首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
利用新型C波段Sentinel-1卫星获取的2015年2月至2017年2月期间的影像数据,研究分析了天山中部南伊内里切克冰川不同时段的运动特征。利用偏移量追踪技术计算不同时间段冰川位移,首先采用三步配准的方法进行主辅影像高精度整体配准,然后基于归一化互相关(normalized cross correlation,NCC)算法通过调整窗口参数精确估算局部偏移量,进一步分离得到冰川移动信息。监测结果表明:(1)在空间分布上,狭长的冰舌区是冰川主要的高速流动区域,冰舌区底部流速小于上部,两侧流速小于中间,末端流速明显减缓。(2)在季节变化上,冰川运动速率与温度变化趋势一致,在5月至8月期间运动速率最快,沿剖面线的最高速率达49 cm/d;在11月至次年2月期间运动最为缓慢,速率为25~30 cm/d左右。(3)在年度变化上,2015年夏季的运动速率比2016年整体高约1~3 cm/d,其他季节则没有明显差异。与高分辨率L波段PALSAR-2影像的监测结果进行定量对比分析时,将冰舌区的像元进行抽稀后统计,得到两种数据获取的运动速率之差的均值为3.48 cm/d,标准差为±3.78 cm/d,证实了南伊内里切克冰川运动监测结果的可靠性。  相似文献   

2.
Grove山地区是我国南极PANDA断面考察的重点研究区域之一。本文利用35 d时间间隔的Envisat ASAR数据,分别采用DInSAR、偏移量跟踪以及两者相结合的方法提取了该区域冰面流速信息,描述了该区域复杂的冰流运动特征,并对Grove山核心区的冰流运动特征进行分析。利用GPS实测数据和MEaSUREs流速进行精度分析,说明了结果的可靠性,并利用2006、2007和2009年三期南极冬季SAR数据提取了Grove山地区冰流速,发现该区域冰流速无明显年际变化。  相似文献   

3.
In this study ascending and descending passes interferometric synthetic aperture radar (InSAR) techniques are used for glacier surface velocity estimation in the Himalaya. Single-track interferometric measurements are sensitive to only a single component of the three dimensional (3-D) velocity vectors. European Remote Sensing satellites (ERS-1/2) tandem mission data in ascending and descending tracks provide an opportunity to resolve the three velocity components under the assumption that glacier flow is parallel to its surface. Using the surface slope as an essential input in this technique the velocity pattern of Siachen glacier in Himalaya has been modelled. Glaciers in the Himalayan region maintain excellent coherence of SAR return signals in one-day temporal difference. As a result we could obtain spatially continuous surface velocity field with a precision of fraction of radar wavelength. The results covering the main course of glacier are analysed in terms of spatial and temporal variations. A maximum velocity of 43 cm/day has been observed in the upper middle portion of the glacier. This technique has been found accurate for monitoring the flow rates in this region, suggesting that routine monitoring of diurnal movement Himalayan glaciers would be immensely useful in the present day context of climate change.  相似文献   

4.
Countries like Iran, which are geographically situated in a rather arid and warm regions, will suffer more from global warming than countries located in humid and semi-humid regions. In such environments, analyzing the variations of mountain glaciers can reveal several aspects of climate change patterns more efficiently in comparison to the other geo-indicators. The present study reports some evidence of changes for Alamkouh glacier between 1955 and 2010 based on several mediums to high-resolution satellite images. Considering that most part of the Alamkouh glacier is covered by debris and delineating its actual area is not possible, planimetric change analysis was restricted to the clean-ice regions. The object-oriented classification approach was used to estimate the clean ice areas. This technique takes into account the shapes of the features along with their spectral patterns. Results revealed that clean ice regions of Alamkouh glacier shrank since 1955 with an overall area reduction of about 59 %. Although the general observed trend is a clean ice area reduction, some advancement was detected over the period from 2000 to 2010. During 1992–2000, the maximum reduction in the clean ice area was observed (0.08 km2.a?1). However, clean ice area of the case study has partially increased about 0.028 km2.a?1 from 2000 to 2010. Supra-glacial lake change analysis illustrated that at the surface of the glacier, lakes have been enlarged remarkably in the past 55 years (about 4.75 times greater). In addition, clean ice area and the surface area of supra-glacial lakes oscillated in compliance with each other. The findings revealed that the maximum expansion of supra-glacial lake occurred during 1992–2000, which demonstrate the glacier maximum reduction during this period. This shrinkage in the Alamkouh glacier caused an extensive glacial lake outburst flood in Jun 2011. The results of this study agree with documented changes in other mountain glaciers located in arid and semi-arid environments and they also confirm the application of mountain glaciers in climate variations monitoring over such regions.  相似文献   

