首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Zhou  Xudong  Jiang  Xincheng  Gao  Shan  Wan  Zhenjia  Gao  Pengcheng 《中国海洋湖沼学报》2021,39(1):160-172
The increasing use of pharmaceuticals has become a major environmental issue in China.The presence of antibiotics in water may have deleterious effects on non-target aquatic organisms such as microalgae.In this study,a cyanobacterium and an alga species in surface waters,Microcystis aeruginosa and Chlamydomonas microsphaera,were exposed to 0,0.1,0.5,1.0,2.0,5.0,10.0,and 20.0 mg/L of oxytetracycline dihydrate(OXY) and sulfamethoxazole(SMZ) for 96 h to determine the effects of these antibiotics on the growth and surface morphology.Moreover,the photosynthetic activity and the contents of superoxide dismutase(SOD),malondialdehyde(MDA),and protein were measured to examine the biochemical characteristics of M.aeruginosa and C.microsphaera under OXY and SMZ stress.The effects of both antibiotics on the growth of both species were concentration-dependent and characterized by low-dose stimulation and high-dose inhibition.C.microsphaera was more sensitive to both antibiotics than M.aeruginosa was.The algal cell membranes of both species disintegrated after exposure to a high concentration of OXY.All of the physiological parameters measured in this study were relatively stable at low concentrations of OXY and SMZ.After exposure to high concentrations of OXY and SMZ,photosynthetic activity decreased significantly,whereas lipid peroxidation and the abundance of SOD,MDA,and protein increased significantly.Thus,low-dose antibiotics may increase algal blooms in eutrophic waters.  相似文献   

2.
Growth and biochemical responses of the coenobial green alga Scenedesmus obliquus to salinity stress were monitored across different phases of growth. The alga was cultured on BG11 growth medium and subjected to 0, 30, 100, and 200 mmol/L NaCl for a period of 20 d, during which algal cultures were harvested at 4-d intervals. The salinity-induced inhibition of algal growth was accompanied with prolongation of timing of the different growth phases. The sharp and progressive salinity-induced inhibition of algal growth rate during the early phase of growth points to salt shock but moderation of inhibition at the subsequent stages of growth means algal acclimation to salinity. The concentrations of chlorophylls a and b, soluble sugars, proteins as well as those of K+ and Na+ in the alga exhibited peaks at the initiation of the exponential phase of growth, with increasing magnitude in proportion to the increase in the level of salinity. Nevertheless, whereas soluble sugars of the alga peaked at initiation of the exponential phase, starch concentration progressively increased with culture age, reaching saturation towards the stationary phase. Whereas the salinity-induced increase in soluble sugars was most evident at the early stages of growth the reverse was true for starch. The present results point to fast acclimation of S. obliquus to salt stress post a brief salt shock, utilizing soluble sugars, K+ and Na+ for osmotic adjustment. Increasing salinity from 0 to 200 mmol/L NaCl led to progressive increase in soluble sugars, proteins, K + and Na + concentrations of the algal cells, particularly at the early stages of growth. However, the salinity-induced increase in chlorophyll concentration approached a limit at 100 mmol/L NaCl whereas that in starch concentration was more evident at the later stages of growth.  相似文献   

3.
Growth interactions between the dinoflagellate Levanderina fissa(=Gyrodinium instriatum) and the other three algal bloom species Skeletonema costatum(Bacillariophyceae), Prorocentrum micans(Dinophyceae), and Chattonella marina(Raphidophyceae) were studied using bi-or tri-algal co-cultures under laboratory conditions. The Lotka-Volterra model was applied to estimate the interspecific competition between them. Results showed that the growth of L. fissa was significantly suppressed in both bi-algal and tri-algal cultures, and the maximum cell densities in co-cultures were only between 21% and 69% of that in mono-culture. L. fissa outcompeted P. micans; however, its effects on S. costatum and C. marina were generally less than the effects of their intraspecific competitions based on the competition coefficients. Contrarily, the inhibitory effects of S. costatum and C. marina on L. fissa were much greater. S. costatum outcompeted the other three species in all co-cultures, and its competition coefficients on the other species were more than 10000 times higher than the opposite. The growth of C. marina was suppressed by S. costatum; however, it outcompeted L. fissa and P. micans. The growth of P. micans was most strongly inhibited in co-cultures, and the maximum cell densities in co-cultures were less than 15% of that in mono-species culture. The results suggested that L. fissa had few advantages in the interspecific competition. The adaptation to low salinity and the utilization of organic phosphorus might be the important reasons for L. fissa to take the competitive predominance in brackish estuarine environments.  相似文献   

