首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.  相似文献   

2.
The circulation of Yellow Sea Cold Water Mass(YSCWM) in the Southern Yellow Sea is investigated using a diagnostic 2D MITgcm model. The resolution of the computational grid is 900 m in the horizontal and 2 m in the vertical where an initial temperature distribution corresponding to a typical measured Yellow Sea Cold Water Mass was applied. The existence of YSCWM that causes fluid density difference, is shown to produce counter-rotating cyclonic horizontal eddies in the surface layer: the inner one is anti-cyclonic(clockwise) and relatively weaker(8–10 cm s-1) while the outer one is cyclonic(anti-clockwise) and much stronger(15–20 cm s-1). This result is consistent with the surface pattern observed by Pang et al.(2004), who has shown that a mesoscale anti-cyclonic eddy(clockwise) exists in the upper layer of central southern Yellow Sea, and a basin-scale cyclonic(anticlockwise) gyre lies outside of the anti-cyclonic eddy, based on the trajectories and drifting velocities of 23 drifters. Below the thermocline, there is an anti-cyclonic(clockwise) circulation. This complex current eddy system is considered to be capable of trapping suspended sediments and depositing them near the front between YSCWM and the coastal waters off the Subei coast, providing an explanation on the sediment depth and size distribution of mud patches in the Southern Yellow Sea. Moreover, sensitive test scenarios indicate that variations of bottom friction do not substantially change the main features of the circulation structure, but will reduce the bottom current velocity, increase the surface current velocity and weaken the upwelling around the frontal area.  相似文献   

3.
A one-dimensional coupled pelagic-benthic box model for the Yellow Sea Cold Water Mass (YSCWM) is developed. The model is divided into three boxes vertically according to the depths of thermocline and euphotic layer. It simulates well the oligotrophic shelf ecosystem of the YSCWM considering effects of nutrients deposition and microbial loop. Main features of vertical structure of various variables in ecosystem of the YSCWM were captured and seasonal variability of the ecosystem was well reconstructed. Calculation shows that the contribution of microbial loop to the zooplankton can reach up to 60%. Besides, input of inorganic nutrients from atmospheric deposition is an important mechanism of production in upper layer of the YSCWM when stratified.  相似文献   

4.
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.  相似文献   

5.
The Yellow Sea Cold Water Mass(YSCWM),one of the most vital hydrological features of the Yellow Sea,causes a seasonal thermocline from spring to autumn.The diel vertical migration(DVM) of zooplankton is crucial to structural pelagic communities and food webs,and its patterns can be affected by thermocline depth and strength.Hence,we investigated zooplankton community succession and seasonal changes in zooplankton DVM at a fixed station in the YSCWM.Annual zooplankton community succession was affected by the forming and fading of the YSCWM.A total of 37 mesozooplankton taxa were recorded.The highest and lowest species numbers in autumn and spring were detected.The highest and lowest total densities were observed in autumn(14 464.1 inds./m3) and winter(3 115.4 inds./m3),respectively.The DVM of the dominant species showed obvious seasonal variations.When the YSCWM was weak in spring and autumn,most species(e.g.Paracalanus parvus,Oithona similis,and Acartia bifilosa) stayed above the thermocline and vertically migrated into the upper layer.Calanus sinicus and Aidanosagitta crassa crossed the thermocline and vertically migrated.No species migrated through the stratification in summer,and all of the species were limited above(P.parvus and A.crassa) or below(C.sinicus and Centropages abdominalis)the thermocline.The YSCWM disappeared in winter,and zooplankton species were found throughout the water column.Thus,the existence of thermocline influenced the migration patterns of zooplankton.Cluster analyses showed that the existence of YSCWM resulted in significant differences between zooplankton communities above and below the thermocline.  相似文献   