5.
冰川表面流速是反映冰川动态变化的重要指标,能够为冰川物质平衡提供重要信息.利用2016年的13景Sentinel-1A影像和合成孔径雷达(synthetic aperture radar,SAR)偏移量追踪法测定岗纳楼冰川表面流速场,并根据地表温度是否大于0℃将其分为冰封期(10月—次年3月)和消融期(4月—9月).其...  相似文献   

6.
基于SAR偏移量跟踪法提取岗纳楼冰川流速   总被引:2,自引:1,他引:1  
冰川动态变化监测有助于反映全球和区域气候演变,保护自然环境和自然资源。近年来,基于SAR数据研究冰川运动已成为主流技术之一。基于SAR提取冰川流速主要包括合成孔径雷达干涉测量、多孔径雷达干涉和偏移量追踪法。本文采用SAR偏移量追踪法中的强度追踪法,提取青海省哈拉湖东北部岗纳楼冰川沿距离向、方位向的冰川流速。试验结果表明,距离向冰川运动速度提取效果较好,最大流速达15.36 m/a,流速从中轴向两侧递减,在冰舌末端趋于0;方位向提取的冰流速最大达18.27 m/a,但因电离层干扰,方位向流速图中存在一些方位向条纹。此外,由于冰流速在方位向分量小等因素的影响,本文研究提取的方位向流速精度低于距离向。  相似文献   

7.
Snow physical properties, snow cover and glacier facies are important parameters which are used to quantify snowpack characteristics, glacier mass balance and seasonal snow and glacier melt. This study has been done using C-band synthetic aperture radar (SAR) data of Indian radar imaging satellite, radar imaging satellite-1 (RISAT)-1, to estimate the seasonal snow cover and retrieve snow physical properties (snow wetness and snow density), and glacier radar zones or facies classification in parts of North West Himalaya (NWH), India. Additional SAR data used are of Radarsat-2 (RS-2) satellite, which was used for glacier facies classification of Smudra Tapu glacier in Himachal Pradesh. RISAT-1 based snow cover area (SCA) mapping, snow wetness and snow density retrieval and glacier facies classification have been done for the first time in NWH region. SAR-based inversion models were used for finding out wet and dry snow dielectric constant, dry and wet SCA, snow wetness and snow density. RISAT-1 medium resolution scan-SAR mode (MRS) in HV polarization was used for first time in NWH for deriving time series of SCA maps in Beas and Bhagirathi river basins for years 2013–2014. The SAR-based inversion models were implemented separately for RISAT-1 quad pol. FRS2, for wet snow and dry snow permittivity retrieval. Masks for layover and shadow were considered in estimating final snow parameters. The overall accuracy in terms of R2 value comes out to be 0.74 for snow wetness and 0.72 for snow density based on the limited ground truth data for subset area of Manali sub-basin of Beas River up to Manali for winter of 2014. Accuracy for SCA was estimated to be 95 % when compared with optical remote sensing based SCA maps with error of ±10 %. The time series data of RISAT-1 MRS and hybrid data in RH/RV mode based decompositions were also used for glacier radar zones classification for Gangotri and Samudra Tapu glaciers. The various glaciers radar zones or facies such as debris covered glacier ice, clean or bare glacier ice radar zone, percolation/refreeze radar zone and wet snow, ice wall etc., were identified. The accuracy of classified maps was estimated using ground truth data collected during 2013 and 2014 glacier field work to Samudra Tapu and Gangotri glaciers and overall accuracy was found to be in range of 82–90 %. This information of various glacier radar zones can be utilized in marking firn line of glaciers, which can be helpful for glacier mass balance studies.  相似文献   

8.
COSMO-SkyMed is a constellation of four X-band high-resolution radar satellites with a minimum revisit period of 12 hours. These satellites can obtain ascending and descending synthetic aperture radar (SAR) images with very similar periods for use in the three-dimensional (3D) inversion of glacier velocities. In this paper, based on ascending and descending COSMO-SkyMed data acquired at nearly the same time, the surface velocity of the Yiga Glacier, located in the Jiali County, Tibet, China, is estimated in four directions using an offset tracking technique during the periods of 16 January to 3 February 2017 and 1 February to 19 February 2017. Through the geometrical relationships between the measurements and the SAR images, the least square method is used to retrieve the 3D components of the glacier surface velocity in the eastward, northward and upward directions. The results show that applying the offset tracking technique to COSMO-SkyMed images can be used to derive the true 3D velocity of a glacier’s surface. During the two periods, the Yiga Glacier had a stable velocity, and the maximum surface velocity, 2.4?m/d, was observed in the middle portion of the glacier, which corresponds to the location of the steepest slope.  相似文献   