4.
5.
We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve (Mytilus edulis) in laboratory. The result shows that sophorolipid could inhibit the growth of algal species selectively. Among three algae species selected, Platymonas helgolandica var. tsingtaoensis was promoted with increasing sophorolipid concentration; Isochrysis galbana was inhibited seven days later in sophorolipid concentration below 40 mg/L; and Nitzschia closterium f. minutissima was inhibited obviously in only a high sophorolipid concentration over 20 mg/L. Therefore, sophorolipid in a low concentration at <20 mg/L could remove certain harmful algae species effectively without harming other non-harmful microalgae. For other animals, sophorolipid could inhibit the growth of ciliate Strombidium sp. by 50% at 20 mg/L sophorolipid concentration after 96 h. The concentration in 96-h LC50 for Calanus sinicus, Neomysis awatschensis, Lateolabrax japonicus, and Paralichthys olivaceus was 15, 150, 60, and 110 mg/L, respectively. The 24 h LC50 value for Artemia salina was 600 mg/L. The relative clearance rate of mussel Mytilus edulis decreased to 80%, 40%, and 20% of the control group after being exposed to 20, 50, and 100 mg/L sophorolipid for 24 h. Therefore, the toxicity for mitigation of harmful algae bloom at previously recommended concentration of 5–20 mg/L sophorolipid is low for most tested organisms in this reaserch.  相似文献   

6.
To increase the cell concentration and the accumulation of astaxanthin in the cultivation of Haematococcus pluvialis, effects of different iron eleetrovalencies (Fe2+-EDTA and Fe3+-EDTA) and species (Fe-EDTA, Fe(OH)32x and FeC6H5O7) addition on cell growth and accumulation of astaxanthin were studied. Results show that different iron electrovalencies have various effects on cell growth and astaxanthin accumulation of H. pluvialis. Compared with Fe3+-EDTA, Fe2+-EDTA stimulate more effectively the formation of astaxanthin. The maximum astaxanthin content (30.70 mg/g biomass cell)was obtained under conditions of 18 μmol/L Fe2+-EDTA, despite the lower cell density (2.3x105 cell/ml)in such condition. Fe3+-EDTA is more effective than Fe2+-EDTA in improving the cell growth. Especially,the maximal steady-state cell density, 2.9x105 cell/ml was obtained at 18 μmol/L Fe3+-EDTA addition. On the other hand, all the various species of iron (EDTA-Fe, Fe(OH)32x, FeC6H5O7) are capable to improve the growth of the algae and astaxanthin production. Among the three iron species, FeC6H5O7 performed the best. Under the condition of a higher concentration (36 μmol/L) of FEC6H5O7, the cell density and astaxanthin production is 2 and 7 times higher than those of iron-limited group, respectively. The present study demonstrates that the effects of the stimulation with different iron species increased in the order of FeC6H5O7, Fe(OH)32x/x and EDTA-Fe.  相似文献   

