Ar/Ar techniques on hydrothermal argillic alteration (whole rock and separated clay size fractions) and on volcanic rocks, indicates that mineralisation at Zarshuran formed at 14.2 ± 0.4 Ma, and was contemporaneous with nearby Miocene volcanic activity, 13.7 ± 2.9 Ma. It is proposed that mineralisation was the result of the infiltration of hydrothermal fluids containing a magmatic gas component, and that it was localised in the Zarshuran Unit because of the redox boundary that it provided and/or because it lay between an overpressured region at depth and a zone of circulating, hydrostatically pressured fluids above. Received: 10 December 1997 / Accepted: 5 March 1999  相似文献   

5.
The South Australian portion of the Willyama Inliers hosts a diversity of small sulphide and uranium deposits and numerous outcropping gossans. This fact, together with geological similarities to the adjacent Broken Hill Block has led to extensive exploration. A broad classification distinguishes two main types of sulphide mineralisation: 1) stratiform iron sulphide-dominated (±Cu, Zn, Co) deposits which occur widespread within specific stratigraphic intervals, and stratabound occurrences of syn-depositional to diagenetic origin which show some structural control; 2) syn-tectonic to post-peak metamorphic replacement and vein-type deposits (Fe-Cu-Au and Cu-Zn-Pb), which are hosted by fractures and within faults and shear zones. These occurrences show no stratigraphic control and are not spatially related to type 1 mineralisation. Late-stage deposits also differ from stratiform/stratabound mineralisation in their texture, mineral assemblage and geochemical composition. Much of the sulphide mineralisation in the Olary Block has been interpreted as resulting from rift-associated syn- to diagenetic processes, such as hot spring exhalations and base metal precipitation along reduction-oxidation interfaces. Subsequent granitic intrusive, high grade metamorphic and multiphase deformation events would have induced remobilisation and redeposition of sulphides in a variety of epigenetic modes. However, a detailed petrographic and geochemical study of sulphide mineralisation in the Olary Block demonstrates that due to the lack of abundant pervasive fluids, translocation and modification of preexisting sulphides were restricted to less than a few centimetres. Instead, widespread syn-tectonic to epigenetic (i.e., post-peak metamorphic) mobilisation of ore constituents occurred to form retrograde sulphide mineralisation as well as multiple generations of late-stage vein deposits. These epigenetic deposits are genetically unrelated to synsedimentary and diagenetic occurrences, an aspect of significance for exploration in the Olary Block. Temporal separation of peak metamorphism in deeper crustal levels from its occurrence in shallow levels, periodic tectonic disturbances and repeated seismic pumping are processes believed to have resulted in intermittent mobilisation of ore constituents from a deep-seated metasedimentary reservoir.  相似文献   

6.
The timing of Cu–Mo–U mineralisation at the Nori/RA prospect in the Paleoproterozoic Great Bear magmatic zone has been investigated using Re–Os molybdenite and 40Ar–39Ar biotite geochronology. The Re–Os molybdenite ages presented are the first robust sulphide mineralisation ages derived from the Great Bear magmatic zone. Cu–Mo–U mineralisation is hosted in early to syn-deformational hydrothermal veins consisting of quartz and K-feldspar or more commonly tourmaline-biotite-quartz-K-feldspar, with associated wall-rock alteration assemblages being predominantly biotite. Sulphide and oxide minerals consist of chalcopyrite, molybdenite and uraninite with lesser pyrite and magnetite. Elevated light rare earth elements and tungsten concentrations associated with the Cu–Mo–U mineralisation have also been reported at the prospect by previous workers. Molybdenite and uraninite occur intimately in dravitic tourmaline growth zones and at grain margins, attesting to their syngenetic nature (with respect to hydrothermal veining). Two molybdenite separates yield Re–Os model ages of 1,874.4 ± 8.7 (2σ) and 1,872.4 ± 8.8 Ma (2σ) with a weighted average model age of 1,873.4 ± 6.1 Ma (2σ). Laser step heating of biotite from the marginal alteration of the wall-rock adjacent to the veins yields a 40Ar–39Ar maximum cooling age of 1,875 ± 8 Ma (MSWD = 3.8; 2σ), indistinguishable from the Re–Os molybdenite model age and a previously dated ‘syn-tectonic’ aplitic dyke in the region. Dravitic tourmaline hosts abundant primary liquid–vapour–solid-bearing fluid inclusions. Analytical results indicate liquid–vapour homogenisation at >260°C constraining the minimum temperature of mineralisation. The solids, which are possibly trapped, did not homogenise with the liquid–vapour by 400°C. Salinities in the inclusions are variable. Raman spectra identify that at least some of the solids are calcite and anhydrite. Raman spectra also confirm the vapour phases contain some CO2; whereas clathrates or CH4 was not observed or detected. Quartz grains only host secondary fluid inclusions, which fluoresce under ultraviolet light, indicating trapped hydrocarbons. We speculate that these resulted from Phanerozoic fluid circulation through the Proterozoic basement. The collective interpretation of the age, hydrothermal character and associated metals, high temperature and variable salinity suggests that the Nori/RA Cu–Mo–U mineralisation can be linked with the earliest stages of plutonism in the Great Bear magmatic zone. From a regional perspective, the mineralisation may pre-date the extensive multi-element mineralisation now recognised as part of the iron oxide copper–gold (IOCG) spectrum of deposits. As IOCG provinces generally contain a variety of mineralisation styles, we interpret this as the earliest phase of the extensive mineralising system.  相似文献   