9.
针对青藏高原冰川高程变化研究较少的问题,该文提出一种大范围区域的冰川高程变化监测方法。基于ICESat激光高度计数据,联合利用SRTM DEM数据,计算念青唐古拉山脉冰川的高程变化,进而反演冰川的冰量变化。结果显示,念青唐古拉山冰川高程在2003—2009年间平均减薄速率为(0.53±0.47)(m·a~(-1)),估算得到冰量年均减少(0.32±0.28)km~3,总体呈逐年减少趋势,证明冰川一直处于消融状态。拉萨和当雄气象站的资料表明,冰川消融主要是由于当地气温升高。  相似文献   

10.
We revisit the empirical moving window filtering method of Swenson and Wahr (Geophys Res Lett 33:L08402, 2006) and its variants, Chambers (Geophys Res Lett 33:L17603, 2006) and Chen et al. (Geophys Res Lett 34: L13302, 2007), for reducing the correlated errors in the Stokes coefficients (SCs) of the spherical harmonic expansion of the GRACE determined monthly geopotential solutions. Based on a comparison of the three published approaches mentioned, we propose a refined approach for choosing parameters of the decorrelation filter. Our approach is based on the error pattern of the SCs in the monthly GRACE geopotential solutions. We keep a portion of the lower degree-order SCs with the smallest errors unchanged, and high-pass filter the rest using a moving window technique, with window width decreasing as the error of the SCs increases. Both the unchanged portion of SCs and the window width conform with the error pattern, and are adjustable with a parameter. Compared to the three published approaches mentioned, our unchanged portion of SCs and window width depend on both degree and order in a more complex way. We have used the trend of mass change to test various parameters toward a preferred choice for a global compromise between the removal of the correlated errors and the minimization of signal distortion.  相似文献   

11.
Abstract

This paper documents ongoing glacier retreat in the eastern part of the Granatspitz Mountains (Hohe Tauern Range, Austrian Alps) for the time period 2003–2009 using aerial photogrammetry. Aerial photographs of 2003, 2006, and 2009 were made available by the Hydrological Service of the Regional Government of Salzburg, the Federal Office of Metrology, Surveying and Mapping, Vienna, and the Regional Government of the Tyrol, respectively. High resolution multi-temporal digital elevation models and digital orthophotos of the area of interest were derived using digital photogrammetric methods to provide a sound basis for glaciological research. Glacier outlines of the three glacial stages were mapped interactively. Temporal change in area and surface height of the glaciers mapped clearly document glacier retreat. Glacier mass balance based on the geodetic method was calculated for Stubacher Sonnblickkees (Glacier). Mean annual specific net balance amounts to ?656 mm w.e. for the time period 2003–2009, with a mass balance gradient of 324 mm w.e. (100 m)?1 and an equilibrium-line altitude of 2995 m a.s.l. Digital orthophoto maps and other thematic maps, e.g. showing surface height change, were prepared to support further data interpretation. Both the study area and its spatio-temporal change were visualized with special emphasis on the glaciers in a computer generated video film. Another film (exposure 29 August 2011) shows the lower part of Stubacher Sonnblickkees and its surroundings for reasons of comparison.  相似文献   

12.
采用归一化互相关算法精确配准Landsat 8影像得到了2014年—2016年不同季节冰川的运动速率,并利用其热红外波段对不同时刻的地表温度进行反演;通过强度追踪法处理TerraSAR-X影像得到了2008年4月—10月不同时段的冰川运动速率。两种数据得到的结果表明:冰川末端流速较小,中部流速增大,流速从轴部向两侧递减;冬季流速明显小于夏季,变化趋势与温度变化具有一致性。冰川西侧分支的移动速率相对较大,从Landsat 8和TerraSAR-X提取的最大速率分别为2.56 m·d~(-1)和2.74 m·d~(-1)。最后对稳定区域的冰川流速进行统计,结果显示Landsat 8提取的冰川流速精度控制在1—9 cm d~(-1),基于TerraSAR-X的强度追踪法提取移动速率的精度控制在2cm·d~(-1),验证了两种数据监测冰川移动的可靠性。  相似文献   