7.
Antibiotics are widespread in various environmental media,and may pose a potential threat to aquatic ecosystems and non-target aquatic organisms.Florfenicol(FLO) is one of the most commonly used antibiotics in aquaculture,and extensively used to substitute chloramphenicol with its strong sterilization and low adverse ef fect.In this study,flounder Paralichthys olivaceus,an important economic fish species in seawater was used as an experimental subject.Five exposure concentrations of FLO(including environmentrelated concentrations) were set at 0,0.01,0.1,1,and 10 mg/L.Ef fects of FLO exposure for 168 h on growth and development,motor behavior,antioxidant enzyme activity,malondialdehyde(MDA) content,and thyroid hormone level of P.olivaceus larvae were studied in pre-larvae(1 dpf) and post-larvae(20 dpf).The results show that the short-term FLO exposure could promote the larvae growth to some degrees,but inhibit them as the exposure time prolonged.For pre-larvae,FLO at 0.01 mg/L could stimulate the motor nerve system and increase the swimming ability,but inhibited it at 1 mg/L.With the increasing dosage of FLO,the superoxide dismutase(SOD) and MDA contents were elevated,reaching the maximum in the 1 mg/L FLO group.The pre-larvae were more sensitive than the post-larvae to FLO in the environment,and the growth and immune resistance could be damaged with long exposure.Post-larvae were more tolerant to external pollutants,FLO at 1 mg/L could promote the motor behavior and reduce SOD and MDA contents.Therefore,FLO can be used as an antibiotic at a proper concentration but as a drug to prevent disease in a long-term way.  相似文献   

8.
The unicellular cyanobacterium Synechocystis sp. PCC 6803, a model organism known for its unique combination of highly desirable molecular genetic, physiological and morphological characteristics, was employed in the present study. The species was cultured in BG11 liquid medium contained various initial concentrations of Pb2+ and Cd2+ (0, 0.5, 1, 2, 4, 6 and 8 mg/L). The experiment was conducted for six days and the metal induced alterations in the ultrastructure, growth and pigment contents were assessed. Alterations in the ultrastructure of the Synechocystis sp. PCC 6803 ceils became evident with the increased (>4 mg/L Pb2+) metal concentration. The photosynthetic apparatus (thylakoid membranes) were found to be the worst affected. Deteriorated or completely destroyed thylakoid membranes have made large empty spaces in the cell interior. In addition, at the highest concentration (8 mg/L pb2+), the polyphosphate granules became more prominent both in size and number. Despite the initial slight stimulations (0.2, 3.8 and 6.5% respectively at 0.5, 1 and 2 mg/L Pb2+), both metals inhibited the growth in a dose-dependent manner as incubation progressed. Pigment contents (chlorophyll a, βcarotene and phycocyanin) were also decreased with increasing metal concentration. Cells exposed to 6 mg/L Pb2+, resulted in 36.56, 37.39 and 29.34% reductions of chlorophyll a, β carotene and phycocyanin respectively over the control. Corresponding reductions for the same Cd2+concentrations were 57.83, 48.94 and 56.90%. Lethal concentration (96 h LC50) values (3.47 mg/L Cd2+ and 12.11 mg/L Pb2+) indicated that Synechocystis sp. PCC 6803 is more vulnerable to Cd2+ than Pb2+.  相似文献   

9.
The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diff usion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O_2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O_2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M.edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O 2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.  相似文献   

10.
Many aquatic organisms are negatively affected by exposure to high copper concentrations.We investigated the biochemical response of the mussel Mytilus coruscus(Mytiloida:Mytilidae) to copper exposure.In vivo bioassays using M.coruscus and different copper concentrations were conducted.The activity of six biomarkers,namely superoxide dismutase(SOD),catalase(CAT),acid phosphatase(ACP),alkaline phosphatase(AKP),glutamic-oxaloacetic transaminase(GOT) and glutamic-pyruvic transaminase(GPT) were measured.Survival rates decreased with increased copper concentrations and exposure times.The LC50 values at 48,72,and 96 h exposure were 0.48,0.37,and 0.32 mg/L,respectively.Within digestive glands,CAT activity increased with increasing Cu concentrations.The activity of AKP showed no significant change,while the remaining four enzymes showed decreasing activity with increasing Cu concentrations.Within the gills,AKP activity increased when the Cu concentration was 0.05 mg/L,but showed no significant changes at higher concentrations.Activity of CAT and ACP within gills tended to decrease with increasing Cu concentration.The activity of SOD and GPT decreased at an exposure concentration of 0.2 mg/L.GOT activity within gills decreased at 0.1 mg/L and increased at an exposure concentration of 0.2 mg/L.Within the adductor muscle,AKP activity increased at 0.05 mg/L but did not change at higher exposure concentrations.ACP activity within adductor muscle tissue showed no change,while activities of CAT,GOT and GPT decreased with increasing Cu concentrations.SOD activity within the adductor muscle tissue significantly decreased at the 0.02,0.05 and 0.2 mg/L exposure concentrations.Our results show tissue specific differences for the six biomarkers in for M.coruscus.Our findings provide the basis for the establishment of reference activity levels against which biomarker changes can be estimated,and are essential preliminary steps in development of in vivo bioassays.  相似文献   

