首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m~2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m~2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.  相似文献   

2.
In the east of China's seas, there is a wide range of the continental shelf. The nutrient cycle and the carbon cycle in the east of China's seas exhibit a strong variability on seasonal to decadal time scales. On the basis of a regional ocean modeling system(ROMS), a three dimensional physical-biogeochemical model including the carbon cycle with the resolution(1/12)°×(1/12)° is established to investigate the physical variations, ecosystem responses and carbon cycle consequences in the east of China's seas. The ROMS-Nutrient Phytoplankton Zooplankton Detritus(NPZD) model is driven by daily air-sea fluxes(wind stress, long wave radiation, short wave radiation, sensible heat and latent heat, freshwater fluxes) that derived from the National Centers for Environmental Prediction(NCEP) reanalysis2 from 1982 to 2005. The coupled model is capable of reproducing the observed seasonal variation characteristics over the same period in the East China Sea. The integrated air-sea CO_2 flux over the entire east of China's seas reveals a strong seasonal cycle, functioning as a source of CO_2 to the atmosphere from June to October, while serving as a sink of CO_2 to the atmosphere in the other months. The 24 a mean value of airsea CO_2 flux over the entire east of China's seas is about 1.06 mol/(m~2·a), which is equivalent to a regional total of3.22 Mt/a, indicating that in the east of China's seas there is a sink of CO_2 to the atmosphere. The partial pressure of carbon dioxide in sea water in the east of China's seas has an increasing rate of 1.15 μatm/a(1μtm/a=0.101 325Pa), but p H in sea water has an opposite tendency, which decreases with a rate of 0.001 3 a~(–1) from 1982 to 2005.Biological activity is a dominant factor that controls the pCO_2 air in the east of China's seas, and followed by a temperature. The inverse relationship between the interannual variability of air-sea CO_2 flux averaged from the domain area and Ni?o3 SST Index indicates that the carbon cycle in the east of China's seas has a high correlation with El Ni?o-Southern Oscillation(ENSO).  相似文献   

3.
The oceanic carbon cycle in the tropical-subtropical Pacific is strongly affected by various physical processes with different temporal and spatial scales, yet the mechanisms that regulate air-sea CO2 flux are not fully understood due to the paucity of both measurement and modeling. Using a 3-D physical-biogeochemical model, we simulate the partial pressure of CO2 in surface water (pCO2sea) and air-sea CO2 flux in the tropical and subtropical regions from 1990 to 2004. The model reproduces well the observed spatial differences in physical and biogeochemical processes, such as: (1) relatively higher sea surface temperature (SST), and lower dissolved inorganic carbon (DIC) and pCO2sea in the western than in the central tropical-subtropical Pacific, and (2) predominantly seasonal and interannual variations in the subtropical and tropical Pacific, respectively. Our model results suggest a non-negligible contribution of the wind variability to that of the air-sea CO2 flux in the central tropical Pacific, but the modeled contribution of 7% is much less than that from a previous modeling study (30%; McKinley et al., 2004). While DIC increases in the entire region SST increases in the subtropical and western tropical Pacific but decreases in the central tropical Pacific from 1990 to 2004. As a result, the interannual pCO2sea variability is different in different regions. The pCO2sea temporal variation is found to be primarily controlled by SST and DIC, although the role of salinity and total alkalinity, both of which also control pCO2sea, need to be elucidated by long-term observations and eddy-permitting models for better estimation of the interannual variability of air-sea CO2 flux.  相似文献   

4.
The export flux of particulate organic carbon (POC) consumes upwelled dissolved inorganic carbon (DIC), which hinders surplus CO2 being released to the atmosphere. The export flux of POC is therefore crucial to the carbon and biogeochemical cycles. This study aims to model the long-term (1958–2009) variation of export flux and structure of the biological pump in the South China Sea (SCS) using a three-dimensional physical-biogeochemical coupled (ROMS-CoSiNE) model. The modeled POC export flux in the northeastern and north central SCS is high in winter and low in summer, whereas the flux in the central, southwestern and southern SCS varies following a “W” shape: two maxima in winter and summer, and two minima in spring and autumn. The pattern follows the variation of the East Asian monsoon and is consistent with observations. On the interannual scale, export flux is anti-phased with the El Niño-Southern Oscillation such that El Niño (La Niña) conditions correspond to low (high) export flux. Modeled annual mean POC export flux reaches up to 1.95 mmol m–2 day–1, which is underestimated comparing with field observations. The f-ratio is estimated to be ~0.4. The b value of the Martin equation for POC is 1.18±0.03. Remineralization rate of POC is greater than the classical Martin equation but is consistent with its subtropical counterparts. The modeled results indicate that the SCS is a weak source of atmospheric CO2 with a flux estimated at 1.0 mmol m–2 day–1. The modeled results provide an insight of the temporal and spatial variability of the carbon cycle in this monsoon-driven, semi-enclosed basin.  相似文献   

