首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude (M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.  相似文献   

2.
Calibration of the Tibetan Plateau Using Regional Seismic Waveforms   总被引:3,自引:0,他引:3  
We use the recordings from 51 earthquakes produced by a PASSCAL deployment in Tibet to develop a two-layer crustal model for the region. Starting with their ISC locations, we iteratively fit the P-arrival times to relocate the earthquakes and estimate mantle and crustal seismic parameters. An average crustal P velocity of 6.2–6.3 km/s is obtained for a crustal thickness of 65 km while the P velocity of the uppermost mantle is 8.1 km/s. The upper layer of the model is further fine-tuned by obtaining the best synthetic SH waveform match to an observed waveform for a well-located event. Green's functions from this model are then used to estimate the source parameters for those events using a grid search procedure. Average event relocation relative to the ISC locations, excluding two poorly located earthquakes, is 16 km. All but one earthquake are determined by the waveform inversion to be at depths between 5 and 15 km. This is 15 km shallower, on average, than depths reported by the ISC. The shallow seismicity cut-off depth and low crustal velocities suggest high temperatures in the lower crust. Thrust faulting source mechanisms dominate at the margins of the plateau. Within the plateau, at locations with surface elevations less than 5 km, source mechanisms are a mixture of strike-slip and thrust. Most events occurring in the high plateau where elevations are above 5 km show normal faulting. This indicates that a large portion of the plateau is under EW extension.  相似文献   

3.
On the basis of data of long period Rayleigh surface wave, we select 43 two-station paths which cover the eastern China thoroughly. By using the improved method of multi-filtration, we obtain the group velocity and amplitude spectrum, and then get attenuation factor for each paths. We employ Talentola inversion method to get local attenuation factor, and further invert the three-dimension Q β image under the crust and upper mantle in the eastern Chinese continent. The Q β image shows the following basic characters. There is correlation between the seismic activity and Q β structure under the crust and upper mantle in North China region. The Yangtze block begins to collide with and subduct to the North China block from the southern border of the Qinling in the southern Shaanxi. In the large part of Yangtze quasi-platform appear an obvious high Q β area at 88 km deep. In the east of Sichuan depression platform, the juncture of Sichun and Guizhou, and the Jiangnan block near the juncture of Guizhou and Hunan, the lateral variation of Q β in the crust is little, and there is a high-Q β layer no thinner than 40 km in the top mantle. In the Dian-Qian fold and fracture region between Yunnan and Guizhou, the vertical variation of Q β at the region of the crust and upper mantle is little, there is a low-Q β layer in the top mantle, about 40 km thick, low-Q β layer of the upper mantle begins to appear at about 95 km deep. In the east of Yangtze quasi-platform and the central and eastern part of the South China fold system, the Moho is smooth, the lateral variation of Q β in the crust is also little, low-Q β layer of the upper mantle begins to appear at about 85 km deep.  相似文献   

4.
The crustal structure of North Abu-Simbel area was studied using spectral ratios of short-period P waves. Three-component short period seismograms from the Masmas seismic station of the Egyptian National Seismic Network Stations were used. The Thomson-Haskell matrix formulation was applied for linearly elastic, homogeneous crustal layers. The obtained model suggests that the crust under the study region consists of a thin (0.8 km) superficial top layer with a P-wave velocity of 3.8±0.7 km/s and three distinct layers with a mean P-wave velocity of 6.6 km/s, overlaying the upper mantle with a P-wave velocity of 8.3 km/s (fixed). The results were obtained for 14 different earthquakes. The P-wave velocities of the three layers are: 5.8±0.6 km/s, 6.5±0.4 km/s and 7.2±0.3 km/s. The total depth to the Moho interface is 32±2 km. The crustal velocity model estimated using observations is relatively simple, being characterized by smooth velocity variations through the middle and lower crust and normal crustal thickness. The resultant crustal model is consistent with the model obtained from previous deep seismic soundings along the northern part of Aswan lake zone.  相似文献   