13.
Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier??s health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be ?ve 0.19?m, ?ve 0.27?m and ?ve 0.2?m respectively. It is 0.05?m, ?ve 0.11?m and ?ve 0.19?m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83?km3 of glacier in the monitoring period of 3?years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3?years.  相似文献   

14.
Glaciers are widely recognized as key indicators of climate change, and melt water obtained from them is an important source of fresh water and for hydropower generation. Regular monitoring of a large number of Himalayan glaciers is important for improving our knowledge of glacier response to climate change. In the present study, Survey of India topographical maps (1966) and Landsat datasets as ETM+ (2000, 2006) and TM (2011) have been used to study glacier fluctuations in Tirungkhad basin. A deglaciation of 26.1% (29.1?km2) in terms of area from 1966 to 2011 was observed. Lower altitude small glaciers (area?<?1?km2) lost more ice (34%), while glaciers with an area <10?km2 lost less (20%). The percentage of change in glacier length was 26% (31.9?km) from 1966 to 2011. The south-facing glaciers showed high percentages of loss. From 2000 to 2011, debris cover has increased by 1.34%. The analysis of the trend in meteorological data collected from Kalpa and Purbani stations was carried out by Mann Kendall non-parametric method. During the last two decades, the mean annual temperature (Tmax and Tmin) has increased significantly, accompanied with a fall in snow water equivalent (SWE) and rainfall. The increasing trend in temperature and decreasing trend in SWE were significant at 95% confidence level. This observation shows that the warming of the climate is probably one of the major reasons for the glacier change in the basin.  相似文献   

15.
ABSTRACT

The climate in southern Iceland has warmed over the last 70 years, resulting in accelerated glacier dynamics at the Solheimajoküll glacier. In this study, we compare glacier terminus locations from 1973 to 2018, to changes in climate across the study area, and we derive ice-surface velocities (2015–2018) from satellite remote-sensing imagery (Sentinel-1) using the offset-tracking method. There have been two regional temperature trends in the study period: cooling (1973–1979) and warming (1980–2018). Our results indicate a time lag of about 20 years between the onset of glacier retreat (?53 m/year since 2000) and the inception of the warming period. Seasonally, the velocity time series suggest acceleration during the summer melt season since 2016, whereas glacier velocities during accumulation months were constant. The highest velocities were observed at high elevations where the ice-surface slope is the steepest. We tested several scenarios to assess the hydrological time response to glacier accelerations, with the highest correlations being found between one and 30 days after the velocity estimates. Monthly correlation analyses indicated inter-annual and intra-annual variability in the glacier dynamics. Additionally, we investigate the linkage between glacier velocities and meltwater outflow parameters as they provide useful information about internal processes in the glacier. Velocity estimates positively correlate with water level and negatively correlate with water conductivity between April and August. There is also a disruption in the correlation trend between water conductivity and ice velocity in June, potentially due to a seasonal release of geothermal water.  相似文献   

16.
高山冰川多时相多角度遥感信息提取方法   总被引:1,自引:0,他引:1  
提出一种多角度遥感影像的冰川信息提取方法。通过"全域—局部"的阈值分割方法获取短时期内不同时相的遥感影像的冰雪边界,结合地形信息和多时相遥感影像的太阳角度信息,联合消除山体阴影对冰川的遮挡,并以多期影像的最小冰雪边界作为最佳冰川边界。以托木尔峰西侧冰川为研究对象,采用2009—2010年4个时相的遥感影像提取冰川信息。结果表明多角度遥感提取的冰川边界效果好,能有效地排除积雪与山体阴影的干扰。  相似文献   

17.
Monitoring the evolution of polar glaciers, ice caps and ice streams is of utmost importance because they constitute a good indicator of global climate change and contribute significantly to ongoing sea level rise. Accurate topographic surveys are particularly relevant as they reflect the geometric evolution of ice masses. Unfortunately, the precision and/or spatial coverage of current satellite missions (radar altimetry, ICESat) or field surveys are generally insufficient. Improving our knowledge of the topography of Polar Regions is the goal of the SPIRIT (SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies) international polar year (IPY) project. SPIRIT will allow (1) the acquisition of a large archive of SPOT 5 stereoscopic images covering most polar ice masses and, (2) the delivery of digital terrain models (DTM) to the scientific community.Here, we present the architecture of this project and the coverage achieved over northern and southern polar areas during the first year of IPY (July 2007 to April 2008). We also provide the first accuracy assessments of the SPIRIT DTMs. Over Jakobshavn Isbrae (West Greenland), SPIRIT elevations are within ±6 m of ICESat elevations for 90% of the data. Some comparisons with ICESat profiles over Devon ice cap (Canada), St Elias Mountains (Alaska) and west Svalbard confirm the good overall quality of the SPIRIT DTMs although large errors are observed in the flat accumulation area of Devon ice cap. We then demonstrate the potential of SPIRIT DTMs for mapping glacier elevation changes. The comparison of summer-2007 SPIRIT DTMs with October-2003 ICESat profiles shows that the thinning of Jakobshavn Isbrae (by 30–40 m in 4 years) is restricted to the fast glacier trunk. The thinning of the coastal part of the ice stream (by over 100 m) and the retreat of its calving front (by up to 10 km) are clearly depicted by comparing the SPIRIT DTM to an ASTER April-2003 DTM.  相似文献   