11.
Measurements of ammonium and nitrate uptakes by natural phytoplankton assemblages from Jiaozhou Bay at various combinations of ammonium and nitrate concentrations with 15N trace techniques showed that uptake rate of either nitrogen was influenced by the presence of the other but that the influence of ammonium on nitrate uptake was much greater than, that of nitrate on ammonium uptake. The influence mechanism of ammonium on nitrate uptake manifested as competition at lower concentrations and as inhibition at higher concentrations (ammonium concentration >0.6 umol/L), but no total inhibition appeared within the concentration.range of the experiments (0-10umol/L). The influence of nitrate on ammonium uptake seems to be a result of competition for uptake sites on the cell surface. In view of the in situ nutrient concentration in the given marine . environment, it is believed that both nitrogen sources are utilized by phytoplankton. Nitrate uptake in the presence of ammonium and ammonium uptake in the presen  相似文献   

12.
The use of high alkaline medium is a feasible way to provide carbon source and prevent biological contamination for the outdoor cultivation of alkaliphilic microalgae and cyanobacteria. A novel cyanobacterial strain was isolated from the open pond of a marine green alga( Picochlorum sp. SCSIO-45015, Sanya, Hainan) and identified as Cyanobacterium sp. SCSIO-45682. The effects of initial sodium bicarbonate(NaHCO_3) concentrations on the growth and biochemical composition of Cyanobacterium sp. SCSIO-45682 were investigated. The results demonstrated that Cyanobacterium sp. SCSIO-45682 had good adaptation to 16.8-g/L NaHCO_3(the same concentration of NaHCO_3 used in Zarrouk medium for Spirulina). Moreover, the yields of biomass, polysaccharide, chlorophyll a(chl a), and phycocyanin increased under high NaHCO_3 concentrations. The maximum final biomass concentration of 2.5 g/L was observed at 8.4-g/L NaHCO_3, while the highest intracellular total saccharide content of 49.2% of dry weight(DW) and exopolysaccharide(EPS) concentration of 93 mg/L were achieved at the NaHCO_3 concentration of 16.8 g/L. The crude protein content declined under high NaHCO_3 concentrations, which provide a possible explanation for the accumulation of polysaccharide. This study shows a good potential of alkaliphilic Cyanobacterium sp. SCSIO-45682 as a polysaccharide feedstock.  相似文献   

13.
Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate (N/P) ratios. Experiments were conducted under P-limited conditions and the Lotka-Volterra mathematical model was used to simulate the growth of S. costatum and P. donghaiense in the bi-algal cultures. Both of these two species were inhibited significantly in bi-algal culture. The results of the simulation showed that the inhibitory degree of S. costaum by P. donghaiense was high when the concentration of PO4-P was low (0.1μmolL-1/2 d), but that of P. donghaiense by S. costaum was high with increased PO4-P supply (0.6μmolL-1/2 d). At low concen-tration of PO4-P (0.1μmolL-1/2 d), or high concentration of PO4-P (0.6μmolL-1/2 d) with high N/P ratio (160), the interactions be-tween S. costatum and P. donghaiense were dependent on the initial cell densities of both species. At high concentration of PO4-P (0.6μmolL-1/2 d) with low N/P ratio (25 or 80), S. costatum exhibited a survival strategy superior to that of P. donghaiense. The de-gree of inhibition of P. donghaiense by S. costaum increased with elevated N/P ratio when the medium was supplemented with con-centration 0.1μmolL-1/2 d of PO4-P. The degree of inhibition to P. donghaiense by S. costaum increased with elevated N/P ratio at low concentration of PO4-P (0.1 μmolL-1/2 d). This trend was conversed at high concentration of PO4-P (0.6μmolL-1/2 d). However, the degree of inhibition of S. costaum by P. donghaiense increased with the increased N/P ratio at different PO4-P concentrations (0.1μmolL-1/2 d and 0.6μmolL-1/2 d). These results suggested that both phosphate concentration and N/P ratio affected the competition between S. costaum and P. donghaiense: P. donghaiense is more competitive in environments with low phosphate or high N/P ratio and the influence of N/P ratio on the competition was more significant with lower phosphate concentration.  相似文献   