5.
《Oceanologica Acta》1999,22(5):499-515
Water column pCO2 and air-sea CO2 fluxes were studied during an 18-month period (May 1994–September 1995) in a coastal embayment affected by upwelling, located in the northwestern Iberian Peninsula (Ria de Vigo and adjacent shelf). Overall, the region acted as a net annual atmospheric CO2 sink, with magnitude ranging from 0.54 mgC m−2d−1 in the Ria estuary to 22 mgC m−2d−1 offshore. During moderate upwelling and upwelling relaxation conditions the sampling area was a sink for atmospheric CO2. By contrast, during winter conditions and during intense upwelling the flux reversed towards the atmosphere. The relative influence of physical and biological processes on pCO2 was evaluated using two different approaches: firstly, statistical analysis of physico-chemical correlations, and secondly, a thermodynamic analysis in the oceanic CO2 system. Both methods yielded consistent results, showing that the main processes controlling seasonal and spatial pCO2 variability were the production and remineralization of organic matter, explaining ca. 70 % of the total variability. In the inner part of the embayment, air-sea CO2 exchange was mainly modulated by CO2 partial pressure gradient, whereas in the adjacent shelf, wind speed largely contributed to CO2 fluxes between the ocean and the atmosphere.  相似文献   

6.
During the 1993–1995 period of minimal deep convection in the Greenland Sea, the dissolved inorganic carbon concentration within the surface waters varied dramatically on the seasonal time scale, with average summer and winter values of 2064 (±10) and 2150 (±5) μmol kg−1, respectively, indicative of a vigorous annual carbon cycle. In contrast, there was very little interannual variability throughout these three years. While primary production largely depleted the surface nutrient supplies in spring and summer, generating a strong seasonal CO2 drawdown, a combination of relatively shallow remineralization and mixed-layer deepening brought essentially all of the carbon consumed by photosynthesis back into contact with the atmosphere before winter. This re-release of the inorganic carbon that had been consumed by phytoplankton earlier in the year was more than sufficient to counteract the cooling-induced increase in the carbon carrying capacity of the water during fall and winter, reducing the potential for atmospheric carbon dioxide absorption by the Greenland Sea over the same period.  相似文献   

7.
Variations of eddy kinetic energy in the South China Sea   总被引:10,自引:0,他引:10  
Fifteen years of merged altimetric data were used to acquire the seasonal to interanual variations of eddy kinetic energy (EKE) in the South China Sea (SCS). The results show that climatological mean EKE in the SCS ranges from 50 cm2/s2 to 1,400 cm2/s2, with high values in the regions southeast of Vietnam and southwest of Taiwan Island. The amplitude of the annual harmonic of the EKE is characterized by high values to the southeast of Vietnam where the maximum exceeds 800 cm2/s2. The EKE in the northern SCS reaches its maximum in August-February, while it peaks in September–December in the southern SCS. Besides the seasonal variation, the EKE also shows strong interannual variation, which has a negative (positive) anomaly in boreal winter during El Niño (La Niña) events. The interannual variation of local wind stress curl associated with El Niño-Southern Oscillation events may be the cause of the interannual variation of the EKE in the SCS.  相似文献   

8.
Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.  相似文献   

9.
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns. The annual cycle of the SCS gener- al circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July--August (January--February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which de- velopa into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 e- vent in response to the peak Pacific El Nino in 1997, the overall SCS sea level is found to have a significant rise during 1999~ 2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.  相似文献   

