首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Bear Creek area of the Sierra Nevada batholith, California, the high temperature postmagmatic deformation structures of the Lake Edison granodiorite include steeply-dipping orthogneiss foliations, joints, and ductile shear zones that nucleated on joints and leucocratic dykes. Exploitation of segmented joints resulted in sharply bounded, thin shear zones and in large slip gradients near the shear zone tips causing the deformation of the host rock at contractional domains. The orthogneiss foliation intensifies towards the contact with the younger Mono Creek granite and locally defines the dextral Rosy Finch Shear Zone (RFSZ), a major kilometre-wide zone crosscutting the pluton contacts. Joints predominantly strike at N70–90°E over most of the Lake Edison pluton and are exploited as sinistral shear zones, both within and outside the RFSZ. In a narrow (∼250 m thick) zone at the contact with the younger Mono Creek granite, within the RFSZ, the Lake Edison granodiorite includes different sets of dextral and sinistral shear zones/joints (the latter corresponding to the set that dominates over the rest of the Lake Edison pluton). These shear zones/joints potentially fit with a composite Y–R–R′ shear fracture pattern associated with the RFSZ, or with a pattern consisting of Y–R-shear fractures and rotated T′ mode I extensional fractures. The mineral assemblage of shear zones, and the microstructure and texture of quartz mylonites indicate that ductile deformation occurred above 500 °C. Joints and ductile shearing alternated and developed coevally. The existing kinematic models do not fully capture the structural complexity of the area or the spatial distribution of the deformation and magmatic structures. Future models should account more completely for the character of ductile and brittle deformation as these plutons were emplaced and cooled.  相似文献   

2.
A comparative analysis of repeated geodetic leveling data was made along nine subparallel, E—NE-trending leveling lines located in the central to northern Sierra Nevada and the eastern Central Valley. The analysis was made to identify relative changes of elevation and evaluate these changes with respect to the regional geology and tectonics. The analysis used National Geodetic Survey first- and second-order, unadjusted, observed elevations.The relative changes in elevation indicate that crustal deformation is continuing to occur in the Sierra Nevada along pre-existing zones of crustal weakness and that this deformation is localized along some strands of Late Cenozoic faulting within the Mesozoic Foothills fault system. This deformation is characterized by variable and nonunifor westward tilt of the Sierran block west of the Melones fault zone, and relatively consistent eastward tilt of the Sierran block east of the Melones fault zone. Variable elevation changes occur within the Foothills fault system and are often associated with prominent geological or structural contacts. In addition, subsidence in the Central Valley appears to be of small magnitude and localized in extent, indicating nontectonic changes in elevation problably due to compaction of unconsolidated sediments.  相似文献   

3.
Analysis of the mesoscopic structure of the early Paleozoic Shoo Fly complex, northern Sierra Nevada, California, reveals three phases of deformation and folding. The first phase of folding is pre-Late Devonian and the second two are constrained by regional relations as due to the Late Jurassic Nevadan orogeny. Main phase Nevadan deformation produced penetrative slaty cleavage which is steep, NNW-trending and parallel to tectonostratigraphic terranes of the region. Cleavage is axial-planar to ubiquitous isoclinal similar folds. Fold axes define a NNW-trending girdle with a distinct, near-vertical maximum. Main phase Nevadan folds have nearly ideal class 2 orthogonal thickness geometry although some class 1C forms exist in more competent units. The overall geometry of main phase folds suggests formation by progressive deformation in a flattening regime with cleavage as the flattening plane and a steep extension axis defined by the fold axis maximum. A steep extension axis direction for main phase Nevadan deformation is supported by analysis of interference relations where folds of this generation deform pre-Late Devonian folds. Late Nevadan folds range from kink flexures to ideal class 2 similar folds with incipient axial-planar cleavage. The kinematic significance of late Nevadan folds cannot be evaluated because of their varying style and orientation throughout the northern Sierra Nevada.Penetrative ductile deformation and near-vertical extension during the Nevadan orogeny was synchronous with accretion of oceanic and/or island arc rocks against the western margin of the northern Sierra Nevada. The kinematic framework of deformation defined for Nevadan deformation is consistent with essentially orthogonal convergence of these exotic terranes with the Sierran margin and argues against a transform/transpressive regime.  相似文献   

