首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. Earth observation data from space can contribute to agricultural monitoring, including crop yield assessment and forecasting. In this study, we present a new crop yield model based on the Difference Vegetation Index (DVI) extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) data at 1 km resolution and the un-mixing of DVI at coarse resolution to a pure wheat signal (100% of wheat within the pixel). The model was applied to estimate the national and subnational winter wheat yield in the United States and Ukraine from 2001 to 2017. The model at the subnational level shows very good performance for both countries with a coefficient of determination higher than 0.7 and a root mean square error (RMSE) of lower than 0.6 t/ha (15–18%). At the national level for the United States (US) and Ukraine the model provides a strong coefficient of determination of 0.81 and 0.86, respectively, which demonstrates good performance at this scale. The model was also able to capture low winter wheat yields during years with extreme weather events, for example 2002 in US and 2003 in Ukraine. The RMSE of the model for the US at the national scale is 0.11 t/ha (3.7%) while for Ukraine it is 0.27 t/ha (8.4%).  相似文献   

2.
面向农作物监测的遥感信息处理技术研究   总被引:3,自引:1,他引:3  
以区域性主要农作物种类识别、长势分析与产量估算及农业种植结构现状监测为主要研究对象,开展适于农业管理部门业务化运行的卫星遥感信息处理的关键技术研究。从分析主要作物类型识别的遥感物理依据入手,提出了卫星遥感数据处理及专题信息提取的基本技术框架、主要农作物类型及种植面积信息的提取方法以及主要粮食作物长势分析和产量估算模型,并对结果进行了简要的精度分析。  相似文献   

3.
Both of crop growth simulation models and remote sensing method have a high potential in crop growth monitoring and yield prediction. However, crop models have limitations in regional application and remote sensing in describing the growth process. Therefore, many researchers try to combine those two approaches for estimating the regional crop yields. In this paper, the WOFOST model was adjusted and regionalized for winter wheat in North China and coupled through the LAI to the SAIL–PROSPECT model in order to simulate soil adjusted vegetation index (SAVI). Using the optimization software (FSEOPT), the crop model was then re-initialized by minimizing the differences between simulated and synthesized SAVI from remote sensing data to monitor winter wheat growth at the potential production level. Initial conditions, which strongly impact phenological development and growth, and which are hardly known at the regional scale (such as emergence date or biomass at turn-green stage), were chosen to be re-initialized. It was shown that re-initializing emergence date by using remote sensing data brought simulated anthesis and maturity date closer to measured values than without remote sensing data. Also the re-initialization of regional biomass weight at turn-green stage led that the spatial distribution of simulated weight of storage organ was more consistent to official yields. This approach has some potential to aid in scaling local simulation of crop phenological development and growth to the regional scale but requires further validation.  相似文献   

4.
Large scale adoption of input intensive rice–wheat cropping system in the centrally located Jalandhar district of Indian Punjab has led to over-exploitation of ground water resources, intensive use of chemical fertilizers and deterioration of soil health. To overcome these shortfalls, in the present study, agricultural area diversification plan has been generated from agricultural area and crop rotation maps derived from remote sensing data (IRS P6-AWiFS and RADARSAT ScanSAR) along with few agro-physical parameters in GIS environment. Cropping system indices (area diversity, multiple cropping and cultivated land utilization) were also worked out from remote sensing data .Analysis of remote sensing data (2004–05) revealed that rice and wheat individually remained the dominant crops, occupy 57.8% and 64.9% of total agricultural area (TAA), respectively. Therefore, in the diversified plan, it is suggested that at least 39% of the current 40% TAA under rice–wheat rotation should be replaced by other low water requiring, high value and soil enriching crops, particularly in coarse textured alluvial plain having good quality ground water zones with low annual rainfall(<700 mm). This will reduce water requirement to the tune of 15,660 cm depth while stabilizing the production and profitability by crop area diversification without further degradation of natural resources.  相似文献   

5.
Canopy temperature in differentially irrigated and fertilized wheat plots were collected by hand held infrared thermometer from seedling emergence to maturity for two growing seasons (1981–82 and 1982–83). Canopy temperature indices like stress degree day (SDD) and crop water stress index (CWSI) based four-parameter (crop growth stage partitioned) and two-parameter (Non-partitioned) yield models suitable for remote sensing application were developed and tested with observed yield data. From statistical analysis of the models it was concluded that crop growth stage partitioned CWSI or SDD yield model was better than non-partitioned SDD models for predicting wheat grain as well as biological yields.  相似文献   