18.
In this study an attempt is made for studying the Himalayan glacier features using TerraSAR-X and Indian Remote Sensing Satellite, Linear Imaging Self Scanning System III (IRS LISS –III) images. New generation, synthetic aperture radar (SAR) data from TerraSAR-X (TS-X) sensor provide opportunity for glacier feature studies in Himalayan rugged terrain. Spot Light High resolution mode TS-X data give idea about glacial features which remained untraceable from other existing SAR system. However, presence of speckle noise in SAR images degrades the interpretability of the glacier features. Speckle suppression filters (Lee, Frost, Enhanced Lee, Gamma-Map) are applied on SAR intensity images. On the basis of field sight seeing and insitu observations it is observed that still features are not clear. Hence attempt has been made for fusing multitemporal multispatial speckle reduced TS-X SAR data and multispectral IRS LISS-III data for extracting the glacial features such as crevasses, exposed ice and superaglacier lakes. Principal component analysis (PCA) represents the high spectral resolution data in a linear subspace with minimum information loss. Herein, PCA based image fusion technique is adopted for this study and comparison is made between IHS fusion technique and PCA based technique for glacier studies in the Himalayan region.  相似文献   

19.
Abstract

This paper presents the first measurement of multi-decadal thickness and volume changes (1969–2000) of the Dongkemadi Ice Field (DIF) in the Tanggula Mountains, central Qinghai-Tibetan Plateau, China, using multi-source remote sensing data. These include the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) acquired in February, 2000, a DEM generated by digitising analogue topographic maps from 1969, and Landsat ETM+ imagery from 2000. Digital glacier outlines and GIS-based processing were used to calculate an elevation difference map to evaluate the relative elevation error of these two DEMs over ice-free areas. This method was also used to identify regions of glacier elevation thinning and thickening corresponding to glacier mass loss and gain. Analysis of 67,520 points on flat grass and rock terrain surrounding the DIF, with a slope less than 25°, showed a mean elevation difference of –0.90 m and a standard deviation of 5.58 m. A thickness change error within ±6 m was estimated. Between 1969 and 2000, 76.51% of the whole DIF area appeared to be thinning while 23.49% showed thickening. The average glacier surface thinning was –12.58 m with a standard deviation of 18.29 m and the estimated volume loss was 1.17 km3. The standard deviation of volume change was 0.0006 km3 over the DIF. A thinning rate up to 0.41±0.194 m a?1 or 0.038 km3 a?1 for the volume loss was observed for the whole ice field, which seems to be evidence for the ongoing retreat of glaciers on the Qinghai-Tibetan Plateau. It was found that the spatial thickness change pattern derived from the remote sensing method was consistent with the thickness change results of the Small Dongkemadi Glacier (SDG) from field measurements. The estimated error of the annual thickness change rate was on the order of 5%. The relationship between elevation change and absolute glacier elevation over typical glaciers was also analysed, showing considerable variability. These changes have possibly resulted from increased temperature and decreased precipitation in this region.  相似文献   

20.
针对青藏高原冰雪覆盖变化监测问题,以各拉丹冬冰川为例,提出了利用ALOS立体像对提取冰雪DEM,并以同源不同时相的冰雪DEM监测冰雪覆盖变化及体量变化的方法。依据DEM纠正裁切后的影像,采用ISODATA分类方法得到了冰雪覆盖面积变化量,由不同时相网格DEM高程点数据高差与面积求得体积变化,得出了2009年与2010年冬季冰雪量大小。结果显示2010年12月比2009年12月冰雪量减少了19.728 3 km3,雪覆盖面积减少了349.691 km2。文中还列出了遇到的技术困难及有待进一步研究的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号