4.
位于江南造山带北缘的歙县地区,有大量的花岗质岩体出露。本文对歙县花岗闪长岩体进行了构造变形分析和LA-ICP-MS锆石U-Pb测年。构造变形特征显示该地区花岗闪长岩曾遭受深层次韧性变形,其中广泛发育的波状消光、动态重结晶颗粒、旋转残斑、云母鱼等是矿物受应力作用发生韧性变形的指示,花岗闪长岩中石英和长石的变形行为指示韧性变形温度为500 ℃~580 ℃。对歙县地区花岗闪长岩测年,获得加权平均年龄为822.8±9.5 Ma(MSWD = 0.55,n = 23),代表岩体的侵位年龄。综合前人研究资料,我们认为景德镇—歙县构造带内的岩石韧性变形时代应该在770 Ma左右,其可能反映了扬子板块与华夏板块最终碰撞拼合。  相似文献   

5.
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada.The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of hörst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament.Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE—SW compression axis (σ1) and an EW to NW—SE extension axis (σ3).  相似文献   

6.
《International Geology Review》2012,54(11):1010-1032
The main purpose of the present study is the development of concepts and methods suitable for deriving climatological information on the basis of phytoindication in semiarid-semihumid regions where no climatological data are available. The macroclimate of the southwestern United States can be clearly defined using regression analysis. The humid oceanic and temperate climate in the western part of this region is distinguished from the dry continental climate of the Great Basin east of the Sierra Nevada. The very important role of summer precipitation for the distribution of vegetation is explained from a climatic-ecological point of view. Although microclimatic conditions point to unfavorable conditions for plant growth—extreme amounts of radiation lead to increasing thermal stress with altitude—the gradients of soil moisture during the warm season explain high vegetation densities.

Phytogeographical aspects show a clear separation between the Sierra Nevada and the White Mountains and between the White Mountains and Wheeler Peak. Lowest vegetation density is found in the Owens Valley and not, as might be expected, in the eastern part of the Great Basin. Thus, although the White Mountains are situated adjacent to the Sierra, their vegetation shows weak relations to the Sierran and Californian floristic province. In fact, Great Basin plants constitute the majority. An overall floristic comparison establishes a continuous change from the White Mountains to Wheeler Peak and an abrupt transition between the vegetation of the Sierra Nevada and the White Mountains.  相似文献   

7.
A low-pressure metamorphic zonation ranging from biotite tomigmatite zones occurs in the Sierra Albarrana area (VariscanBelt of southwestern Iberian Peninsula) in uppermost Precambrianto Lower Palaeozoic metasedimentary rocks. The principal deformationin this area is related to a major ductile shear zone whosecentral part is localized immediately to the southwest of theSierra Albarrana Quartzites. The metamorphism is synchronouswith respect to this deformation. The metamorphic zones aresymmetrically distributed with respect to the Sierra AlbarranaQuartzites. Pressure–temperature (P–T) conditionsare 3.5–4 kbar and range from 400°C (biotite zone)to 500°C (staurolite–garnet zone) up to 650–700°C(migmatite zone). We have not detected pressure variations alongthe different metamorphic zones. Relic kyanite is observed inthe form of inclusions in andalusite within veins in the lower-gradepart of the staurolite–andalusite zone. The low-pressuremetamorphism of the Sierra Albarrana area arises from a two-stagehistory including moderate crustal thickening followed by subsequentlocalization of deformation in a transcurrent shear zone duringpeak P–T conditions. Channelized fluid flow within themajor ductile shear zone may have contributed to the heat budgetof the low-pressure metamorphism. KEY WORDS: fluid flow; Iberian Massif; low-pressure metamorphism; shear zone; Sierra Albarrana area  相似文献   

