首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《China Geology》2020,3(3):425-444
Increasing interests in hydrocarbon resources at depths have drawn greater attentions to the deeply-buried carbonate reservoirs in the Tarim Basin in China. In this study, the cyclic dolomite rocks of Upper Cambrian Lower Qiulitag Group from four outcrop sections in northwestern Tarim Basin were selected to investigate and evaluate the petrophysical properties in relation to depositional facies and cyclicity. The Lower Qiulitag Group includes ten lithofacies, which were deposited in intermediate to shallow subtidal, restricted shallow subtidal, intertidal, and supratidal environments on a carbonate ramp system. These lithofacies are vertically stacked into repeated shallowing-upward, meter-scale cycles which are further grouped into six third-order depositional sequences (Sq1 to Sq6). There are variable types of pore spaces in the Lower Qiulitag Group dolomite rocks, including interparticle, intraparticle, and fenestral pores of primary origin, inter crystal, and vuggy pores of late diagenetic modification. The porosity in the dolomites is generally facies-selective as that the microbially-originated thrombolites and stromatolites generally yield a relatively high porosity. In contrast, the high-energy ooidal grainstones generally have very low porosity. In this case, the microbialite-based peritidal cycles and peritidal cycle-dominated highstand (or regressive) successions have relatively high volumes of pore spaces, although highly fluctuating (or vertical inhomogeneous). Accordingly, the grainstone-based subtidal cycles and subtidal cycle-dominated transgressive successions generally yield extremely low porosity. This scenario indicates that porosity development and preservation in the thick dolomite successions are primarily controlled by depositional facies which were influenced by sea-level fluctuations of different orders and later diagenetic overprinting.  相似文献   

2.
孟万斌  张锦泉 《沉积学报》2000,18(3):419-423
陕甘宁盆地中部马五1段由多个向上变浅的潮缘碳酸盐岩沉积序列重复叠置组成,并可分为十三种沉积 -成岩微相和六个沉积相带。这种沉积序列的韵律性重复叠置的形成方式为潮缘进积楔的简单退覆和阶段式退覆,其形成机制为自旋回。  相似文献   

3.
陆表海台地沉积充填模式及内克拉通碳酸盐岩勘探新启示   总被引:1,自引:0,他引:1  
内克拉通陆表海盆地是古老碳酸盐建造形成的重要场所。除其顶部风化壳岩溶储层外,广泛分布的内幕非岩溶改造的白云岩勘探长期未受到足够的重视。近年来,随着深层、超深层勘探技术的进步,内幕陆表海白云岩陆续获得油气勘探新发现,但其预测难度远比镶边台地中的礁滩"移动靶"更大。为更好地揭示这类未经岩溶改造的白云岩储层的宏观发育分布规律,本文研究了鄂尔多斯盆地奥陶系马家沟期和四川盆地雷口坡期陆表海台地的高精度岩相古地理和沉积充填模式。结果表明:陆表海台地一般形成于温室期低纬度干燥气候下的稳定内克拉通盆地,与盐湖伴生的台地潮坪广泛分布是其标志性的沉积特征,微环境可进一步划分为潮上带泥云坪、上潮间带云坪、上潮间带微生物席、下潮间带席状潮缘滩、上潮下带灰云质澙湖、下潮下带膏云质澙湖;虽然内克拉通陆表海台地是一个相对静态的沉积环境,其沉积建造并非平板一块,海平面的升降变化往往会在相对平坦的陆表海内引起大幅度的相带迁移,造成潮上带、潮间带、潮下带频繁交互;相带频繁往复迁移过程中,潮间带的晶粒/颗粒/微生物白云岩受到盐湖、古隆起或潮坪岛的制约,形成大面积分布的席状富孔白云岩透镜体;陆表海沉积层序结构为典型的向上变浅序列,主要发育潮坪进积楔和潮坪岛拼嵌两种沉积充填模式,这两种模式形成的席状白云岩透镜体在层序结构和厚度都能很好地对比,通常延伸都在100km以上,甚至可跨越整个陆表海台地,是一个能够媲美台缘礁滩相的油气勘探新领域。  相似文献   