5.
The Rayleigh wave phase and group velocities in the period range of 24–39 sec, obtained from two earthquakes which occurred in northeastern brazil and which were recorded by the Brazilian seismological station RDJ (Rio de Janeiro), have been used to study crustal and upper mantle structures of the Brazilian coastal region. Three crustal and upper mantle models have been tried out to explain crustal and upper mantle structures of the region. The upper crust has not been resolved, due basically to the narrow period range of the phase and group velocities data. The phase velocity inversions have exhibited good resolutions for both lower crust and upper mantle, with shear wave velocities characteristic of these regions. The group velocity data inversions for these models have showed good results only for the lower crust. The shear wave velocities of the lower crust (3.86 and 3.89 km/sec), obtained with phase velocity inversions, are similar to that (=3.89 km/sec) found byHwang (1985) to the eastern South American region, while group velocity inversions have presented shear velocity (=3.75 km/sec) similar to that (=3.78 km/sec) found byLazcano (1972) to the Brazilian shield. It was not possible to define sharply the crust-mantle transition, but an analysis of the phase and group velocity inversions results has indicated that the total thickness of the crust should be between 30 and 39 km. The crustal and upper mantle model, obtained with phase velocity inversion, can be used as a preliminary model for the Brazilian coast.  相似文献   

6.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

7.
—Methods and the results of estimating the anomalies characterising the density inhomo geneities in the European-Mediterranean upper mantle are described. These anomalies were obtained by subtracting the gravity effect of a crustal density model derived from seismic velocities from the observed gravity field averaging over an area of 1°× 1°. The 3-D density model of the study region comprises two regional layers of varying thickness with lateral variation of average density the sedimentary cover and the crystalline crust. The average densities for model layers were evaluated by using a velocity/density conversion function and taking into account sediment consolidation with depth. Clear correlation between residual gravity anomalies and both velocity heterogeneities and thermal regime data of the upper mantle has been revealed. An agreement of positive anomalies over the Alps, the Adriatic plate and the Calabrian Arc with high velocity domains in the upper mantle and reduced temperatures at the subcrustal layer are caused by lithospheric "roots" and thickened lithosphere below these structures. Gravity residual lows, revealed over the Western Mediterranean Basin and Pannonian Basin, are in correspondence with both low velocities and high temperatures in the upper mantle. These anomalies are the result of the presence of asthenosphere in shallow near-Moho depths below these basins.  相似文献   

8.
We present a new regional three-layer crustal model for the Central and Southern Asia and surroundings (AsCRUST-08). The model provides Moho boundary, thickness of different layers of consolidated crust and P-velocity distribution in these layers. A large volume of new data on seismic reflections and refractions as well as on surface waves generated by earthquakes or blasts was analyzed. All these data were incorporated into a unified digital 3D integrated model with 1° × 1° resolution. Results are represented as seven numerical maps imaging the distributions of the Moho depth, the thickness of the upper, middle, and lower layers of the consolidated crust, and the P-wave velocities therein.  相似文献   

9.
体波波形反演对青藏高原上地幔速度结构的研究   总被引:10,自引:5,他引:5       下载免费PDF全文
采用波形反演方法对青藏高原地区震中距8°-38°范围内的宽频带炸波波形进行拟合,研究该地区上地幔平均速度结构以及上地幔纵、横波速度的横向不均匀性结果表明青藏高原地区的平均地壳厚度约为68km,上地幔盖层平均厚度约为30-40km,速度约为8.10km/s雅鲁藏布江附近地壳厚度最大,约80km,相应的上地幔Pn速度为8.15km/s左右,青藏高原中部地区的地壳平均厚度约68-70km.位于拉萨地块北部的羌塘地块S波速度相对较低,其地壳和上地慢的平均S波速度分别比拉萨地块低1%和2%以上34°N以北,90°E附近的区域存在明显的上地幔P波低速异常区,P波的平均速度小于7.8km/s据此结果及前人工作,推断印度板块的俯冲可能以雅鲁藏布江缝合带附近为界,青藏高原巨大的地壳厚度是由于欧亚板块碰撞造成地壳缩短与增厚引起.  相似文献   