8.
The Honam shear zone, dextrally running along the southern margin of the Ogcheon belt, Korea, has drawn much attention in reconstructing the Mesozoic tectonic framework of northeastern Asia. Here we present Rb–Sr data for the middle to southwestern part of the Honam shear zone, in an attempt to directly determine ages of deformation. In the middle part, the younger limit of deformation is constrained to be 162 ± 11 Ma by feldspar–biotite Rb–Sr dating of the deformed Sunchang granodiorite. On the other hand, an early Cretaceous deformation age is estimated for synkinematic fibers in ultramylonites from the southwestern part by two reproducible Rb–Sr errorchrons at 138 ± 4 and 139 ± 23 Ma. This deformational time scale is consistent with earlier interpretations based on field evidence, magnetic susceptibility data, and age data for Jurassic plutons within the shear zone. Our data demonstrate that the Honam shear zone is not a Permian to Triassic tectonic feature related to the Chinese continental collision.  相似文献   

9.
西秦岭北缘武山—鸳鸯镇构造带磁组构特征   总被引:2,自引:0,他引:2  
构造与磁组特征揭示出武山-鸳鸯镇构造带为一条复合性断裂带,变形样式表现为花状构造形态。野外及显微构造特征表明,先期韧性变形为右行剪切,发育于中、深构造层次;66个构造岩样品的磁化率椭球形态分析表明,其以平面和压扁应变为主,总体较高的磁化率各向异性度表现了构造带的强变形特征;磁化率椭球主轴方位显示NW和NEE走向两组磁面理的存在,暗示高应变剪切带在平面上可能以共轭或网格状形态出露,锐夹角分线近EW向;高角度磁面理及较为发育的低倾伏角磁线理暗示了沿构造带近EW向的走滑剪切,部分高倾伏角磁线理可能与构造带的挤压和(或)转换挤压相关,而相对集中的磁面理与相对分散的磁线理也表明了构造带的平面及压扁应变体制。强烈的右行转换挤压奠定了西秦岭北缘现今的反"S"型区域构造,表明碰撞造山过程中,西秦岭诸中、小块体一定程度的向西挤逸。中、新生代沿构造带继承性的发育以西秦岭北缘(渭河)断裂为中心的一系列正花状左行走滑构造,构成青藏高原东北边缘物质逃逸及应力释放与调整的重要边界。  相似文献   