4.
This study, based in the Haushi‐Huqf area of central east Oman, aims to characterize the controls on facies distribution and geometries of some of the best preserved examples of Lower Cretaceous tidal flat facies within the Tethyan epeiric platform. Field, petrographic and geochemical data were acquired from the Barremian–Aptian Jurf and Qishn formations that crop out in a 500 × 1000 m2 butte, thus allowing for pseudo three‐dimensional quantitative data acquisition of the dimensions and spatial distributions of discontinuity surfaces and sedimentary bodies. The interpretation presented here suggests that the main processes impacting sedimentation in the Lower Cretaceous peritidal environment of the Haushi‐Huqf were transport and erosion processes related to storm waves and currents. The vertical evolution of the carbonate system is organized into six types of metre‐scale depositional sequences, from subtidal dominated sequences to supratidal‐capped sequences, which are bounded by regional discontinuity surfaces. At subaerial exposure and submarine erosion surfaces associated with a base level shift, sedimentary horizons along the entire depositional profile are cut by scours possibly created by storm events. Chemostratigraphy allows correlation between the Haushi‐Huqf and the age‐equivalent sections logged in the interior of the platform in Oman. The correlation suggests that the change from subtidal to intertidal depositional sequences during the late highstand is coeval with the development of rudist dominated shoals on the shelf. This study is the first to discuss the controls on Lower Cretaceous peritidal carbonate cyclicity of the Arabian epeiric platform. The results presented here also offer a unique quantitative dataset of the distribution and dimensions of peritidal carbonate shoals and storm scours in a regional sequence stratigraphic context.  相似文献   

5.
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform.  相似文献   

6.
Abstract The Infra Krol Formation and overlying Krol Group constitute a thick (< 2 km), carbonate-rich succession of terminal Proterozoic age that crops out in a series of doubly plunging synclines in the Lesser Himalaya of northern India. The rocks include 18 carbonate and siliciclastic facies, which are grouped into eight facies associations: (1) deep subtidal; (2) shallow subtidal; (3) sand shoal; (4) peritidal carbonate complex; (5) lagoonal; (6) peritidal siliciclastic–carbonate; (7) incised valley fill; and (8) karstic fill. The stromatolite-rich, peritidal complex appears to have occupied a location seaward of a broad lagoon, an arrangement reminiscent of many Phanerozoic and Proterozoic platforms. Growth of this complex was accretionary to progradational, in response to changes in siliciclastic influx from the south-eastern side of the lagoon. Metre-scale cycles tend to be laterally discontinuous, and are interpreted as mainly autogenic. Variations in the number of both sets of cycles and component metre-scale cycles across the platform may result from differential subsidence of the interpreted passive margin. Apparently non-cyclic intervals with shallow-water features may indicate facies migration that was limited compared with the dimensions of facies belts. Correlation of these facies associations in a sequence stratigraphic framework suggests that the Infra Krol Formation and Krol Group represent a north- to north-west-facing platform with a morphology that evolved from a siliciclastic ramp, to carbonate ramp, to peritidal rimmed shelf and, finally, to open shelf. This interpretation differs significantly from the published scheme of a basin centred on the Lesser Himalaya, with virtually the entire Infra Krol–Krol succession representing sedimentation in a persistent tidal-flat environment. This study provides a detailed Neoproterozoic depositional history of northern India from rift basin to passive margin, and predicts that genetically related Neoproterozoic deposits, if they are present in the High Himalaya, are composed mainly of slope/basinal facies characterized by fine-grained siliciclastic and detrital carbonate rocks, lithologically different from those of the Lesser Himalaya.  相似文献   