10.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

11.
—Observed velocities and attenuation of fundamental-mode Rayleigh waves in the period range 7–82 sec were inverted for shear-wave velocity and shear-wave Q structure in the Middle East using a two-station method. Additional information on Q structure variation within each region was obtained by studying amplitude spectra of fundamental-mode and higher-mode Rayleigh waves. We obtained models for the Turkish and Iranian Plateaus (Region 1), areas surrounding and including the Black and Caspian Seas (Region 2), and the Arabian Peninsula (Region 3). The effect of continent-ocean boundaries and mixed paths in Region 2 may lead to unrealistic features in the models obtained there. At lower crustal and upper-mantle depths, shear velocities are similar in all three regions. Shear velocities vary significantly in the uppermost 10 km of the crust, being 3.21, 2.85, and 3.39 km/s for Regions 1, 2, and 3, respectively. Q models obtained from an inversion of interstation attenuation data show that crustal shear-wave Q is highest in Region 3 and lowest in Region 1. Q’s for the upper 10 km of the crust are 63, 71, and 201 for Regions 1, 2, and 3, respectively. Crustal Q’s at 30 km depth for the three regions are about 51, 71, and 134. The lower crustal Q values contrast sharply with results from stable continental regions where shear-wave Q may reach one thousand or more. These low values may indicate that fluids reside in faults, cracks, and permeable rock at lower crustal, as well as upper crustal depths due to convergence and intense deformation at all depths in the Middle Eastern crust.  相似文献   

12.
We analyze the anelasticity of the earth using group delays of P-body waves of deep (>200 km) events in the period range 4–32 s for epicentral distances of 5–85 degrees. We show that Time Frequency Analysis (TFA), which is usually applied to very dispersive surface waves, can be applied to the much less dispersive P-body waves to measure frequency-dependent group delays with respect to arrival times predicted from the CMT centroid location and PREM reference model. We find that the measured dispersion is due to: (1) anelasticity (described by the P-wave quality factor Q p ), (2) ambient noise, which results in randomly distributed noise in the dispersion measurements, (3) interference with other phases (triplications, crustal reverberations, conversions at deep mantle boundaries), for which the total dispersion depends on the amplitude and time separation between the different phases, and (4) the source time function, which is dispersive when the wavelet is asymmetrical or contains subevents. These mechanisms yield dispersion ranging in the order of one to 10 seconds with anelasticity responsible for the more modest dispersion. We select 150 seismograms which all have small coda amplitudes extending to ten percent of the main arrival, minimizing the effect of interference. The main P waves have short durations, minimizing effects of the source. We construct a two-layer model of Q p with an interface at 660 km depth and take Q p constant with period. Our data set is too small to solve for a possible frequency dependence of Q p . The upper mantle Q 1 is 476 [299–1176] and the lower mantle Q 2 is 794 [633–1064] (the bracketed numbers indicate the 68 percent confidence range of Q p –1). These values are in-between the AK135 model (Kennett et al., 1995) and the PREM model (Dziewonski and Anderson, 1981) for the lower mantle and confirm results of Warren and Shearer (2000) that the upper mantle is less attenuating than PREM and AK135.  相似文献   

13.
A target of our study was the Bohemian Massif in Central Europe that was emplaced during the Variscan orogeny. We used teleseismic records from ten broadband stations lying within and around the massif. Different techniques of receiver function interpretation were applied, including 1-D inversion of R- and Q-components, forward modelling of V s velocity, and simultaneous determination of Moho depth and Poissons ratio in the crust. These results provide new, independent information about the distribution of S wave velocity down to about 60 km depth. In the area of Bohemian Massif, the crustal thickness varies from 29 km in the NW to 40 km in the SE. A relatively simple velocity structure with gradually increasing velocities in the crust and uppermost mantle is observed in the eastern part of the Bohemian Massif. The western part of the massif is characterized by more complicated structure with low S wave velocities in the upper crust, as well as in the uppermost mantle. This could be related to tectono-magmatic activity in the Eger rift that started in the uppermost Cretaceous and was active in the West Bohemia-Vogland area till the late Cenozoic.  相似文献   