10.
The Santa Rosa mylonite zone developed predominantly from a granodiorite protolith in the eastern margin of the Peninsular Ranges batholith. A wide variation in K−Ar biotite dates within the zone is shown to reflect the times of cooling through closure temperatures whose variability is chiefly a result of deformation-induced reduction in grain size. We suggest that such variation generally may be exploited to place constraints on the timing of deformation episodes. Previous workers have shown that deformation in the Santa Rosa mylonite zone involved the formation of mylonites and an imbricate series of low-angle faults which divide the area into structural units. Field work, petrographic studies, and TEM analysis of deformation mechanisms in biotite show that the granodiorite mylonite, the lowermost structural unit, formed below the granodiorite solidus. The granodiorite mylonite varies from protomylonite to ultramylonite, with regions of high strain distributed heterogeneously within the zone. Previously reported biotite and hornblende K−Ar dates from the granodiorite protolith below (82–89 Ma) and the Asbestos Mountain granodiorite above (61–68 Ma) the mylonite zone indicate dramatically dissimilar thermal histories for the lowermost and uppermost structural units. Other workers' fission track dates on sphene, zircon, and apatite from the granodiorite mylonite and the Asbestos Mountain granodiorite suggest thermal homogenization and rapid cooling to ∼100° C by ca 60 Ma. Within and adjacent to the mylonite zone, K−Ar dates on 5 samples of biotite from variably deformed granodiorite range from 62–76 Ma; dates are not correlated with structural depth but clearly decrease with degree of deformation and concomitant grain size reduction. 40Ar/39Ar incremental heating analyses of biotite from the granodiorite protolith reveals no evidence of excess argon and produces a relatively flat age spectrum. 40Ar/39Ar incremental heating analysis of biotite from the granodiorite mylonite discloses discordance consistent with 39Ar recoil loss. K analysis of samples, allowing K−Ar dates to be calculated, is therefore recommended as an adjunct to 40Ar/39Ar step heating analysis in rocks that have experienced similar deformation. During mylonitization, biotite grain size reduction through intracrystalline cataclasis results in estimated grain dimensions as small as 0.05 μm locally within porphyroclasts as large as 1 mm. Because biotite compositions are relatively Uniform (Fe/[Fe+Mg+Mn+Ti+AlVI]=0.47–0.52) and show no systematic variation with grain size, compositional dependence of activation energy and diffusivity can be eliminated as sources of variation in Ar retention. Ar closure temperatures, calculated with appropriate diffusion parameters for the observed grain sizes, are in the range ∼220–280° C and define a cooling curve consistent with a thermal history intermediate between those of the granodiorite protolith below and the Asbestos Mountain granodiorite above the mylonite zone. Changes in the slope of the cooling curve indicate that the main deformation episode initiated at or above ca 330° C (∼80 Ma), above the closure temperature for thermally activated diffusion of argon in biotite, and continued to a minimum of ca 220–260° C (∼62 Ma).  相似文献   

11.
This study combines microstructural observations with Raman spectroscopy on carbonaceous material (RSCM), phase equilibria modelling and U–Pb dating of titanite to delineate the metamorphic history of a well‐exposed section through the South Tibetan Detachment System (STDS) in the Dzakaa Chu valley of Southern Tibet. In the hanging wall of the STDS, undeformed Tibetan Sedimentary Series rocks consistently record peak metamorphic temperatures of ~340 °C. Temperatures increase down‐section, reaching ~650 °C at the base of the shear zone, defining an apparent metamorphic field gradient of ~310 °C km?1 across the entire structure. U–Th–Pb geochronological data indicate that metamorphism and deformation at high temperatures occurred over a protracted period from at least 20 to 13 Ma. Deformation within this 1‐km‐thick zone of distributed top‐down‐to‐the‐northeast ductile shear included a strong component of vertical shortening and was responsible for significant condensing of palaeo‐isotherms along the upper margin of the Greater Himalayan Series (GHS). We interpret the preservation of such a high metamorphic gradient to be the result of a progressive up‐section migration in the locus of deformation within the zone. This segment of the STDS provides a detailed thermal and kinematic record of the exhumation of footwall GHS rocks from beneath the southern margin of the Tibetan plateau.  相似文献   

12.
By means of petrogrological, meso- and microstructural analyses, the fabric of a syn-tectonic late Hercynian K-feldspar megacryst-bearing granodiorite is described in this paper. The granodiorite was emplaced at 293 Ma within migmatitic paragneisses which had reached the regional peak metamorphic conditions at 304–300 Ma. The granodiorite and the migmatitic paragneisses are both affected by the same ductile shear zone. In the core of the shear zone, mylonites show a clear grain-size reduction and microstructures related to deformation at high to medium temperature conditions. Migmatitic paragneisses, foliated granodiorites and mylonites mostly show concordant lineation and foliation orientations. In addition, the preferred orientation of euhedral feldspars in granodiorites indicates that the fabric anisotropy started to develop in the magmatic state. These features strongly suggest that shear deformation was active during crystallisation of granitoids and continued under subsolidus conditions. In wall rocks and mylonites, kinematic indicators such as - and -type porphyroclasts, S/C fabrics, shear bands and quartz (c) axis orientations suggest a top-to-the-W sense of shear. This is similar to the magma flow direction indicated by the tiling of euhedral feldspar megacrysts in granodiorites. Shear deformation developed, preferentially, by partitioning of strain in the granodioritic crystal mush. Geobarometry indicates that deformation took place at middle crustal levels (P=400–500 MPa). Whole rock-white mica Rb/Sr geochronological analysis of an undeformed pegmatite, crosscutting the mylonitic foliation, provided an age of 265 Ma. Timing of deformation is therefore bracketed between 293 Ma and 265 Ma.  相似文献   