6.
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises. There was something special in the observations for the Yellow Sea Warm Current (YSWC), the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year. The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind. It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter. Resulting from the reduced Changjiang River discharge, the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons. The other water masses seemed normal without noticeable anomalies in 2011. The Yellow Sea Coastal Current (YSCC) water, driven by the northerly wind, flowed southeastward as a whole except for its northeastward surface layer in summer. The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement. The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.  相似文献   

7.
Biodiversity patterns of free-living marine nematodes were studied using specific,taxonomic and phylogenetic diversity measures in the southern Yellow Sea,China.The results showed that the average of Shannon-Wiener diversity index(H′) in the study area was 3.17.The higher values were distributed in the east part of Shandong coastal waters and north part of Jiangsu coastal waters,while the lower values were distributed in the southern Yellow Sea Cold Water Mass(YSCWM).The average of taxonomic diversity(Δ) was 62.09 in the study region.The higher values were distributed in the transitional areas between the coastal areas and the southern YSCWM,while the lower values were distributed near the north part of Jiangsu coastal waters and the YSCWM.Results of correlation analysis of species diversity and taxonomic diversity showed that some of the two kinds of diversity index were independent,which suggested that combining the two kinds of diversity indices can reflect the ecological characteristics better.A test for 95% probability funnels of average taxonomic distinctness and variation in taxonomic distinctness suggested that Station 8794(in the YSCWM) was outside of the 95% probability funnels,which may be due to the environmental stress.Results of correlation analysis between marine nematodes biodiversity and environmental variables showed that the sediment characteristics(Md? and Silt-clay fraction) and phaeophorbide a(Pha-a) were the most important factors to determine the biodiversity patterns of marine nematodes.  相似文献   

8.
Huang  Pingping  Zhao  Feng  Xu  Kuidong 《中国海洋湖沼学报》2021,39(1):208-222
The Yellow Sea Cold Water Mass(YSCWM) is a distinct hydrographic phenomenon of the Yellow Sea,and the distribution pattern of meio-and macrobentho s diffe rs inside and outside of the YSCWM.However,such a pattern has never been observed in the microbenthic ciliate communities.Therefore,we hypothesized that benthic ciliates followed a similar distribution pattern as meio-and macrobentho s,but this pattern has not been uncovered by morphological methods.We evaluated the diversity and distribution of benthic ciliates at five stations along hydrographic gradients across the YSCWM and adj acent shallow water by using morphology and DNA and complementary DNA(cDNA) high-throughput sequencing of the V4 region of 18 S rRNA gene.Results showed that the diversity of benthic ciliate s detected by DNA(303 OTU s),and the cDNA(611 OTUs) sequencing was much higher than that detected by the morphological method(79 species).Morphological method detected roughly different ciliate communities inside and outside of the YSCWM,but without statistical significance.No clear pattern was obtained by DNA sequencing.In contrast,cDNA sequencing revealed a distinct distribution pattern of benthic ciliate communities like meioand macrobenthos,which coincided well with the results of the environmental parameter analysis.More than half of the total sequences detected by DNA sequencing belonged to planktonic ciliates,most(if not all) of which were recovered from historic DNA originating through the sedimentation of pelagic forms because none of them were observed morphologically.The irrelevant historic DNA greatly influenced the recovery of rare species and thus limited the understanding of the benthic ciliate diversity and distribution.Our research indicates that the methods used have significant effects on the investigation of benthic ciliate communities and highlights that cDNA sequencing has great advantages in estimating the diversity and distribution of benthic ciliates,as well as the potential for benthic environmental assessments.  相似文献   