10.
The interannual variations of CO2 sources and sinks in the surface waters of the Antarctic Ocean (south of 50°S) were studied between 1986 and 1994. An existing, slightly modified one-dimensional model describing the mixed-layer carbon cycle was used for this study and forced by available satellite-derived and climatological data. Between 1986 and 1994, the mean Antarctic Ocean CO2 uptake was 0.53 Pg C year−1 with an interannual variability of 0.15 Pg C year−1.Interannual variation of the Antarctic Ocean CO2 uptake is related to the Antarctic Circumpolar Wave (ACW), which affects sea surface temperature (SST), wind-speed and sea-ice extent. The CO2 uptake in the Antarctic Ocean has increased from 1986 to 1994 by 0.32 Pg C. It was found that over the 9 years, the surface ocean carbon dioxide fugacity (fCO2) increase was half that of the atmospheric CO2 increase inducing an increase of the air–sea fCO2 gradient. This effect is responsible for 60% of the Antarctic Ocean CO2 uptake increase between 1986 and 1994, as the ACW effect cancels out over the 9 years investigated.  相似文献   

11.
Partial pressure of CO2 (pCO2) in surface seawater has been measured in the northeastern Pacific Ocean at Station P and along Line P since 1973. These data have been divided into ‘oceanic’ and ‘coastal/transition’ zones, and the seasonal and interannual variability and the long-term trends for each zone have been examined. The oceanic zone shows little seasonality in surface seawater pCO2, with undersaturation throughout the year. A strong, biologically-driven seasonal cycle is offset by variation in temperature-dependent solubility of CO2. The coastal/transition zone shows a decline in pCO2 from winter–spring through summer and fall that is likely the result of seasonal stratification and convection rather than coastal upwelling. Interannual variability all along Line P is correlated with the multivariate ENSO index (MEI), with lower seawater pCO2 associated with El Niño conditions. Correlations with the Pacific Decadal Oscillation Index are similar but weaker, in part because there are few data prior to the 1976 regime shift. The long-term trend in seawater pCO2 in the oceanic zone is +1.36±0.16 μatm year?1, indistinguishable from the atmospheric growth rate, and varies little among the seasons. In the coastal/transition zone a slow increase in the pCO2 of surface seawater relative to that of the atmosphere has led to increasing undersaturation, particularly in spring. Aliasing of the seasonal and interannual variability due to sampling frequency may explain part of the observed trend in the coastal/transition zone, but real changes in physical or biological processes are also possible and require more detailed study.  相似文献   

12.
基于海洋环流模式POP和生物地球化学模型OCMIP-2,建立了全球海洋碳循环模式,并用于对全球海洋碳循环的模拟研究。该模式在大气CO2为283×10-6条件下,积分3 100 a,达到工业革命前的平衡态。在此基础上,用历史时期观测的大气CO2浓度进行强迫,模拟了历史时期的海洋碳循环。模拟的无机碳浓度、总碱度与基于观测得到的结果基本一致,模式能够较好地模拟全球碳循环过程。模拟结果表明,在北半球中高纬度和南半球的中纬度,海洋是大气CO2的主要汇区;在赤道南北纬20°之间和南大洋50°S以南,海洋表现为大气CO2的源区。在1980s海洋吸收CO2速率(以C计)为1.38 Pg/a,1990s为1.55 Pg/a。海洋中人为碳在北大西洋含量最大,向下到达海底并向南输运到30°N附近;在南极附近,浓度较小,深度达到3 000 m;在中纬度,人为碳被限制在温跃层以上。  相似文献   

13.
The seasonal variation of mixing layer depth(MLD) in the ocean is determined by a wind stress and a buoyance flux.A South China Sea(SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD.It is found that the variability of MLD in the SCS is shallow in summer and deep in winter,as is the case in general.Owing to local atmosphere forcing and ocean dynamics,the seasonal variability shows a regional characteristic in the SCS.In the northern SCS,the MLD is shallow in summer and deep in winter,affected coherently by the wind stress and the buoyance flux.The variation of MLD in the west is close to that in the central SCS,influenced by the advection of strong western boundary currents.The eastern SCS presents an annual cycle,which is deep in summer and shallow in winter,primarily impacted by a heat flux on the air-sea interface.So regional characteristic needs to be cared in the analysis about the MLD of SCS.  相似文献   