13.
美国内华达山脉(Sierra Nevada)西部变质带是古生代以来的活动大陆边缘和显生宙大陆增生的典范,通过对其变质变形史的研究及其与秦岭造山带的对比,认为其对中国造山带的研究,尤其是对大陆增生、增厚及演化历史等方面的研究有着重要的借鉴意义。  相似文献   

14.
辽西兴城—台里地区发育系列花岗质岩石,强烈构造变形特征均显示其具有韧性剪切带的特点。对剪切带北段进行详细宏微观构造解析,结合岩石变形强度差异性分析、有限应变测量、石英C轴EBSD测试以及古差异应力值估算等研究,结果表明剪切带内花岗质片麻岩和眼球状花岗质片麻岩具有NEE向左行剪切变形特征,变形岩石为S-L构造岩,应变类型属于平面应变,古差异应力值介于30~40 MPa之间。长石-石英矿物温度计以及石英C轴EBSD组构指示剪切带以中低温变形为主,温度在400℃~500℃,属绿片岩相变质,具中-低温韧性剪切带特征。韧性剪切带内普遍存在变形分解现象,弱变形带内岩石残斑含量较高,眼球状构造和S-C组构较为发育;强变形带岩石残斑含量较低,剪切面理较为发育,糜棱面理发育较弱或者不发育。  相似文献   

15.
以美国内华达山脉复合岩基为例,系统评述了与大型花岗岩基的形成、演化相关的深部地球动力学过程及构造地貌学响应.在大陆岛弧环境下,基性岩浆的底侵作用促使下地壳发生角闪岩脱水部分熔融,在岩基根部形成高密度的石榴辉石岩,岩基根部最终发生重力失稳,形成滴水构造;在地貌上反映为滴水构造对应区域的沉降和相应的张性构造,在岩浆作用上则表现为软流圈地幔上涌和残余富集岩石圈地幔的低程度部分熔融,形成钾质火山岩.这种高度动态的深部动力学过程是维持大型花岗岩基地区较高高程或促使这些区域高程骤然增加的重要因素.  相似文献   