6.
首先给出CO2 倍增下遥感光合作物产量的概念模型,之后分析未受CO2 倍增的遥感光合作物产量估测模型;在考虑CO2 倍增对作物产量的影响后,对影响干物质累积的作物光合速率的模型进行修正,进而修正遥感光合作物产量估测模型。建立CO2 倍增下作物产量响应模型,求取各参数,并在CO2 倍增下对我国华北地区冬小麦产量响应进行填图,表明模型的估测结果有良好的可比性。  相似文献   

7.
统计数据总量约束下全局优化阈值的冬小麦分布制图   总被引:6,自引:0,他引:6  
大范围、长时间和高精度农作物空间分布基础农业科学数据的准确获取对资源、环境、生态、气候变化和国家粮食安全等问题研究具有重要现实意义和科学意义。本文针对传统阈值法农作物识别过程中阈值设置存在灵巧性差和自动化程度低等弱点,以中国粮食主产区黄淮海平原内河北省衡水市景县为典型实验区,首次将全局优化算法应用于阈值模型中阈值优化选取,开展了利用全局优化算法改进基于阈值检测的农作物分布制图方法创新研究。以冬小麦为研究对象,国产高分一号(GF-1)为主要遥感数据源,在作物面积统计数据为总量控制参考标准和全局参数优化的复合型混合演化算法SCE-UA (Shuffled Complex Evolution-University of Arizona)支持下,提出利用时序NDVI数据开展阈值模型阈值参数自动优化的冬小麦空间分布制图方法。最终,获得实验区冬小麦阈值模型最优参数,并利用优化后的阈值参数对冬小麦空间分布进行提取。通过地面验证表明,利用本研究所提方法获取的冬小麦识别结果分类精度均达到较高水平。其中冬小麦识别结果总量精度达到了99.99%,证明本研究所提阈值模型参数优化方法冬小麦提取分类结果总量控制效果良好;同时,与传统的阈值法、最大似然和支持向量机等分类方法相比,本研究所提阈值模型参数优化法区域冬小麦作物分类总体精度和Kappa系数分别都有所提高,其中,总体精度分别提高4.55%、2.43%和0.15%,Kappa系数分别提高0.12、0.06和0.01,这体现出SCE-UA全局优化算法对提高阈值模型冬小麦空间分布识别精度具有一定优势。以上研究结果证明了利用本研究所提基于作物面积统计数据总量控制以及SCE-UA全局优化算法支持下阈值模型参数优化作物分布制图方法的有效性和可行性,可获得高精度冬小麦作物空间分布制图结果,这对提高中国冬小麦空间分布制图精度和自动化水平具有一定意义,也可为农作物面积农业统计数据降尺度恢复重建和大范围区域作物空间分布制图研究提供一定技术参考。  相似文献   

8.
This paper reports acreage, yield and production forecasting of wheat crop using remote sensing and agrometeorological data for the 1998–99 rabi season. Wheat crop identification and discrimination using Indian Remote Sensing (IRS) ID LISS III satellite data was carried out by supervised maximum likelihood classification. Three types of wheat crop viz. wheat-1 (high vigour-normal sown), wheat-2 (moderate vigour-late sown) and wheat-3 (low vigour-very late sown) have been identified and discriminated from each other. Before final classification of satellite data spectral separability between classes were evaluated. For yield prediction of wheat crop spectral vegetation indices (RVI and NDVI), agrometeorological parameters (ETmax and TD) and historical crop yield (actual yield) trend analysis based linear and multiple linear regression models were developed. The estimated wheat crop area was 75928.0 ha. for the year 1998–99, which sowed ?2.59% underestimation with land record commissioners estimates. The yield prediction through vegetation index based and vegetation index with agrometeorological indices based models were 1753 kg/ha and 1754 kg/ha, respectively and have shown relative deviation of 0.17% and 0.22%, the production estimates from above models when compared with observed production show relative deviation of ?2.4% and ?2.3% underestimations, respectively.  相似文献   