14.
长江中游平原区面临着一系列严重的地质环境问题,其中地下水铵氮和磷的问题十分突出,但目前对于二者共存规律的认识还十分薄弱。以长江中游沿岸故道区为典型研究区,对采集的地下水样品进行了水文地球化学分析,并综合运用因子分析和随机森林模型探讨了铵氮和磷的赋存规律。结果表明:地下水整体处于还原环境中,NH4-N的质量浓度为0.03~71.0 mg/L(均值9.92 mg/L),P的质量浓度为0.02~3.38 mg/L(均值0.51 mg/L)。地下水中高浓度的铵氮与磷均主要为天然成因,但铵氮与磷的迁移富集过程存在差异:铵氮的迁移富集与含氮有机质矿化过程密切相关;磷的迁移富集与铁氧化物或氢氧化物的还原性溶解密切相关,而含磷有机质矿化是磷富集的次要过程。Eh很低的地下水环境易产生高浓度铵氮的地下水,相对中等的还原环境会产生高浓度的磷但通常不会伴生高浓度的铵氮;当地下水中S2-,DOC,I均处于相对较高的浓度水平时会伴生大量的铵氮,而磷的浓度在很大程度上受控于Fe2+浓度;当DOC,I和Fe2+浓度都高时,通常会出现铵氮和磷浓度都较高的现象。   相似文献   

15.
以C、N、P为主要限制性因子研究了芽孢杆菌和微囊藻在水中的生长率 ,并据Monod方程了解种群增长率与营养浓度之间的关系 ,以判断藻菌资源竞争的结果。研究结果显示 ,氮浓度的升高或磷浓度的降低 ,即N/P比值的升高 ,有利于芽孢杆菌的生长 ;而当氮浓度一定时 ,C/N比值越高 ,芽孢杆菌生长得越好。而微囊藻作为一种自养的光合植物 ,其生长与水中的C源无关 ,与氮磷浓度有关。氮磷浓度越高则生长越好。在此研究结果基础上进行藻菌生长动态的比较表明 ,在氮限制条件下 ,微囊藻的生长率稍高于芽孢杆菌 ;在磷限制条件下 ,芽孢杆菌的生长率总是大大高于微囊藻的生长率  相似文献   

16.
Intensive use of sulfamethazine(SM_2) in aquaculture has resulted in some detrimental effects to non-targeted organisms. In order to assess its potential ecological risk, it is crucial to have a good understanding on the bioaccumulation and biodegradation of SM_2 in Chlorella pyrenoidosa. The microalgae were treated with 2, 4, and 8 mg L~(-1) of sulfamethazine for 13 days, respectively, showing that the inhibition effects of sulfamethazine on the growth of Chlorella pyrenoidosa increased progressively as the concentrations of sulfamethazine increasing from 2 to 8 mg L~(-1). The peak concentrations of sulfamethazine accumulated in C. pyrenoidosa were 0.225, 0.325, and 0.596 ng per mg FW on day 13 for three treatment groups, respectively, showing a great ability to deplete sulfamethazine from the culture media. On day 13, the percentages of biotic degradation were 48.45%, 60.21% and 69.93%, respectively. The EC_(50) of 10.05 mg L~(-1) was derived which showed no significant risk for C. pyrenoidosa with a calculated risk quotient 1. The activities of superoxide dismutase and catalase increased progressively in response to sulfamethazine and showed a positive correlation to the treatment concentrations. The highest superoxide dismutase activity was achieved at the concentration of 8 mg L~(-1) after 2 d of exposure, which was 1.89 folds higher than that of the control. The activity of catalase has a similar pattern to that of superoxide dismutase with the maximum activity achieved at day 2, which was 3.11 folds higher compared to that of the control. In contrast to superoxide dismutase and catalase, the maximum glutathione S-transferase activity was observed at day 6, showing 2.2 folds higher than that of the control.  相似文献   