14.
A genetic algorithm of body waveform inversion is presented for better understanding of crustal and upper mantle structures with deep seismic sounding (DSS) waveform data. General reflection and transmission synthetic seismogram algorithm, which is capable of calculating the response of thin alternating high and low velocity layers, is applied as a solution for forward modeling, and the genetic algorithm is used to find the optimal solution of the inverse problem. Numerical tests suggest that the method has the capability of resolving low-velocity layers, thin alternating high and low velocity layers, and noise suppression. Waveform inversion using P-wave records from Zeku, Xiahe and Lintao shots in the seismic wide-angle reflection/refraction survey along northeastern Qinghai-Xizang (Tibeteau) Plateau has revealed fine structures of the bottom of the upper crust and alternating layers in the middle/lower crust and topmost upper mantle.  相似文献   

15.
王夫运  张先康 《地震学报》2006,28(2):158-166
为了更好地利用地震测深波形数据,提出了地震体波波形反演的遗传算法. 正演使用能精确快速计算互层结构响应的广义反、透射系数理论地震图算法;反演采用遗传算法,实现了地震体波波形反演的遗传算法. 数值试验表明,该算法具有分辨壳内低速层、高低速薄互层结构和一定的抗噪能力. 青藏高原东北缘泽库、夏河、临洮3炮地震测深P波波形反演,得到了上地壳底部低速层和中、下地壳,以及上地幔顶部薄互层的细结构图象.   相似文献   

16.
Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.  相似文献   

17.
Fundamental and first higher modes of the Rayleigh- and Love-wave group velocities along seven paths in Australia were jointly inverted by a controlled Monte Carlo procedure to obtain regional shear-wave velocity structures of the crust and upper mantle. Our data support the results of Gonez and Cleary which show an S-wave low velocity zone centred near 110 km depth in eastern Australia. However, the thickness-velocity contrast of the low velocity zone is significantly smaller. The crustal models for eastern Australia are characterized by upper crusts which are both thicker and have lower velocities than those in western Australia and have a less sharp crust-upper mantle boundary. The S-wave velocities for the upper mantle appear to be similar (~ 4.55 km s?1) throughout the continent, with no obvious dependence on the age of cratonization or crustal thickness.  相似文献   

18.
We present a 3D model of shear velocity of crust and upper mantle in China and surrounding regions from surface wave tomography.We combine dispersion measurements from ambient noise correlation and traditional earthquake data.The stations include the China National Seismic Network,global networks,and all the available PASSCAL stations in the region over the years.The combined data sets provide excellent data coverage of the region for surface wave measurements from 8 to 120 s,which are used to invert for 3D shear wave velocity structure of the crust and upper mantle down to about150 km.We also derive new models of the study region for crustal thickness and averaged S velocities for upper,mid,and lower crust and the uppermost mantle.The models provide a fundamental data set for understanding continental dynamics and evolution.The tomography results reveal significant features of crust and upper mantle structure,including major basins,Moho depth variation,mantle velocity contrast between eastern and western North China Craton,widespread low-velocity zone in midcrust in much of the Tibetan Plateau,and clear velocity contrasts of the mantle lithosphere between north and southern Tibet with significant E–W variations.The low velocity structure in the upper mantle under north and eastern TP correlates with surface geological boundaries.A patch of high velocity anomaly is found under the eastern part of the TP,which may indicate intact mantle lithosphere.Mantle lithosphere shows striking systematic change from the western to eastern North China Craton.The Tanlu Fault appears to be a major lithosphere boundary.  相似文献   

19.
20.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号