7.
The Damara Orogen is composed of the Damara, Kaoko and Gariep belts developed during the Neoproterozoic Pan-African Orogeny. The Damara Belt contains Neoproterozoic siliciclastic and carbonate successions of the Damara Supergroup that record rift to proto-ocean depositional phases during the Rodinia supercontinent break up. There are two conflicting interpretations of the geotectonic framework of the Damara Supergroup basin: i) as one major basin, composed of the Outjo and Khomas basins, related to rifting in the Angola-Congo-Kalahari paleocontinent or, ii) as two independent passive margin basins, one related to the Angola-Congo and the other to the Kalahari proto-cratons. Detrital zircon provenance studies linked to field geology were used to solve this controversy. U-Pb zircon age data were analyzed in order to characterize depositional ages and provenance of the sediments and evolution of the succession in the northern part of the Outjo Basin. The basal Nabis Formation (Nosib Group) and the base of the Chuos Formation were deposited between ca. 870 Ma and 760 Ma. The upper Chuos, Berg Aukas, Gauss, Auros and lower Brak River formations formed between ca. 760 Ma and 635 Ma. It also includes the time span recorded by the unconformity between the Auros and lower Brak River formations. The Ghaub, upper Brak River, Karibib and Kuiseb formations were deposited between 663 Ma and 590 Ma. The geochronological data indicate that the main source areas are related to: i) the Angola-Congo Craton, ii) rift-related intrabasinal igneous rocks of the Naauwpoort Formation, iii) an intrabasinal basement structural high (Abbabis High), and iv) the Coastal Terrane of the Kaoko Belt. The Kalahari Craton units apparently did not constitute a main source area for the studied succession. This is possibly due to the position of the succession in the northern part of the Outjo Basin, at the southern margin of the Congo Craton. Comparison of the obtained geochronological data with those from the literature shows that the Abbabis High forms part of the Kalahari proto-craton and that Angola-Congo and Kalahari cratons were part of the same paleocontinent in Rodinia times.  相似文献   

8.
The West Jordan nickel deposit, in the northern Agnew–Wiluna greenstone belt of Western Australia, is a newly-discovered Type 2 dunite-hosted, low-grade, large tonnage, disseminated sulphide system. Located in the core of a large dunite body, mineralisation is dominated by intercumulus sulphide blebs (20 μm to 6 mm across) in assemblages containing pentlandite, pyrrhotite, heazlewoodite and locally, native nickel, sphalerite and chalcocite. Mineralisation grades between 0.2 and 2 wt.% Ni, with the majority of samples in the 0.35–0.7% Ni range, were consistent with most komatiitic Type 2 systems. Hypogene alteration of the ultramafic host rock is interpreted to have been effected by retrograde metamorphic fluids, and has resulted in extensive serpentinisation and localised, structurally-controlled, talc-magnesite alteration. This gangue alteration has resulted in modification of original magmatic sulphide assemblages, and localised remobilisation of the minor Cu and Zn components of the magmatic sulphides. The deposit is deeply weathered, and all samples utilised in this study were obtained from a series of 12 diamond drill holes which were comprehensively assayed. An igneous stratigraphy is presented which is interpreted to be west-younging, consistent with along-strike deposits to the south, such as the Mount Keith and Yakabindie Type 2 nickel deposits.  相似文献   