9.
Based on observed temperature data since the 1950s, long-term variability of the summer sharp thermocline in the Yellow Sea Cold Water Mass (YSCWM) and East China Sea Cold Eddy (ECSCE) areas is examined. Relationships between the thermocline and atmospheric and oceanic forcing were investigated using multiyear wind, Kuroshio discharge and air temperature data. Results show that: 1) In the YSCWM area, thermocline strength shows about 4-year and 16-year period oscillations. There is high correlation between summer thermocline strength and local atmospheric temperature in summer and the previous winter; 2) In the ECSCE area, interannual oscillation of thermocline strength with about a 4-year period (stronger in El Ni o years) is strongly correlated with that of local wind stress. A transition from weak to strong thermocline during the mid 1970s is consistent with a 1976/1977 climate shift and Kuroshio volume transport; 3) Long-term changes of the thermocline in both regions are mainly determined by deep layer water, especially on the decadal timescale. However, surface water can modify the thermocline on an interannual timescale in the YSCWM area.  相似文献   

10.
The Yellow Sea Cold Water Mass (YSCWM) was suggested as an over-summering site of the dominant copepod species Calanus sinicus in coastal Chinese seas. Population abundance and structure were investigated by monthly sampling along three transects across the northern boundary of the YSCWM during 2009-2010. Results show that thermal stratification existed from June to October and that the vertical thermal difference increased with depth. Generally, total abundance was lowest in October and highest in June, and the female/male sex ratio was highest in February and lowest in August. Evident spatial differences in abundance were observed during the existence of the YSCWM. In June, total abundance averaged 158.8 ind/m~ at well-stratified stations, and 532.1 ind/m3 at other stations. Similarly, high abundances of 322.0 and 324.4 ind/m3 were recorded from July to August inside the YSCWM, while the abundance decreased from 50.4 to 1.9 ind/m3 outside the water mass. C. sinicus distribution tended to even out over the study area in September when the YSCWM disappeared. We believe that the YSCWM may retard population recruitment in spring and preserve abundant cohorts in summer. The summer population was transported to neritic waters in autumn. In addition to low temperatures, stable vertical structure was also an essential condition for preservation of the summer population. C. sinicus can survive the summer in marginal areas in high abundance, but the population structure is completely different in terms of C5 proportion and sex ratio.  相似文献   

11.
Interannual variability of the southern Yellow Sea Cold Water Mass   总被引:2,自引:0,他引:2  
Temperature data collected in the sections of 34°N, 35°N and 36°N in August from 1975 through 2003 were analyzed using Empirical Orthogonal Function (EOF) to investigate interannual variability of the southern Yellow Sea Cold Water Mass (YSCWM). The first mode (EOF1) reveals variations of basin-wide thermocline depth, which is mainly caused by surface heating. The second mode (EOF2) presents fluctuations of vertical circulation, resulting mainly from interannual variability of cold front intensity. In addition, it is found that the upward extent of upwelling in the cold front is basically determined by wind stress curl and the zonal position of the warm water center in the southern Yellow Sea is correlated with spatial difference of net heat flux.  相似文献   

12.
A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.  相似文献   

13.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

14.
Data on the distribution of dissolved inorganic carbon (DIC) were obtained from two cruises in the North Yellow Sea (NYS) and off the Qingdao Coast (QC) in October, 2007. Carbonate parameters were calculated. The concentrations of DIC are from 1.896–2.229 mmolL−1 in the NYS and from 1.939–2.032 mmolL−1 off the QC. In the southwest of the NYS, DIC in the upper layers decreases from the north of the SP (Shandong Peninsula) shelf to the center of the NYS; whereas in the lower layers DIC increases from the north of the SP shelf to the center of the NYS and South Yellow Sea. In the northeast of the NYS, DIC in all layers increases from the YR (Yalu River) estuary to the centre of the NYS. The distribution of DIC in NYS can be used as an indicator of Yellow Sea Cold Water Mass (YSCWM). Air-sea CO2 fluxes were calculated using three models and the results suggest that both the NYS and the QC waters are potential sources of atmospheric CO2 in October.  相似文献   