7.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

8.
国内外元古代碳酸盐岩中常见席状、透镜状、脉状和块状等形态的微亮晶碳酸盐岩。微亮晶体宏观、微观边界清晰,内部充填均一等粒结构的方解石微亮晶。宿主岩相以含泥质或粉砂质的细砂屑、粉泥屑灰岩为主,经常与风暴岩共生。微亮晶构造碳酸盐岩发育在缓坡型台地,沉积层序中常见潮汐流、风暴流侵蚀-充填和浪成交错层理与递变层理。微亮晶构造碳酸盐岩发育严格受沉积环境和岩相约束,形成于 (内缓坡深部-中缓坡浅部 )潮下带和环潮坪,风暴浪基面是其发育的最大深度。垂向序列由高频潮下带和环潮坪微层序加积而成,单个微层序顶部通常为环潮坪为纹层状含铁质有机质泥屑碳酸盐岩披盖层,是一个向上沉积动力减弱、沉积物变细和水体变浅的沉积旋回。  相似文献   

9.
迄今为至,国内外对肾形藻的研究还很少,而且研究多集中在寒武纪泥丘相(Pratt,1984;James&Klappa,1983;王剑等,1990)和泥盆纪泥丘相(Mountjoy&Jull,1978;高健,1991)中,还未涉及到前寒武纪。近年来,通过对滇东北地区震旦纪灯影期中大比例尺岩相古地理研究,作者首次发现表附-肾形藻不仅发育于古生代,而且更发育于震旦纪灯影期(距今约为650Ma)。这是全球范围内发现的最古老的肾形藻生长层位。灯影期肾形藻的发育程度,包括肾形藻的含量及其功能、空间展布和分布于相剖面上的纵向厚度等,均远超过古生代的任何一个时期。一种可能的解释就是震旦纪灯影期缺乏食藻类动物,从而  相似文献   

10.
Analysis of a 275 m‐thick section in the Milford Borehole, GSI‐91‐25, from County Carlow, Ireland, has revealed an unusual sequence of shallow subtidal, peritidal and sabkha facies in rocks of mid?‐late Chadian to late Holkerian (Viséan, Lower Carboniferous) age. Sedimentation occurred on an inner ramp setting, adjacent to the Leinster Massif. The lower part of the sequence (late Chadian age) above the basal subtidal bioclastic unit is dominated by oolite sand facies associations. These include a lower regressive dolomitized, oolitic peloidal mobile shoal, and an upper, probably transgressive, backshoal oolite sand. A 68 m‐thick, well‐developed peritidal sequence is present between the oolitic intervals. These rocks consist of alternating stromatolitic fenestral mudstone, dolomite and organic shale, with evaporite pseudomorphs and subaerial exposure horizons containing pedogenic features. In the succeeding Arundian–Holkerian strata, transgressive–regressive carbonate units are recognized. These comprise high‐energy, backshoal subtidal cycles of argillaceous skeletal packstones, bioclastic grainstones with minor oolites and algal wackestones to grainstones and infrequent algal stromatolite horizons. The study recognizes for the first time the peritidal and sabkha deposits in Chadian rocks adjacent to the Leinster Massif in the eastern Irish Midlands. These strata appear to be coeval with similar evaporite‐bearing rocks in County Wexford that are developed on the southern margin of this landmass, and similar depositional facies exist further to the east in the South Wales Platform, south of St. George's Land, and in Belgium, south of the Brabant Massif. The presence of evaporites in the peritidal facies suggests that dense brines may have formed adjacent to the Leinster Massif. These fluids may have been involved in regional dolomitization of Chadian and possibly underlying Courceyan strata. They may also have been a source of high salinity fluids associated with nearby base‐metal sulphide deposits. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Stratigraphic analysis of mixed siliciclastic-carbonate lithofacies within the Middle Cambrian Bonanza King Formation of the southern Great Basin reveals three distinct facies associations that record a range of depositional environments from semi-arid tidal flats to deeper subtidal, restricted lagoons. Stratigraphic trends, cross-platform facies variations and correlation of individual surfaces across 250 km of the study area suggest that these mixed lithofacies were deposited in three temporally distinct phases. (1) Extensive progradation of mixed peritidal environments culminated in a prolonged episode of subaerial exposure marked by an areally extensive intraclast breccia (0·5–1·2 m thick) that we interpret to be a major Type 1 sequence-bounding disconformity. (2) Abrupt flooding of the exposed platform resulted in the deposition of mixed deeper subtidal lithofacies, including a condensed interval of fissile, fossiliferous shale. (3) Progressive shallowing and aggradational accumulation was accompanied by a decrease in siliciclastics and a shift to pure carbonate deposition. Deep-water siliciclastics and megabreccias record deposition along the base-of-slope off the Middle Cambrian shelf-edge, and are interpreted to represent lowstand deposits emplaced during the prolonged episode of subaerial exposure of the shallow shelf. The presence of fine siliciclastics in both peritidal facies and sharply overlying deeper subtidal facies of the study interval within the Bonanza King suggests a variable, but relatively continuous, influx of terrigenous material throughout an extended period of accommodation change, apparently asynchronous with respect to the predictive model of reciprocal sedimentation. We suggest that the primary siliciclastic source changed with relative sea-level position. During lowered sea level, aeolian processes acting upon the unvegetated Cambrian craton transported fine siliciclastics onto peritidal and shallow-subtidal environments. During higher sea level, coastal siliciclastic reservoirs supplied sediment that was transported for long distances by geostrophic currents flowing along the submerged platform. As opposed to many Cambro-Ordovician grand cycles that are commonly interpreted to consist of a transgressive shaly half-cycle grading upward into a regressive carbonate half-cycle, the sequence boundary within this Middle Cambrian succession occurs within siliciclastic-rich, mixed lithofacies rather than in adjoining purer carbonates, implying that some ‘grand cycles’ should not be considered synonymous with ‘sequences’. Interbasinal correlations of the Type 1 sequence boundary within the mixed unit are speculative, primarily because of the inherent imprecision of available trilobite biostratigraphy. However, there is evidence that an extended episode of subaerial exposure may have been continent-wide during the Ehmaniella trilobite biochron.  相似文献   