9.
Giant iron-ore deposits, such as those in the Hamersley Province of northwestern Australia, may contain more than a billion tonnes of almost pure iron oxides and are the world's major source of iron. It is generally accepted that these deposits result from supergene oxidation of host banded iron formation (BIF), accompanied by leaching of silicate and carbonate minerals. New textural evidence however, shows that formation of iron ore at one of those deposits, Mount Tom Price, involved initial high temperature crystallisation of magnetite-siderite-iron silicate assemblages. This was followed by development of hematite- and ferroan dolomite-bearing assemblages with subsequent oxidation of magnetite, leaching of carbonates and silicates and crystallisation of further hematite. Preliminary fluid inclusion studies indicate both low and high salinity aqueous fluids as well as complex salt-rich inclusions with the range of fluid types most likely reflecting interaction of hydrothermal brines with descending meteoric fluids. Initial hematite crystallisation occurred at about 250 °C and high fluid pressures and continued as temperatures decreased. Although the largely hydrothermal origin for mineralisation at Mount Tom Price is in conflict with previously proposed supergene models, it remains consistent with interpretations that the biosphere contained significant oxygen at the time of mineralisation. Received: 16 February 1999 / Accepted: 14 May 1999  相似文献   

10.
Fluid inclusions were studied in samples from the Ashanti, Konongo-Southern Cross, Prestea, Abosso/Damang and Ayanfuri gold deposits in the Ashanti Belt, Ghana. Primary fluid inclusions in quartz from mineralised veins of the Ashanti, Prestea, Konongo-Southern Cross, and Abosso/Damang deposits contain almost exclusively volatile species. The primary setting of the gaseous (i.e. the fluid components CO2, CH4 and N2) fluid inclusions in clusters and intragranular trails suggests that they represent the mineralising fluids. Microthermometric and Raman spectroscopic analyses of the inclusions revealed a CO2 dominated fluid with variable contents of N2 and traces of CH4. Water content of most inclusions is below the detection limits of the respective methods used. Aqueous inclusions are rare in all samples with the exception of those from the granite-hosted Ayanfuri mineralisation. Here inclusions associated with the gold mineralisation contain a low salinity (<6 eq.wt.% NaCl) aqueous solution with variable quantities of CO2. Microthermometric investigations revealed densities of the gaseous inclusions of 0.65 to 1.06 g/cm3 at Ashanti, 0.85 to 0.98 g/cm3 at Prestea, up to 1.02 g/cm3 at Konongo-Southern Cross, and 0.8 to 1.0 g/cm3 at Abosso/Damang. The fluid inclusion data are used to outline the PT ranges of gold mineralisation of the respective gold deposits. The high density gaseous inclusions found in the auriferous quartz at Ashanti and Prestea imply rather high pressure trapping conditions of up to 5.4 kbar. In contrast, mineralisation at Ayanfuri and Abosso/Damang is inferred to have occurred at lower pressures of only up to 2.2 kbar. Mesothermal gold mineralisation is generally regarded to have formed from fluids characterized by H2O > CO2 and low salinity ( ±  6 eq.wt.%NaCl). However, fluid inclusions in quartz from the gold mineralisations in the Ashanti belt point to distinctly different fluid compositions. Specifically, the predominance of CO2 and CO2 >> H2O have to be emphasized. Fluid systems with this unique bulk composition were apparently active over more than 200␣km along strike of the Ashanti belt. Fluids rich in CO2 may present a hitherto unrecognised new category of ore-forming fluids. Received: 30 May 1996 / Accepted: 8 October 1996  相似文献   