14.
南海暖水季节和年际变化的初步研究   总被引:1,自引:1,他引:1  
南海暖水具有明显的季节和年际变化。利用气候平均的COADS资料和NCEP大气资料分析了南海暖水的季节变化及其与海面净热通量的关系,以及由此引起的南海地区大气环流的变化。发现海面净热通量在南海暖水的季节变化过程中起到了主要的作用;冬季无暖水存在时,最大上升气流位于赤道及以南地区的印尼群岛附近,夏季最大上升气流北移到了南海暖水上空,南海暖水上空对流强烈,成为大气的对流活动中心。利用50年逐月的SODA海温资料进行垂直方向的3次样条插值,定义并计算南海暖水的强度指数,分析南海暖水的年际变化,并对南海暖水的几个异常暖年份作了合成分析,探讨了暖水年际变化的形成因素。  相似文献   

15.
The annual cycle of dissolved nutrients and the fugacity of CO2 (fCO2), calculated from the concentration of dissolved inorganic carbon (DIC) and pH, was studied over a 14-month long period (December 1993 to February 1995) at a site in Prydz Bay near Davis Station, Vestfold Hills, East Antarctica. Significant spring decreases in fCO2 began under the sea-ice in mid-October, when both water column and sea-ice algal activity resulted in the removal of nutrients and DIC and increased pH. Minimum fCO2 (<100 μatm) and lowest nutrient and DIC concentrations occurred in December and January. The low summer fCO2 values were clearly the result of biological activity. The seasonal depletion of dissolved nitrate reached 85% in mid-summer when chlorophyll-a concentrations exceeded 15 mg m−3. Oceanic uptake of carbon dioxide from the atmosphere, calculated from the fugacity difference and daily wind speeds, averaged more than 30 mmol m−2 day−1 during the summer ice-free period. This exchange replaced approximately half of the DIC consumed by biological activity. Apparent nutrient utilisation ratios (C/N/P) were close to Redfield values. In autumn fCO2 began to rise, continuing slowly well into winter, and reaching a maximum close to modern atmospheric values between July and September. This increase can be attributed to a combination of local remineralisation of organic carbon in the water column and the steady increase in the mixing depth of the water column. At first glance, this suggests that air–sea equilibration occurred in winter despite the sea-ice cover, perhaps by horizontal circulation from regions outside the pack ice, or through openings in the ice. However, the persistent 15 to 20% undersaturation of dissolved oxygen throughout the winter suggests an alternate explanation. The late winter fCO2 level may represent a characteristic established by global circulation, so that as a result of increasing atmospheric CO2 concentrations, these Antarctic waters are in transition from being a winter-time source of CO2 to the atmosphere to becoming a sink. Our fCO2 observations emphasize the need to address seasonal variations in assessing Antarctic contributions to the oceanic control of atmospheric CO2.  相似文献   

16.
The present study describes the temporal variability of the water fCO2 as well as the different driving forces controlling this variability, on time scales from daily to seasonal, in the Rio San Pedro, a tidal creek located in a salt marsh area in the Bay of Cadiz (SW Iberian Peninsula). This shallow tidal creek system is affected by effluents of organic matter and nutrients from the surrounding marine fish farms. Continuous pCO2, salinity and temperature were recorded for four periods of approximately one month, between February and September in 2004.Major processes controlling the CO2 variability are related to three different time scales. Daily variations in fCO2 are controlled by tidal advection and mixing of the water from within the creek and the seawater that enters from the Bay of Cadiz. Significant cyclical variations of the fCO2 have been observed with the maximum values occurring at low tide. On a fortnightly time scale, the amplitude of the daily variability of fCO2 is modulated by the variations in the residence time of the water within the creek, which are related to the spring–neap tide sequence.On a third time scale, high seasonal variability is observed for the temperature, salinity and fCO2. Maximum and minimum values for fCO2 were 380 µatm and 3760 µatm for February and July respectively. Data suggest that seasonal variability is related to the seasonal variability in discharges from the fish farm and to the increase with temperature of organic matter respiratory processes in the tidal creek. The fCO2 values observed are in the same range as several highly polluted European estuaries or waters surrounding mangrove forests. From the air–water CO2 flux computed, it can be concluded that the Rio San Pedro acts as a source of CO2 to the atmosphere throughout the year, with the summer accounting for the higher average monthly flux.  相似文献   