12.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

13.
During the early Middle Devonian in South China, an extensive carbonate platform was broken up through extension to create a complex pattern of platforms, and interplatform basins. In Givetian and Frasnian carbonate successions, five depositional facies, including peritidal, restricted shallow subtidal, semi‐restricted subtidal, intermediate subtidal and deep subtidal facies, and 18 lithofacies units are recognized from measured sections on three isolated platforms. These deposits are arranged into metre‐scale, upward‐shallowing peritidal and subtidal cycles. Nine third‐order sequences are identified from changes in cycle stacking patterns, vertical facies changes and the stratigraphic distribution of subaerial exposure indicators. These sequences mostly consist of a lower transgressive part and an upper regressive part. Transgressive packages are dominated by thicker‐than‐average subtidal cycles, and regressive packages by thinner‐than‐average peritidal cycles. Sequence boundaries are transitional zones composed of stacked, high‐frequency, thinner‐than‐average cycles with upward‐increasing intensity of subaerial exposure, rather than individual, laterally traceable surfaces. These sequences can be further grouped into catch‐up and keep‐up sequence sets from the long‐term (second‐order) changes in accommodation and vertical facies changes. Catch‐up sequences are characterized by relatively thick cycle packages with a high percentage of intermediate to shallow subtidal facies, and even deep subtidal facies locally within some individual sequences, recording long‐term accommodation gain. Keep‐up sequences are characterized by relatively thin cycle packages with a high percentage of peritidal facies within sequences, recording long‐term accommodation loss. Correlation of long‐term accommodation changes expressed by Fischer plots reveals that during the late Givetian to early Frasnian increased accommodation loss on platforms coincided with increased accommodation gain in interplatform basins. This suggests that movement on faults resulted in the relative uplift of platforms and subsidence of interplatform basins. In the early Frasnian, extensive siliceous deposits in most interplatform basins and megabreccias at basin margins correspond to exposure disconformities on platforms.  相似文献   