9.
针对中国开展的国外农作物产量遥感估测大多依靠中低分辨率耕地信息、省级(州级)或国家级作物产量统计数据的现状,本文以美国玉米为例,探讨利用多年中高分辨率作物分布信息、时序遥感植被指数和县级作物产量统计数据开展国外重点地区作物单产遥感估测技术研究,以期进一步提高中国对国外农作物产量监测精度和精细化水平。首先,利用美国农业部国家农业统计局(NASS/USDA)生产的作物分布数据(CDL)获得多个年份玉米空间分布图,并对相应年份250 m分辨率16天合成的MODIS-NDVI时序数据进行掩膜处理,统计获得每年各县域内玉米主要生育期NDVI均值;其次,以各州为估产区,以多年县级玉米统计单产和县域内玉米主要生育期NDVI均值为基础,建立各州玉米主要生育期NDVI与玉米单产间关系模型;然后,通过主要生育期玉米单产和玉米植被指数间拟合程度,筛选确定各州玉米最佳估产期和最佳估产模型。最终,利用最佳估产模型实现美国各州玉米单产估测和全国玉米单产推算。其中,建模数据覆盖时间为2007年—2010年,验证数据为2011年。结果表明,应用最佳估产模型的2011年美国各州玉米单产估测相对误差在-4.16%—4.92%,均方根误差在148.75—820.93 kg/ha,各州估测结果计算获得全国玉米单产的相对误差仅为2.12%,均方根误差为285.57 kg/ha。可见,本研究的作物单产遥感估测技术方法具有一定可行性,可准确估测全球重点地区作物单产信息。  相似文献   

10.
Remote sensing and FAO 56 crop water model are used for estimating crop water requirement for paddy crop located in the main branch canal of Bhadra Command Area in Karnataka, India. The estimation of crop-water requirement depends on the meteorological factors, soil type and crop coefficients. The result obtained showed that water requirements of rabi crops higher than those of the kariff crops. The total irrigated area estimated from the IRS image is 29,353 ha. It is found that the total paddy crop acreage is 18,257 ha covering 62 % in the total irrigated area of the command area, Arecanut 20 %, coconut 15 % and sugarcane with other crops 3 %. The water requirement for paddy is 1180.4 mm for its entire growth period. The total water requirement for irrigation supply for crops in the entire command area is 5,790 at a demand of 0.10501 cusecs per ha.  相似文献   

11.
Detection of crop water stress is crucial for efficient irrigation water management. Potential of Satellite data to provide spatial and temporal dynamics of crop growth conditions makes it possible to monitor crop water stress at regional level. This study was conducted in parts of western Uttar Pradesh and Haryana. Multi-temporal Landsat data were used for detecting wheat crop water stress using vegetation indices (VIs), viz. vegetation water stress index (VWSI) and land surface wetness index water stress factor (Ws_LSWI). The estimated water stress from satellite data-based VIs was validated by water stress factor (Ws) derived from flux-tower data. The study observed Ws_LSWI to be better index for water stress detection. The results indicated that Ws_LSWI was superior over other index showing RMSE = 0.12, R2 = 0.65, whereas VWSI showed overestimated values with mean RD 4%.  相似文献   

12.
Human diets strongly rely on wheat, maize, rice and soybean; research on the potential crop productivity of these four main crops could provide the basis for increasing global crop yields. The evaluation model of realistic potential crop productivity based on remote sensing and agro-ecological zones was proposed in this study to provide reliable reference data for world food security. The statistical data on these four main crops yields were obtained from the FAO. The model was used to investigate the potential production of four staple crops in the world. The distributions of the realistic potential productivity of four staple crops (winter wheat, maize, rice and soybean) were produced. In the main producing countries of the four staple crops, statistical analysis was conducted on the realistic potential productivity (RPP) of the four staple crops, the highest productivity (HP) during the period 1983–2011 and the gap between RPP and HP.  相似文献   

13.
土壤水分的遥感监测方法   总被引:4,自引:0,他引:4  
本文讨论了用雷达图像散射系数法、NOAA-AVHRR数字图像热惯量法和作物缺水指数法监测土壤水分的结果,并将这些方法与常规气象方法、绿度指数法和温差法监测土壤水分的效果进行了比较和评价。结果表明,微波遥感监测土壤水分有广阔的应用前景,但必须深入开展基础研究。在我国目前情况下,采用NOAA-AVHRR数字图像及有关气象数据计算热惯量、作物蒸散和缺水指数,从而估算土壤水分的方法是一种比较切实可行的方法。  相似文献   