15.
Nutrient and Chlorophyll-a (Chl-a) concentrations were investigated monthly along three transects extending from a mariculture area to open waters around the Zhangzi Island area from July to December 2009. The objective of this study is to illustrate food availability to the bottom-sowed scallop Patinopecten yessoensis under the influences of the Yellow Sea Cold Water Mass (YSCWM), freshwater input and feedbacks of cultivated scallops. Significant thermal stratification was present in open waters from July to October, and salinity decreased in July and August in surface layers in the mariculture area. Nutrient concentrations increased with depth in both areas in summer, but were similar through water column in November and December. On average, nutrient increased from summer to autumn in all components except ammonia. Nutrient concentrations lower than the minimum thresholds for phytoplankton growth were present only in upper layers in summer, but stoichiometric nitrogen limitation existed in the entire investigation period. Column-averaged Chl-a concentration was lower in open waters than in mariculture area in all months. It increased significantly in mariculture area in August and October, and was less variable in open waters. Our results show that nutrients limitation to phytoplankton growth is present mainly in upper layer in association with stratification caused by YSCWM in summer. Freshwater input and upwelling of nutrients accumulated in YSCWM can stimulate phytoplankton production in mariculture area. Farming activities may change stoichiometric nutrient ratios but have less influence on Chl-a concentration.  相似文献   

16.
The linkage between physical and biological processes is studied by applying a one-dimensional physical-biological coupled model to the Sargasso Sea. The physical model is the Princeton Ocean Model and the biological model is a five-component system including phytoplankton, zooplankton, nitrate, ammonium, and detritus. The coupling between the physical and biological model is accomplished through vertical mixing which is parameterized by the level 2.5 Mellor and Yamada turbulence closure scheme. The coupled model investigates the annual cycle of ecosystem production and the response to external forcing, such as heat flux, wind stress, and surface salinity, and the relative importance of physical processes in affecting the ecosystem. Sensitivity experiments are also carried out, which provide information on how the model bio-chemical parameters affect the biological system. The computed seasonal cycles compare reasonably well with the observations of the Bermuda Atlantic Time-series Study (BATS). The spring bloom of phytoplankton occurs in March and April, right after the weakening of the winter mixing and before the establishment of the summer stratification. The bloom of zooplankton occurs about two weeks after the bloom of phytoplankton. The sensitivity experiments show that zooplankton is more sensitive to the variations of biochemical parameters than phytoplankton.  相似文献   

17.
NUMERICAL STUDY ON THE TIDAL FRONT IN THE WESTERN YELLOW SEA   总被引:1,自引:0,他引:1  
The formation and evolution of the tidal front in the western Yellow Sea are studied by means of a two-dimensional model in which wind and tide mixing, sun radiation and wind stress, and realistic topography are incorporated. In this numerical study, the schemes employed are stable for time step t= 900 s, so the model can be run for 4 months to simulate the front evolution. The authors examined the effects of mixing and atmospheric forcing on the tidal front under conditions of : mixing and solar heating without wind stress on the sea surface; mixing, solar heating and 50 hours of wind stress; mixing, solar heating and long time periodical wind stress, Results show that (1) the tidal front forms at the beginning of May, and strengthens with the increasing of heat input, (2) the temperature structure in the shallow well-mixed water is dominated by mixing, while in the front and deeper stratified regions, it is controlled by the joint effects of (mainly) mixing and advection, 0) the currents and front all  相似文献   

18.
The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.  相似文献   

19.
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes approximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case.Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.  相似文献   

20.
In order to understand the properties of the winter circulation in the northern China Sea, a two-dimensional numerical model has been established and calculated for an ideal sea basin. In the model we employed a quadratic conservative scheme for a complete set of dynamic and thermodynamic equations. The systematic analysis of stability produced a series of mathematically and physically restrictive conditions which are more general than those derived by Irvine, and Chen. Using this model we made calculations on a series of interesting phenomena, such as the Yellow Sea Warm Current, two gyres in the Yellow Sea, etc. as well as their developing processes. The simulation can also explain the generation mechanism of the phenomena. Contribution No. 1523 from Institute of Oceanology, Academia Sinica  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号