11.
Summary  The Permo-Triassic Cape Fold Belt around the southern tip of Africa consists of a thick sequence of Palaezoic siliciclastic sedimentary and pre-Cape basement rocks believed to be of Pan-African age. Both the basement rocks and the supracrustal rocks of the Cape Supergroup display only low metamorphic grades. Application of chlorite, chlorite-chloritoid Fe-Mg exchange, and calcite-graphite carbon isotope geothermometry to rocks from the unconformable contact between pre-Cape basement and the Cape Supergroup made it possible to distinguish pre-Cape and syn-Cape metamorphic overprints. During Pan-African metamorphism temperatures of up to middle greenschist facies conditions (around 400 °C) were reached, whereas lowermost greenschist facies conditions (around 300 °C) were not exceeded during the 220–290 Ma Cape orogeny. In the past, most if not all of the pre-Cape basement rocks, which form the Pan-African Saldania Belt, were considered to be of Neoproterozoic age. A hiatus of about 100 °C observed between two adjacent limestone horizons that previously had been grouped together into a single formation at the bottom of the allegedly Neoproterozoic Kango Group indicates that almost all of this group is syn- to post-orogenic with respect to the Pan-African orogeny. A revision of the stratigraphy of the Kango Group is therefore suggested. Only its lowermost member is truly Pan-African and probably related to about 620–740 Ma post-Sturtian cap carbonates in other Pan-African belts of southern Africa. The remainder of the Kango Group reflects the successive development of two stages of orogen-related intra-continental basins: The older stage led to a typical syn-orogenic foreland basin related to tectonic loading in the Gariep and Damara orogenic belts further north(west) between 570 and 540 Ma; the younger is believed to have formed either a further foreland basin or an intra-orogen pull-apart basin caused by later tectonic loading in the Ross orogenic belt and its continuation into the southern Saldania Belt between 510 and 480 Ma. Received May 7, 2000;/revised version accepted January 15, 2001  相似文献   

12.
 The Lengenbach Pb-Zn-As-Tl-Ba mineralisation is located in Triassic dolostones of the Penninic zone in the Swiss Alps where Alpine metamorphism reached upper greenschist to lower amphibolite grade. Geochemical data are used to constrain the origin of this unique occurrence. Two metamorphic redox environments are present: the As(III)-rich zone is controlled by barite-pyrite while the reduced zone contains graphite or pyrrhotite-pyrite and formally zerovalent As. The As(III)-rich zone is characterised by a mineral assemblage consistent with fO2 in the stability field of barite+pyrite. An As-(Pb, Tl)-rich sulphide melt coexisted with a hydrothermal fluid at >kk300 °C in this zone. Mineralised dolostones are anomalous in As, Pb, Ag, Tl, Hg, Zn, Ba, Cd, Fe, Cu, Mo, U, V, B, Ga, Cr and possibly Sn and Au (in order of decreasing enrichment). As, Pb and Zn are present in the 0.1 to 1% range, Tl and Ag reach several hundred ppm. Uraninite is concentrated in silicate-rich bands and yields a late Alpine U-Pb age of 18.5±0.5 Ma. Pb- and S isotopic variations are interpreted by metamorphic overprinting and re-equilibration within an isochemically metamorphosed mineralisation. Hydrothermal sulphides are more strongly affected by uranogenic Pb than massive Pb-As-sulphides representing a former sulphide melt. The least overprinted mineralisation is characterised by 206Pb/204Pb U003U=18.44−18.56, 207Pb/204Pb=15.60−15.75, 208Pb/204Pb =38.44−38.84 and δ34S (sulphide)=−25±2‰. S isotopic variations are largely a result of sulphide-sulphate re-equilibration yielding temperatures of 450± 30 °C. 87Sr/86Sr ratios of mineralised samples are lower than or equal to host dolostones, precluding major infiltration of basement-derived fluids during Alpine metamorphism. The Sr source (87Sr/86Sr close to 0.708) probably was seawater with a radiogenic, detrital mineral component. The genesis of the unique Lengenbach mineralisation is interpreted as the result of isochemical metamorphic overprinting of a carbonate hosted stratiform sulphide mineralisation. Well-crystallised sulphide minerals in fissures and druses formed during retrograde cooling of a sulphide melt in equilibrium with a hydrothermal fluid. The primary mineralisation was probably formed at or close below the sea floor and fed by sulphide-poor hydrothermal fluids. Sulphide was largely derived from seawater by open system bacterial sulphate reduction. U, V and Mo may be seawater-derived. Received: 1 February 1995/Accepted: 10 January 1996  相似文献   