14.
鄂北南化地区寒武纪缓坡沉积及层序   总被引:1,自引:0,他引:1  
王翔  胡健民 《沉积学报》1996,14(3):47-55
出露于鄂北南化地区的寒武纪地层,总厚约1400m,主体为一套碳酸盐岩。对沉积岩相及相组合的分析表明,本区寒武系主要是形成于碳酸盐缓坡之上,并可以划分出四种主要的沉积相带:浅水陆棚、深水缓坡、浅水缓坡建隆和近岸浅水缓坡。本文还初步研究了区内寒武系露头的层序地层学特征,划分出两个亚层序,并探讨了亚层序内部岩相的不同叠置类型及其在时间上的演化与相应的海平面升降变化。通过与已有的旋回性海平面变化模式相对比,得出了本区寒武纪层序内部的次级旋回可能指示第三级海平面变化旋回的认识。  相似文献   

15.
下扬子盆地石炭纪的岩石学特征及沉积相   总被引:5,自引:0,他引:5  
位于扬子板块东部的下扬子盆地,在石炭纪时,为被动大陆边缘的陆表海沉积,陆源碎屑来自于北边的胶南古陆和南边的江南古陆东延部分─—皖浙赣古陆。石炭系分为上、下两统。早石炭世,盆地南部宣城、广德等地主要发育碎屑岩,中部巢县、南京一带以及北部滨海、洪泽一带为碎屑岩和碳酸盐岩沉积。从南往北,金陵期从滨岸碎屑岩相→开阔海台地碳酸盐岩相→潮坪碳酸盐岩和碎屑岩相;高骊山期为滨岸平原沼泽碎屑岩相→浅海陆棚碎屑岩相→海岸萨布哈白云岩、石膏、碎屑岩相;和州期盆地南部隆起,中部到北部为礁及礁后泻湖一潮坪碳酸盐岩相→开阔海台地碳酸盐相。晚石炭世主要是碳酸盐沉积,黄龙期从滨岸石英砾岩相→潮坪白云岩相→开阔海台地碳酸盐岩相;船山期是黄龙期开阔海台地碳酸盐岩相的继续,以发育核形石生物碎屑颗粒岩为特征。整个盆地的岩相带均以NEE—NE方向展布。  相似文献   

16.
In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm calcirudites and can be divided from bottom to top into the Gushan, Changshan and Fengshan formations. In this set of strata, the deep-ramp mudstone and marls and the shallow-ramp packstones and grainstones constitute many carbonate meter-scale cycles of subtidal type. More tidal-flat dolomites axe developed in the Upper Cambrian of the southern margin of the North China platform, in which limestone and dolomite beds also constitute many carbonate meter-scale cycles of the peritidal type. These cycles are marked by a variety of litho-facies successions. There are regularly vertical stacking patterns of meter-scale cycles in long-term third-order sequences, which is the key to discerning such sequences. Third-order sequence is marked by a particular sedimentary-facies succession that is the result of the environment-changing process of deepening and shoaling, which is genetically related to third-order sea level changes. Furthermore, four third-order sequences can be grouped in the Upper Cambrian of the North China Platform. The main features of these four third-order sequences in the northern part of the platform can be summarized as follows: firstly, sequence-boundaries are characterized by drowning unconformities; secondly, the sedimentary-facies succession is generally constituted by one from deep-ramp facies to shallow-ramp facies; thirdly, a succession of “CS (?) HST” (i.e., “condensed section and highstand system”) forms these four third-order sequences. The chief features for the third-order sequences in the southern part of the North China Platform comprises: more dolomites are developed in the HSTs of third-order sequences and also developed more carbonate meter-scale cycles of peritidal types; the sedimentary-facies succession of the third-order sequences is marked by “shallow ramp-tidal flat”; the sequence boundaries are characterized by exposure punctuated surfaces. According to the changes for the third-order sequences from the north to the south, a regular sequence-stratigraphic framework can be established. From cycles to sequences, the study of sequence stratigraphy from litho-facies successions to sedimentary-facies successions exposes that as follows: meter-scale cycles that are used as the basic working unit actually are litho-facies successions formed by the mechanism of a punctuated aggradational cycle, and third-order sequences that are constituted by regularly vertical stacking patterns of meter-scale cycles are marked by sedimentary-facies successions. On the basis of the changing curve of water depth at each section, the curve of the relative third-order sea level changes in the late Cambrian of the North China Platform can be integrated qualitatively from changing curve of water depth. The correlation of Late Cambrian long-term sea level changes between North China and North America demonstrates that there are not only similarities but also differences, reflecting control of long-term sea level changes both by global eustacy and by regional factors.  相似文献   