16.
Alpine deformation in the Grimsel granodiorite (Aar massif, Central Alps) at greenschist facies conditions (6.5 ± 1 kbar for 450°C ± 25°C) is characterized by the development of a network of centimetre to decametre localized shear zones that surround lenses of undeformed granodiorite. Localization of deformation is assumed to be the result of a first stage of extreme localization on brittle precursors (nucleation stage) followed by a transition to ductile deformation and lateral propagation into the weakly deformed granodiorite (widening stage). A paradox of this model is that the development of the ductile shear zone is accompanied by the crystallization of large amounts of phyllosilicates (white mica and chlorite) that maintains a weak rheology in the localized shear zone relative to the host rock so that deformation is localized and prevents shear zone widening. We suggest that chemical processes, and more particularly, the metamorphic reactions and metasomatism occurring during re‐equilibration of the metastable magmatic assemblage induced shear zone widening at these P–T–X conditions. These processes (reactions and mass transfer) were driven by the chemical potential gradients that developed between the thermodynamically metastable magmatic assemblage at the edge of the shear zone and the stable white mica and chlorite rich ultramylonite formed during the first stage of shear zone due to localized fluid infiltration metasomatism. PT and chemical potential projections and sections show that the process of equilibration of the wall rocks (μ–μ path) occurs via the reactions: kf + cz + ab + bio + MgO + H2O = mu + q + CaO + Na2O and cz + ab + bio + MgO + H2O = chl + mu + q + CaO + Na2O. Computed phase diagram and mass balance calculations predict that these reactions induce relative losses of CaO and Na2O of ~100% and ~40% respectively, coupled with hydration and a gain of ~140% for MgO. Intermediate rocks within the strain gradient (ultramylonite, mylonite and orthogneiss) reflect various degrees of re‐equilibration and metasomatism. The softening reaction involved may have reduced the strength at the edge of the shear zone and therefore promoted shear zone widening. Chemical potential phase diagram sections also indicate that the re‐equilibration process has a strong influence on equilibrium mineral compositions. For instance, the decrease in Si‐content of phengite from 3.29 to 3.14 p.f.u, when white mica is in equilibrium with the chlorite‐bearing assemblage, may be misinterpreted as the result of decompression during shear zone development while it is due only to syn‐deformation metasomatism at the peak metamorphic condition. The results of this study suggest that it is critical to consider chemical processes in the formation of shear zones particularly when deformation affects metastable assemblages and mass transfer are involved.  相似文献   

17.
The Sierra Ballena Shear Zone (SBSZ) is part of a high-strain transcurrent system that divides the Neoproterozoic Dom Feliciano Belt of South America into two different domains. The basement on both sides of the SBSZ shows a deformation stage preceding that of the transcurrent deformation recognized as a high temperature mylonitic foliation associated with migmatization. Grain boundary migration and fluid-assisted grain boundary diffusion enhanced by partial melting were the main deformation mechanisms associated with this foliation. Age estimate of this episode is >658 Ma. The second stage corresponds to the start of transpressional deformation and the nucleation and development of the SBSZ. During this stage, pure shear dominates the deformation, and is characterized by the development of conjugate dextral and sinistral shear zones and the emplacement of syntectonic granites. This event dates to 658–600 Ma based on the age of these intrusions. The third stage was a second transpressional event at about 586 to <560 Ma that was associated with the emplacement of porphyry dikes and granites that show evidence of flattening. Deformation in the SBSZ took place, during the late stages, under regional low-grade conditions, as indicated by the metamorphic paragenesis in the supracrustals of the country rocks. Granitic mylonites show plastic deformation of quartz and brittle behavior of feldspar. A transition from magmatic to solid-state microstructures is also frequently observed in syntectonic granites. Mylonitic porphyries and quartz mylonites resulted from the deformation of alkaline porphyries and quartz veins emplaced in the shear zone. Quartz veins reflect the release of silica associated with the breakdown of feldspar to white mica during the evolution of the granitic mylonites to phyllonites, which resulted in shear zone weakening. Quartz microstructures characteristic of the transition between regime 2 and regime 3, grain boundary migration and incipient recrystallization in feldspar indicate deformation under lower amphibolite to upper greenschist conditions (550–400°C). On the other hand, the mylonitic porphyries display evidence of feldspar recrystallization suggesting magmatic or high-T solid-state deformation during cooling of the dikes.  相似文献   