13.
The Griquatown Fault Zone (GFZ) is a major target for Pb-Zn exploration in South Africa. The sedimentary, structural and thermal history of the fault zone are evaluated. The fault zone experienced a synsedimentary period of activity between 2550 and 2500 Ma and a major post-Postmasburg Group (less than 2223 Ma) episode of mainly vertical movements. Possible source rocks for generation of metalliferous brines are abundant along the southwestern margin of the Kaapvaal craton and shales southwest of the GFZ are time correlative to a thick peritidal stromatolitic carbonate sequence in the northeast. Fluids driven by compaction and orogenic pressure migrated across the GFZ , via the carbonates, towards the east. Metamorphic overprint south of the GFZ, based on illite crystallinity, and fluid inclusions north of the fault zone are above the oil window. Metamorphic peaks south of the fault zone are at 1750 Ma and 1213 Ma and the intensity of metamorphic overprint decreases from west to east. Because of high temperatures of metamorphic and orogenic overprint and possible remobilisation of fluids, Mississippi-Valley-Type (MVT) ore deposits are unlikely to be found within the Griquatown Fault Zone, but are expected, rather, to the northeast of it. Higher temperature, remobilised vein-related deposits could, however, occur in the GFZ itself. Received: 11 June 1996 / Accepted: 7 January 1997  相似文献   

14.
The Stonepark Prospect is located in County Limerick, south-central Ireland. Multiple zones of Zn–Pb mineralisation have been identified at Stonepark and these are approximately 5 km west of the Pallas Green Prospect. At Stonepark, the sulphide bodies are hosted within the Waulsortian Limestone and closely resemble other Irish-type deposits. The mineralisation is composed of pyrite-marcasite, sphalerite and galena with gangue Fe-dolomite and calcite cements. A key difference at Stonepark is the presence of Chadian-aged volcanic rocks (Knockroe Volcanics) that intrude into and overlie the Waulsortian Limestone. Subsequent hydrothermal brecciation of the Waulsortian Limestone and Knockroe intrusions resulted in the formation of tabular polymict breccia bodies containing mixed carbonate and clasts of intrusive rocks. These have then been overprinted by massive sulphide mineralisation. Further syn-mineralisation brecciation has overprinted the earlier breccias. Drilling has demonstrated a spatial relationship between the volume of intrusive rocks (dykes and polymict breccias) and Zn–Pb mineralisation. This association suggests that the intrusive rocks provided a mechanism for the introduction of the mineralising fluids into the breccia bodies. This is significant as to date no large controlling fault has been identified, as is seen at other Irish-type deposits. Further work is required to understand the alteration process of the intrusive rocks and how this may relate to the mineralising process.  相似文献   

15.
Recent exploration in the vicinity of the giant (>90 Mt) Navan orebody has resulted in the discovery of ore-grade mineralisation to the southwest of the deposit, much of which occurs within the Upper Pale Beds, a horizon that is only weakly mineralised above the main orebody. Within this new U lens, mineralisation preferentially occurs within bioclastic carbonate grainstones and calcareous quartz sandstones, and is dominated by sulphide replacement of the carbonate component of the host sequence. Much of the replacive mineralisation is spatially associated with hydrothermal cavities, which are filled by a variable mixture of brecciated replacement sulphide minerals, space-filling sulphide and gangue cements, and internal sediments. Mineralisation also occurs within veins and dissolution seams, and as disseminated sulphide minerals. Massive mineralisation is typically a complex, chaotic, combination of replacement, cavity, and fracture-filling sulphides. Fluid inclusion analyses of ore-stage saddle dolomite indicate temperatures at the time of sulphide precipitation of ~90–150 °C, with a maximum of 175 °C. These temperatures are lower than those typically proposed for Irish-type deposits.  相似文献   

16.
The Wadi Bidah Mineral District of Saudi Arabia contains more than 16 small outcropping stratabound volcanogenic Cu–Zn–(Pb) ± Au-bearing massive sulphide deposits and associated zones of hydrothermal alteration. Here, we use major and trace element analyses of massive sulphides, gossans, and hydrothermally altered and least altered metamorphosed host rock (schist) from two of the deposits (Shaib al Tair and Rabathan) to interpret the geochemical and petrological evolution of the host rocks and gossanization of the mineralization. Tectonic interpretations utilize high-field-strength elements, including the rare earth elements (REE), because they are relatively immobile during hydrothermal alteration, low-grade metamorphism, and supergene weathering and therefore are useful in constraining the source, composition, and physicochemical parameters of the primary igneous rocks, the mineralizing hydrothermal fluid and subsequent supergene weathering processes. Positive Eu anomalies in some of the massive sulphide samples are consistent with a high temperature (>250°C) hydrothermal origin, consistent with the Cu contents (up to 2 wt.%) of the massive sulphides. The REE profiles of the gossans are topologically similar to nearby hydrothermally altered felsic schists (light REE (LREE)-enriched to concave-up REE profiles, with or without positive Eu anomalies) suggesting that the REE experienced little fractionation during metamorphism or supergene weathering. Hydrothermally altered rocks (now schists) close to the massive sulphide deposits have high base metals and Ba contents and have concave-up REE patterns, in contrast to the least altered host rocks, consistent with greater mobility of the middle REE compared to the light and heavy REE during hydrothermal alteration. The gossans are interpreted to represent relict massive sulphides that have undergone supergene weathering; ‘chert’ beds within these massive sulphide deposits may be leached wall-rock gossans that experienced silicification and Pb–Ba–Fe enrichment from acidic groundwaters generated during gossan formation.  相似文献   