14.
This study aims to monitor the forest cover of Pichavaram mangroves, South India over a period of 40 years using remote sensing, and to record the status of mangroves as perceived by the local community. Out of 1471 ha of total reserved forest area, mangroves occupy 906 ha. The remote sensing maps show that there was a loss of 471 ha from 1970 to 1991 and a gain of 531 ha in 2011. Nearby 20 hamlets depend on mangroves for their livelihood. A village survey conducted at Pichavaram shows that more than 90% of the local community is well aware of the prevailing species, their importance especially after the 2004 tsunami and the impact of management practices, increased rainfall and contribution of local community in the recent increased area of mangroves. The same can be noticed from the high-resolution IKONOS image showing the artificial canal network in the restored region and from rainfall records.  相似文献   

15.
冬小麦是中国最主要的粮食作物之一,利用遥感技术提取冬小麦种植区是遥感应用研究的一个重要方向。2008年以来发射的系列风云三号(FY-3)卫星均携带着中分辨率光谱成像仪(MERSI),该传感器有5个250 m分辨率的波段,波段范围包括可见光、近红外和热红外,观测数据包含丰富的地表信息,为大范围冬小麦种植区提取提供了新的数据源。首先,选取生长季前期多幅高质量的MERSI数据,采用分层提取的方法,对于不同的层次选用与待提取类别最为敏感的特征波段来构建相应的决策树,从而将每一幅影像中冬小麦种植区提取出来,然后,将多幅数据融合为一幅生长季内的冬小麦种植区图。最后,使用野外实地调查的数据进行精度验证,面积提取精度为90.8%。结果表明,在春季返青后,即可做出当季冬小麦种植分布图,为农情监测提供及时的信息支撑。  相似文献   

16.
Timely and reliable estimation of regional crop yield is a vital component of food security assessment, especially in developing regions. The traditional crop forecasting methods need ample time and labor to collect and process field data to release official yield reports. Satellite remote sensing data is considered a cost-effective and accurate way of predicting crop yield at pixel-level. In this study, maximum Enhanced Vegetation Index (EVI) during the crop-growing season was integrated with Machine Learning Regression (MLR) models to estimate wheat and rice yields in Pakistan's Punjab province. Five MLR models were compared using a fivefold cross-validation method for their predictive accuracy. The study results revealed that the regression model based on the Gaussian process outperformed over other models. The best performing model attained coefficient of determination (R2), Root Mean Square Error (RMSE, t/ ha), and Mean Absolute Error (MAE, t/ha) of 0.75, 0.281, and 0.236 for wheat; 0.68, 0.112, and 0.091 for rice, respectively. The proposed method made it feasible to predict wheat and rice 6– 8 weeks before the harvest. The early prediction of crop yield and its spatial distribution in the region can help formulate efficient agricultural policies for sustainable social, environmental, and economic progress.  相似文献   

17.
Crop Residue Discrimination Using Ground-Based Hyperspectral Data   总被引:1,自引:0,他引:1  
Crop residue has become an increasingly important factor in agriculture management. It assists in the reduction of soil erosion and is an important source of soil organic carbon (soil carbon sequestration). In recent past, remote sensing, especially narrowband, data have been explored for crop residue assessment. In this context, a study was carried out to identify different narrow-bands and evaluate the performance of SWIR region based spectral indices for crop residue discrimination. Ground based hyperspectral data collected for wheat crop residue was analyzed using Stepwise Discriminant Analysis (SDA) technique to select significant bands for discrimination. Out of the seven best bands selected to discriminate between matured crop, straw heap, combine-harvested field with stubbles and soil, four bands were from SWIR (1980, 2030, 2200, 2440 nm) region. Six spectral indices were computed, namely CAI, LCA, SINDRI, NDSVI, NDI5 and hSINDRI for crop residue discrimination. LCA and CAI showed to be best (F?>?115) in discriminating above classes, while LCA and SINDRI were best (F?>?100) among all indices in discriminating crop residue under different harvesting methods. Comparison of different spectral resolution (from 1 nm to 150 nm) showed that for crop residue discrimination a resolution of 100 nm at 2100–2300 m region would be sufficient to discriminate crop residue from other co-existing classes.  相似文献   

18.
农业遥感研究应用进展与展望   总被引:22,自引:0,他引:22  
得益于中国自主遥感卫星、无人机遥感和物联网等技术的发展,中国农业遥感研究与应用在过去20年取得了显著进步,中国农业遥感信息获取呈现出天地网一体化的趋势;农业定量遥感在关键参数遥感反演技术方法与应用方面取得进展;作物面积、长势、产量、灾害遥感监测的理论与技术方法取得突破,农业遥感技术应用领域不断拓展。本文从农业遥感信息获取、农业定量遥感、农业灾害遥感、作物遥感识别与制图、作物长势遥感监测与产量预测、农业土地资源遥感等方面对中国农业遥感科研与应用进行了总结综述。  相似文献   