18.
Summary AMS fabric studies supported by field and microscopic work were applied to identify the internal structure and possible emplacement processes of the Variscan late-tectonic granodiorite-granite intrusions of the Unit III in the Odenwald Crystalline Complex. This Unit is bounded towards NW and NNE by steeply inclined shear zones, the southern part is unexposed. The magnetic susceptibility ranges between 10−3 and 10−6 SI units and is caused by paramagnetic and subordinately by ferromagnetic components. AMS ellipsoids are typically oblate with gently plunging long axes (lineations). AMS foliations and lineations trend mainly WSW-ENE and NNW-SSE, parallel with the NNW and ENE trending marginal shear zones of Unit III, respectively. As revealed by microstructural studies, a penetrative foliation in the plutons is related to emplacement processes. Therefore the observed AMS foliation and lineation are also interpreted as the result of syn-emplacement deformation which is dominantly strike-slip. Weakly inclined foliations around pluton roof xenoliths point to a component of buoyant rise of magma. It is suggested that the granitoid magma was generated in a low level anatectic zone along a left-lateral transpressive shear zone during local extension at releasing bends. During successive fault movements magma ascended through extensional parts of the shear zone. Local normal faults and the Otzberg zone at the eastern margin of Unit III document mostly brittle extension, which overprinted the strike-slip fabrics after the emplacement of the plutons.
Zusammenfassung Horizontalverschiebungen und Granitoidintrusion: AMS Gefüge am Beispiel des SW Odenwaldes Durch AMS Gefügestudien und Gel?nde- und mikroskopische Arbeiten werden die Internstruktur und m?gliche Aufstiegsmechanismen des Granit-Granodiorit-Plutons der Einheit III des SW Odenwaldes erfasst. Dieser sp?t-tektonische, variscische Plutonkomplex ist nach NW und NNE durch steile Scherzonen begrenzt, das südliche Ende ist nicht aufgeschlossen. Die magnetische Suszeptibilit?t variiert von 10−3 bis 10−6 SI Einheiten und wird vor allem durch paramagnetische, untergeordnet auch durch ferromagnetische Komponenten verursacht. Die AMS Ellipsoide sind überwiegend oblat mit flachen langen Achsen (Lineationen). AMS Foliationen und Lineationen verlaufen haupts?chlich WSW-ENE und NNW-SSE, jeweils parallel mit den NNW und ENE orientierten Scherzonen am Rand der Einheit III. Nach mikrostrukturellen Ergebnissen entstand die penetrative Foliation der Plutone w?hrend ihrer Platznahme. Dabei entstand auch das beobachtete AMS Gefüge, das durch flache Lineationen und Horizontal-verschiebungen bestimmt ist. Flache Foliationen im Bereich der Xenolithe des Pluton-Daches sprechen für eine Komponente des gravitativen Aufstiegs des Magmas. Die granitoiden Magmen entstanden offenbar w?hrend einer Transpression mit sinistralen Horizontalverschiebungen in NNE-SSW-Richtung, in denen lokal auch Dehnung erfolgte. Dabei stieg das in der Tiefe gebildete Magma durch die Bereiche der Dehnung in der aktiven St?rungszone auf. Lokale Abschiebungen und die Otzberg Zone am Ostrand der Einheit III belegen überwiegend spr?de Deformation, die nach der Platznahme der Plutone die Gefüge der Horizontalverschiebungen überpr?gte.