17.
In the Causses platform (south‐east France), Late Hettangian to Sinemurian deposits were interpreted previously as shallow‐water carbonate ramp deposits. A new look at these deposits has shown a fault‐controlled mosaic carbonate platform that is different from the carbonate ramp models. Within the platform mosaic, 15 lithofacies have been recognized, which are organized in four facies associations, including peritidal, restricted shallow sub‐tidal, sand dunes and sub‐tidal shelf facies associations. The rapid lateral and vertical facies changes, and the lack of consistent landward or seaward direction indicated by the pattern of facies changes, question the existence of a shoreline suggested by the traditional models for this region. Instead, the facies organization and cycle stacking pattern suggest deposition in a mosaic of intertidal islands between which sub‐tidal restricted or open conditions could coexist in very close proximity. Such a platform mosaic would have been defined by tectonic activities along normal faults which segmented the shallow‐water Causses platform. The facies and facies associations are arranged into metre‐scale, peritidal and sub‐tidal cycles that are also variable. Certain cycles show the same stacking pattern in all the sections and seem to be traceable over tens of kilometres. On the contrary, other cycles cannot be correlated; they are present only in specific sections and have a maximum lateral extension of 1 or 2 km. These metre‐scale cycles stack to form four medium‐scale cycles bounded by surfaces that display sub‐aerial exposure features. Medium‐scale cycles stack into two larger‐scale cycles (tens of metres thick) and are bounded by well‐defined karstic surfaces. Based on their lateral continuity and their stacking pattern, the metre‐scale cycles are controlled probably by high frequency eustatic variations overprinting the topographic irregularities formed by differential subsidence of fault‐bounded blocks. Episodic fault activities may reorganize the topography so that, even if eustatic changes may still be the major control of cycles, the expression and number of cycles could be different. Cycles of medium and large‐scale are interpreted as being allogenic, controlled by changes in eustasy and/or subsidence rates as evidenced by their lateral continuity and the correlations of the large‐scale cycles with third‐order depositional sequences.  相似文献   

18.
Cyclothemic sedimentary rocks of the Plio-Pleistocene Petane Group outcrop extensively in the Tangoio block of central Hawke's Bay, New Zealand. They are products of inner to mid-shelf sedimentation and were deposited during glacio-eustatic sea level fluctuations along the western margin of a shallow, pericontinental seaway located in a forearc setting. The succession consists of five laterally continuous cyclothems, each containing a fine grained interval of silt and a coarse grained interval of siliciclastic sand ± gravel or limestone. Five sedimentary facies assemblages comprising 20 separate facies have been recognized. Coarse grained intervals of cyclothems were deposited mostly during relative sea level lowstands and contain up to four facies assemblages: (1) a non-marine assemblage (with three component facies, representing braided river and overbank environments); (2) an estuarine assemblage (with three component facies, representing tidal flat and mud-dominated estuarine environments); (3) a siliciclastic shoreline assemblage (with six component facies, representing greywacke pebble beach, shoreface and inner shelf environments); and (4) a carbonate shelf assemblage (with four component facies, representing tide-dominated, inshore and shallow marine environments). Fine grained intervals of cyclothems were deposited during sea level highstands when the Tangoio area was generally experiencing mid-shelf sedimentation. This produced an offshore assemblage consisting of four component facies. The distribution of facies assemblages during relative sea level lowstands was dependent upon proximity to the shoreline, the type and rate of sediment supply to the basin, and shelf hydrodynamics. Carbonate shelf facies dominate coarse grained intervals in Cyclothems 3–5, but siliciclastic shoreline and non-marine facies dominate in Cyclothems 1 and 2. The abrupt change from siliciclastic to carbonate sedimentation during relative sea level lowstand deposition is thought to have been induced by rapidly falling interglacial to glacial sea level accentuated by regional tectonic shoaling. This caused most of the terrigenous sediment supply to bypass the Tangoio area. Consequently, carbonate sediment accumulated in inshore and shallow marine settings. Facies assemblages rarely show lateral interdigitation, but are vertically stratified over the entire Tangoio block. Facies successions in each cyclothem preserve a record of relative sea level change during deposition of the Petane Group and are consistent with a Plio-Pleistocene sea level change in eastern New Zealand of c. 75–150 m, i.e. approximately the magnitude suggested for Late Quaternary glacio-eustatic sea level changes.  相似文献   