17.
The Iberian type of volcano-sedimentary massive sulphide deposits   总被引:6,自引:0,他引:6  
The Iberian Pyrite Belt, located in the SW Iberian Peninsula, contains many Paleozoic giant and supergiant massive sulphide deposits, including the largest individual massive sulphide bodies on Earth. Total ore reserves exceed 1500 Mt, distributed in eight supergiant deposits (>100 Mt) and a number of other smaller deposits, commonly with associated stockwork mineralizations and footwall alteration haloes. Massive sulphide bodies largely consist of pyrite, with subordinated sphalerite, galena and chalcopyrite and many other minor phases, although substantial differences occur between individual deposits, both in mineral abundance and spatial distribution. These deposits are considered to be volcanogenic, roughly similar to volcanic-hosted massive sulphides (VHMS). However, our major conclusion is that the Iberian type of massive sulphides must be considered as a VHMS sub-type transitional to SHMS. This work is an assessment of the geological, geochemical and metallogenic data available up to date, including a number of new results. The following points are stressed; (a) ore deposits are located in three main geological sectors, with the southern one containing most of the giant and supergiant orebodies, whereas the northern one has mainly small to intermediate-sized deposits; (b) ore deposits differ one from another both in textures and mineral composition; (c) Co and Bi minerals are typical, especially in stockwork zones; (d) colloidal and other primary depositional textures are common in many localities; (e) a close relation has been found between ore deposits and some characteristic sedimentary horizons, such as black shales. In contrast, relationships between massive sulphides and cherts or jaspers remains unclear; (f) footwall hydrothermal alterations show a rough zoning, the inner alteration haloes being characterized in places by a high Co/Ni ratio, as well as by mobility of Zr, Y and REE; (g) 18O and D values indicate that fluids consist of modified seawater, whereas 34S data strongly suggest the participation of bacterial-reduced sulphur, at least during some stages of the massive sulphide genesis, and (h) lead isotopes suggest a single (or homogeneized) metal source, from both the volcanic piles and the underlying Devonian rocks (PQ Group). It is concluded that, although all these features can be compatible with classical VHMS interpretations, it is necessary to sketch a different model to account for the IPB characteristics. A new proposal is presented, based on an alternative association between massive sulphide deposits and volcanism. We consider that most of the IPB massive orebodies, in particular the giant and supergiant ones, were formed during pauses in volcanic activity, when hydrothermal activity was triggered by the ascent and emplacement of late basic magmas. In these conditions, deposits formed which had magmatic activity as the heat source; however, the depositional environment was not strictly volcanogenic, and many evolutionary stages could have occurred in conditions similar to those in sediment-hosted massive sulphides (SHMS). In addition, the greater thickness of the rock pile affected by hydrothermal circulation would account for the enormous size of many of the deposits. Received: 8 September 1998 / Accepted: 4 January 1999  相似文献   