Received June 21, 1999; revised version December 24, 1999  相似文献   

19.
Altered and mineralised rocks at Peak Hill, are confined to a 300–500 m wide, north-south striking, steeply dipping, shear zone that is flanked by the Mingelo Volcanics along its western side, and Cotton Formation siltstones along its eastern side. This shear zone is defined by extensive zones of cataclasite and strongly foliated micaceous schists in marked contrast to the largely undeformed nature of the adjacent rocks. Advanced argillic assemblages (quartz-kaolinite-pyrite ± alunite ± illite) occur throughout the core of the Peak Hill deposit. Propylitic assemblages, including albite, quartz, interlayered chlorite-smectite, illite and ankerite, and a narrow discontinuous zone of argillic (quartz-illite-pyrite) alteration are developed in the Mingelo Volcanics along the western side of the deposit. Propylitic, argillic and advanced argillic assemblages are overprinted by an internally zoned phase of phyllosilicate alteration that grades inwards from a peripheral sericite-clay-chlorite assemblage, through phyllic assemblages (muscovite/illite-pyrite ± paragonite) to a pyrophyllite-pyrite ± diaspore ± andalusite altered core. Au-Cu mineralisation is hosted by barite-pyrite veins that cut the advanced argillic assemblage, but pre-date the phyllosilicate-dominated alteration. Native Au (lacking Ag), calaverite, Te-rich tennantite-tetrahedrite (goldfieldite), chalcopyrite, covellite and chalcocite occur in the barite-pyrite veins. No ore-bearing minerals were detected in any of the alteration assemblages. The total gold content of the Peak Hill deposit is currently 720 K ounces and this includes 100 K ounces of unmined reserves. Within the shear zone phyllosilicate minerals are developed in strain shadows and partly define the stretching lineation associated with dip-slip movement. The zonation within the phyllosilicate assemblages mimics the geometry of bends in the shear zone and minor internal structures. These textures indicate that the phyllosilicate alteration developed synchronous with movement on the shear zone. Earlier advanced argillic alteration and mineralisation are developed in rocks derived from both sides of the shear zone. Hydrothermal activity associated with the earlier advanced argillic alteration was therefore either synchronous with juxtaposition of these distinct rock units, or occurred during a later phase of movement on the shear zone. Cross-cutting fibrous textures in the auriferous barite-pyrite veins indicate that repeated fracturing of the advanced argillic altered rocks accompanied development of successive generations of auriferous veins. Concentrations of auriferous veins are localised in steeply plunging shoots that are oriented parallel to the stretching lineation in the shear zone. These features all indicate movement on the host shear zone accompanied each phase of hydrothermal activity in the Peak Hill deposit. The location, alteration zonation and distribution of mineralised veins within the deposit are intimately controlled by deformation on the host shear zone synchronous with hydrothermal activity. The development of high-sulphidation hydrothermal systems synchronous with deformation along brittle-ductile shear zones is a predictable consequence of intrusive activity during deformation in areas characterised by a high geothermal gradient. The close relationship between tectonism and hydrothermal activity indicates that these deposits are likely to be located in the vicinity of regional-scale shear zones. Deposits are likely to be aligned parallel to the regional-scale structural “grain” and restricted to areas of conspicuous deformation as is the case at Peak Hill (and Temora, NSW). Aluminous alteration zones concentrated in the vicinity of regional-scale structures in the Carolina Slate Belt may be a further example of this style of hydrothermal activity. Received: 30 September 1996 / Accepted: 28 August 1997  相似文献   

20.
Reconnaissance studies of early island-arc intrusions in the Cordillera Central of the Dominican Republic demonstrate that these rocks are mainly hornblende tonalite with lesser amounts of hornblende diorite, quartz diorite, granodiorite and quartz monzonite. Two plutons (El Bao, Medina) are petrographically and chemically homogeneous, whereas two others (El Rio and Loma de Cabrera) are compositionally heterogeneous. Samples from these intrusions range in SiO2 from 49 to 70% with most rocks in the 59 to 62% range. K2O ranges from 0.24 to 3% and averages 1.2%. Cu, Zn, Co, Ni, V and possibly Cr decrease with increasing SiO2. Rb/Sr values for the intrusions are low but variable. Present-day 87Sr/86Sr values range from 0.7031 to 0.7045 for the El Bao and Loma de Cabrera batholiths and 0.7033 to 0.7091 for the Medina stock. These data do not generate isochrons. The Cordillera Central tonalite intrusions are the most abundant plutonic rock type in the Greater Antilles, although small, younger granodiorite and quartz monzonite stocks are present. The Cordillera Central intrusions are lower in SiO2, K2O, Rb, and Sr than the average composition of the Sierra Nevada batholith, but they are similar to the tonalites and trondjhemites from the western margin of the Sierra Nevada batholith. The low Rb/Sr ratios and low initital Sr87/Sr86 ratios for the Cordillera Central intrusions combined with the high liquidus temperatures required for the generation of tonalite magmas strongly favor a subcrustal source for these magmas in an island-arc setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号