19.
Real time, accurate and reliable estimation of maize yield is valuable to policy makers in decision making. The current study was planned for yield estimation of spring maize using remote sensing and crop modeling. In crop modeling, the CERES-Maize model was calibrated and evaluated with the field experiment data and after calibration and evaluation, this model was used to forecast maize yield. A Field survey of 64 farm was also conducted in Faisalabad to collect data on initial field conditions and crop management data. These data were used to forecast maize yield using crop model at farmers’ field. While in remote sensing, peak season Landsat 8 images were classified for landcover classification using machine learning algorithm. After classification, time series normalized difference vegetation index (NDVI) and land surface temperature (LST) of the surveyed 64 farms were calculated. Principle component analysis were run to correlate the indicators with maize yield. The selected LSTs and NDVIs were used to develop yield forecasting equations using least absolute shrinkage and selection operator (LASSO) regression. Calibrated and evaluated results of CERES-Maize showed the mean absolute % error (MAPE) of 0.35–6.71% for all recorded variables. In remote sensing all machine learning algorithms showed the accuracy greater the 90%, however support vector machine (SVM-radial basis) showed the higher accuracy of 97%, that was used for classification of maize area. The accuracy of area estimated through SVM-radial basis was 91%, when validated with crop reporting service. Yield forecasting results of crop model were precise with RMSE of 255 kg ha?1, while remote sensing showed the RMSE of 397 kg ha?1. Overall strength of relationship between estimated and actual grain yields were good with R2 of 0.94 in both techniques. For regional yield forecasting remote sensing could be used due greater advantages of less input dataset and if focus is to assess specific stress, and interaction of plant genetics to soil and environmental conditions than crop model is very useful tool.  相似文献   

20.
ABSTRACT

The overarching goal of this study was to perform a comprehensive meta-analysis of irrigated agricultural Crop Water Productivity (CWP) of the world’s three leading crops: wheat, corn, and rice based on three decades of remote sensing and non-remote sensing-based studies. Overall, CWP data from 148 crop growing study sites (60 wheat, 43 corn, and 45 rice) spread across the world were gathered from published articles spanning 31 different countries. There was overwhelming evidence of a significant increase in CWP with an increase in latitude for predominately northern hemisphere datasets. For example, corn grown in latitude 40–50° had much higher mean CWP (2.45?kg/m³) compared to mean CWP of corn grown in other latitudes such as 30–40° (1.67?kg/m³) or 20–30° (0.94?kg/m³). The same trend existed for wheat and rice as well. For soils, none of the CWP values, for any of the three crops, were statistically different. However, mean CWP in higher latitudes for the same soil was significantly higher than the mean CWP for the same soil in lower latitudes. This applied for all three crops studied. For wheat, the global CWP categories were low (≤0.75?kg/m³), medium (>0.75 to <1.10?kg/m³), and high CWP (≥1.10?kg/m³). For corn the global CWP categories were low (≤1.25?kg/m³), medium (>1.25 to ≤1.75?kg/m³), and high (>1.75?kg/m³). For rice the global CWP categories were low (≤0.70?kg/m³), medium (>0.70 to ≤1.25?kg/m³), and high (>1.25?kg/m³). USA and China are the only two countries that have consistently high CWP for wheat, corn, and rice. Australia and India have medium CWP for wheat and rice. India’s corn, however, has low CWP. Egypt, Turkey, Netherlands, Mexico, and Israel have high CWP for wheat. Romania, Argentina, and Hungary have high CWP for corn, and Philippines has high CWP for rice. All other countries have either low or medium CWP for all three crops. Based on data in this study, the highest consumers of water for crop production also have the most potential for water savings. These countries are USA, India, and China for wheat; USA, China, and Brazil for corn; India, China, and Pakistan for rice. For example, even just a 10% increase in CWP of wheat grown in India can save 6974 billion liters of water. This is equivalent to creating 6974 lakes each of 100?m³ in volume that leads to many benefits such as acting as ‘water banks’ for lean season, recreation, and numerous ecological services. This study establishes the volume of water that can be saved for each crop in each country when there is an increase in CWP by 10%, 20%, and 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号