17.
基于2010 年11 月对长江口外东海中北部海域的综合调查, 系统研究了该海域的无机碳体系参数的分布特征、海?气界面二氧化碳通量及其影响因素。研究结果表明, 该海域秋季溶解无机碳(DIC)高值区主要出现在调查海域东北部及长江口附近海域, 而调查海域南部DIC 含量较少且变化平缓, 其主要是受台湾东部流向东北方向的黑潮支流及长江冲淡水的影响; 表层海水CO2分压(pCO2)值变化范围为40.8~63.5 Pa, 呈现沿黑潮支流流入方向由东南向西北逐渐增高的趋势。秋季表层海水pCO2与温度(T)、盐度(S)有较好的负相关性, 说明海水温度升高和盐度增加, pCO2降低, 反之亦然。另外, 通过估算得出, 秋季CO2海-气交换通量为2.69~33.66 mmol/(m2·d), 平均值为(14.35 ± 7.06 )mmol/(m2·d),其在长江口邻近海域相对较大, 而在调查海域南部相对较小; 2010 年秋季水体向大气释放CO2的量(以碳计)为(2.35 ± 1.16)×104 t/d, 是大气CO2较强的源, 说明东海中北部海域秋季总体上是CO2的源。  相似文献   

18.
Seasonal variation of eddy kinetic energy in the South China Sea   总被引:4,自引:0,他引:4  
Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are investigated with newly reprocessed satellite altimetry observations and hydrographic data.The eddy kinetic energy ...  相似文献   

19.
A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospheric CO 2 concentration and different future scenarios (called Rep- resentative Concentration Pathways, or RCPs). The RCPs in this paper follow the design of Inter- governmental Panel on Climate Change (IPCC) for the Fifth Assessment Report (AR5). The model results show that the ocean absorbs CO 2 from atmosphere and the absorbability will continue in the 21st century under the four RCPs. The net air-sea CO 2 flux increased during the historical time and reached 1.87 Pg/a (calculated by carbon) in 2005; however, it would reach peak and then decrease in the 21st century. The ocean absorbs CO 2 mainly in the mid latitude, and releases CO 2 in the equator area. However, in the Antarctic Circumpolar Current (ACC) area the ocean would change from source to sink under the rising CO 2 concentration, including RCP4.5, RCP6.0, and RCP8.5. In 2100, the anthropogenic carbon would be transported to the 40 S in the Atlantic Ocean by the North Atlantic Deep Water (NADW), and also be transported to the north by the Antarctic Bottom Water (AABW) along the Antarctic continent in the Atlantic and Pacific oceans. The ocean pH value is also simulated by the model. The pH decreased by 0.1 after the industrial revolution, and would continue to decrease in the 21st century. For the highest concentration sce- nario of RCP8.5, the global averaged pH would decrease by 0.43 to reach 7.73 due to the absorption of CO 2 from atmosphere.  相似文献   

20.
Gridded fields of sea surface temperature (SST), sea level pressure (SLP), and wind speed were used in combination with data for the atmospheric mole fraction of CO2 and an empirical relationship between measured values of the fugacity of carbon dioxide in surface water and SST, to calculate the air–sea CO2 flux in the northern North Atlantic. The flux was calculated for each of the months October–March, in the time period 1981 until 2001, allowing for an assessment of the interannual variations in the region. Locally and on a monthly time scale, the interannual variability of the flux could be as high as ±100% in regions seasonally covered by sea ice. However, in open-ocean areas the variability was normally between ±20% and ±40%. The interannual variability was found to be approximately halved when fluxes averaged over each winter season were compared. Summarised over the whole northern North Atlantic, the air to sea carbon flux over winter totalled 0.08 Gton, with an interannual variability of about ±7%. On a monthly basis the interannual variations were slightly higher, about ±8% to ±13%. Changes in wind speed and atmospheric fCO2 (the latter directly related to SLP variations) accounted for most of the interannual variations of the computed air–sea CO2 fluxes. A tendency for increasing CO2 flux into the ocean with increasing values of the NAO index was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号