17.
1 INTRODUCTION Heavy metal pollution in marine environment has always been a serious problem over the last several decades, because most of the heavy metal species that enter marine environment accumulated there without decomposition. Strontium is a minor…  相似文献   

18.
Cultures of a blue-green algaSpirulina maxima (Setch. et Gard.) Geitler with various concentrations of Se in Zarrouk's medium showed that not higher than 40 mg/L Se could promote its growth. The present experiments showed thatS. maxima grown under normal conditions, has an oxidant stress defence system for hydrogen peroxide (H2O2) removal, which is the Halliwell-Asada pathway. When 4 to 20 mg/L Se was added to the algal medium, this pathway was replaced by a so-called Sestressed pathway containing GSH peroxidase (GSH-POD). As a result of the occurrence of both higher activity of GSH-POD and lower levels of hydroxyl radical (OH·), the Se-stressed pathway scavenged H2O2 so effectively that the growth ofS. maxima was promoted by 4 to 20 mg/L Se. While GSH-POD activity of the alga disappeared at 40 mg/L Se, the recovery of ascorbate peroxidase was observed. The lower levels of ascorbic acid and GSH made the Halliwell-Asada pathway for scavenging H2O2 less effective, while the highest activity of catalase might be responsible in part for the H2O2 removal, causing the level of OH· inS. maxima grown at 40 mg/L Se to be much higher than the OH· level in this alga grown at 4 to 20 mg/L Se, but lower than that in the control. The OH· level changes caused the growth ofS. maxima cultured at 40 mg/L Se to increase slightly to close to that of the control.  相似文献   

19.
20.
K.  K.  I.  U.  Arunakumarat  张学成 《中国海洋湖沼学报》2009,27(2):383-388
The unicellular cyanobacterium Synechocystis sp. PCC 6803, a model organism known for its unique combination of highly desirable molecular genetic, physiological and morphological characteristics, was employed in the present study. The species was cultured in BG11 liquid medium contained various initial concentrations of Pb2+ and Cd2+ (0, 0.5, 1, 2, 4, 6 and 8 mg/L). The experiment was conducted for six days and the metal induced alterations in the ultrastructure, growth and pigment contents were assessed. Alterations in the ultrastructure of the Synechocystis sp. PCC 6803 cells became evident with the increased (>4 mg/L Pb2+) metal concentration. The photosynthetic apparatus (thylakoid membranes) were found to be the worst affected. Deteriorated or completely destroyed thylakoid membranes have made large empty spaces in the cell interior. In addition, at the highest concentration (8 mg/L Pb2+), the polyphosphate granules became more prominent both in size and number. Despite the initial slight stimulations (0.2, 3.8 and 6.5% respectively at 0.5, 1 and 2 mg/L Pb2+), both metals inhibited the growth in a dose-dependent manner as incubation progressed. Pigment contents (chlorophyll α, β carotene and phycocyanin) were also decreased with increasing metal concentration. Cells exposed to 6 mg/L Pb2+, resulted in 36.56, 37.39 and 29.34% reductions of chlorophyll α, β carotene and phycocyanin respectively over the control. Corresponding reductions for the same Cd2+concentrations were 57.83, 48.94 and 56.90%. Lethal concentration (96 h LC50) values (3.47 mg/L Cd2+ and 12.11 mg/L Pb2+) indicated that Synechocystis sp. PCC 6803 is more vulnerable to Cd2+ than Pb2+. Supported by the Chinese Scholarship Council  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号