18.
The lead isotopic composition of galena from the Neoproterozoic sediment-hosted Zn-Pb sulphide deposit at Rosh Pinah and the oxidised Zn deposit at Skorpion in the Pan-African Gariep Belt, southwestern Namibia, as well as that of galena from minor occurrences in the wider Rosh Pinah ore province was investigated and is compared with that of other major sediment-hosted base metal ore deposits hosted by Neoproterozoic strata in southwestern Africa and Brazil. The isotope data were supplemented by a geochemical provenance study of the argillitic host rock to the Rosh Pinah deposit and its stratigraphic equivalents. The pre-orogenic Rosh Pinah deposit and the inferred progenitor for the secondary Skorpion deposits have very similar Pb isotopic compositions. In contrast, syn-orogenic deposits (e.g. Tsumeb-type) show a larger proportion of radiogenic Pb from the country rocks that were infiltrated by orogenic ore fluids.In all examples studied, the ore Pb has elevated 207Pb/204Pb ratios compared to Pb that evolved according to average crustal Pb growth models. The isotopic composition of the ore Pb is in agreement with that of the oldest crustal component known from the pre-Gariep basement, i.e. an Eburnean (c. 2.0 Ga) volcanic arc, best preserved in the Richtersveld Terrane, that represents the largest volume of post-Archaean juvenile crust in southern Africa. Erosion of that arc provided the main sediment source for the metasedimentary siliciclastic host to the Rosh Pinah deposit. Derivation of the Pb, and by analogy Zn, from this Eburnean volcanic arc is therefore inferred for the formation of Rosh Pinah-type syn-rift, early diagenetic replacement mineralisation.The calculated 2- and 2-values for the Rosh Pinah ore province (around 10.2 and 42, respectively) are higher than predicted by conventional Pb crustal growth models and are similar to those found in the wider region of southern Africa (Otavi Mountain Land) and eastern Brazil. The obtained data highlight not only that calculated Pb model ages may have no geochronological significance but might also point to a common crustal evolution of this part of SW-Gondwana.Editorial handling: M. Chiaradia  相似文献   

19.
The Irish carbonate-hosted base metal deposits have long been an enigmatic subclass of deposit. Some of the Irish deposits (Harberton Bridge, Allenwood) are clearly epigenetic, hosted in breccia pipes and have close affinities to Mississippi Valley-type deposits. Others, are characterised by stratabound and sometimes stratiform mineralisation (Abbeytown, Navan), while a third group is associated closely with concordant dolomitic breccias and cavity fill mineralisation at the base of carbonate mud mounds (Lisheen, Ballinalack). When the stratigraphic and textural evidence is reviewed, it is apparent that all of the base metal mineralisation occurred in already compacted sediments. Hence, mineralisation probably occurred at depths of at least several 100 m depth below the sea bed. The mineralisation occurred either during transtensional Lower Carboniferous basin development, or subsequently, during the onset of Variscan shortening. Fluids may have been derived from dewatering of Variscan-driven deformation to the south of the carbonate platform, with fluid flow through major fracture zones and basal clastic aquifers. Alternatively, high heat flow produced by Lower Carboniferous extension may have driven the mineralising system. Syn-genetic models are extremely difficult to sustain.  相似文献   

20.
The strongly deformed Middle Devonian-Lower Carboniferous metasedimentary-volcanic successions of the Trevone Basin (SW England) contain stratiform and Pb-Sb vein deposits that reveal a wide variation in δ34S and δ13C, reflecting mineral deposition during diagenesis, regional metamorphism and basin inversion. Pre-Variscan metasedimentary sulphide (δ34S=−33.7 to −26.7‰) and metabasite sulphide (δ34S=+4.0 to +10.8‰) suggest two accessible source reservoirs for sulphur which were available for Sb-As-(Au) and Pb-Zn-(Ag) mineralisation (δ34S=−3.3 to −15.0‰) during late Variscan semiductile-brittle shear. On the basis of pressure-corrected fluid inclusion temperatures, the calculated composition of fluid sulphur reveals an enrichment in δ34SH2S in the individual vein parageneses and depletion of the fluid sulphur reservoir during evolution of the vein systems. Carbonates in the same veins are partly contemporaneous with Pb-Sb mineralisation and late tensional deformation; their isotopic composition (δ13C=−3.2 and −13.4‰) appears strongly influenced by the host formation. Fluid inclusions in post-tensional quartz show a marked reduction in CO2, suggesting that episodes of CO2 degassing in response to punctuated reductions in pressure during uplift and brittle deformation was an important mechanism for vein carbonation. An origin for the Pb-Sb mineralisation involving local remobilisation of sulphur from the mixed metasedimentary-volcanic succession is probably inseparable from processes connected with Variscan metamorphism and deformation. Although the N Cornish Variscan deformation is part of a spatially large-scale event, the isotopic evidence suggests compartmentalisation of sulphur and carbon isotope features and short distances between sources and sinks. Received: 15 August 1998 / Accepted: 8 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号