19.
The stratigraphic record of many cratonic carbonate sequences includes thick successions of stacked peritidal deposits. Representing accumulation at or near sea‐level, these deposits have provided insights into past palaeoenvironments, sea‐level and climate change. To expand understanding of carbonate peritidal systems, this study describes the geomorphology, sedimentology and stratigraphy of the tidal flats on the Crooked‐Acklins Platform, south‐east Bahamas. The Crooked Island tidal flats extend continuously for ca 18 km on the platformward flank of Crooked Island, reaching up to 2 km across. Tidal flats include four environmental zones with specific faunal and floral associations and depositional characteristics: (i) supratidal (continuous supratidal crust and pavement); (ii) upper intertidal, with the mangrove Avicennia germinans and the cyanobacteria Scytonema; (iii) lower intertidal (with the mangrove Rhizophora mangal) and (iv) non‐vegetated, heavily burrowed subtidal (submarine). These zones have gradational boundaries but follow shore‐parallel belts. Coring reveals that the thickness of this mud‐dominated sediment package generally is <2 m, with depth to Pleistocene bedrock gradually shallowing landward. The facies succession under much of the tidal flat includes a basal compacted, organic‐rich skeletal‐lithoclast lag above the bedrock contact (suggesting initial flooding). This unit grades upward into rhizoturbated skeletal sandy mud (subtidal) overlain by coarsening‐upward peloid‐foraminifera‐gastropod muddy sand (reflecting shallowing to intertidal elevations). Cores from landward positions include stacked thin indurated layers with autoclastic breccia, root tubules and fenestrae (interpreted as supratidal conditions). Collectively, the data reveal an offlapping pattern on this prograding low‐energy shoreline, and these Holocene tidal flats may represent an actualistic analogue for ancient humid progradational tidal flats. Nonetheless, their vertical facies succession is akin to that present beneath channelled belt examples, suggesting that facies successions alone may not provide unambiguous criteria for prediction of the palaeogeomorphology, lateral facies changes and heterogeneity in stratigraphic analogues.  相似文献   

20.
安徽宿松地区上石炭统碳酸盐岩发育,厚约100m,化石丰富,属于比较典型的浅海碳酸盐岩台地沉积。定量分析显示,研究区岩石类型主要为颗粒灰岩和泥粒灰岩,颗粒平均含量分别为81.2%和69.6%,以浅海生物碎屑为主;其次为粒泥灰岩和泥晶灰岩,颗粒平均含量分别为26.4%和4.1%。依据岩石学特征,研究区主要发育开阔台地相和潮坪相,并可进一步划分出5种沉积亚相,分别是台内滩、台内盆、台内坪、潮间坪和潮上坪。在研究区上石炭统中共识别出3个长期的海进—海退旋回,其表现出在海平面变化总体呈下降趋势的背景之上叠加了短期的高频海平面波动的特征。这3个旋回与扬子板块其他地区及欧美板块同时代地层中的长期海进—海退旋回相当,表明海平面的变化可能受到晚古生代冈瓦纳大陆冰川的冰期和间冰期交替活动的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号