首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 616 毫秒
1.
梁勤欧 《测绘通报》2007,(10):29-31,53
针对BP神经网络训练过程中的训练时间较长、完全不能训练或容易陷入局部极小值等问题,提出基于遗传克隆选择算法(CLOGA)优化BP神经网络的流程,克服BP算法的一些缺陷。并通过湖北省人口预测问题进行效果检验,得到满意的结果。  相似文献   

2.
针对传统BP神经网络收敛速度慢、易陷入局部最优和遗传算法优化BP神经网络(GA-BP)算法过早收敛的问题,提出了遗传模拟退火算法优化BP神经网络(GSA-BP)算法. 在遗传算法(GA)的种群更新中加入模拟退火算法(SA),保留种群的多样性. 用GSA-BP算法对某地区进行高程异常拟合,并与BP算法和GA-BP算法结果进行比较. 结果显示:GSA-BP算法精度可分别提高约51%、25%,速度提高约77%、39%,且能基本满足四等水准测量精度要求. 该方法在GPS高程拟合中具有可行性.   相似文献   

3.
4.
滑坡变形程度是判断处治后滑坡是否稳定的关键评价指标,开展处治后滑坡变形预测可提前掌握滑坡稳定性情况,有利于滑坡失稳风险分析,便于开展地质灾害防灾减灾工作。为了准确预测处治后滑坡变形情况,本文提出了一种采用鸟群算法(BSA)优化BP神经网络的滑坡变形预测方法,借助BSA-BP神经网络构建了广西某高速公路滑坡变形预测模型,对比分析了BSA-BP神经网络与BP神经网络的预测结果。结果表明,BSA-BP神经网络预测结果的均方误差和相关系数分别为0.053 4和0.997 6,BP神经网络预测结果的均方误差和相关系数分别为2.225 6和0.968,鸟群算法可有效提高BP神经网络模型的预测精度,能有效应用于处治后滑坡变形预测,研究结果可为处治后滑坡失稳风险预测提供参考。  相似文献   

5.
在使用传统BP神经网络算法建模进行预测过程中,由于初始权值和阈值是随机给定的,易使网络陷入局部最优,从而导致预测精度较低。利用具有较强优化能力的粒子群算法( particle swarm optimization ,PSO)优化BP神经网络在训练过程中的初始权值和阈值,建立新的预测模型,以青岛地铁3号线保河区间隧道监测数据为例进行验证分析,研究结果表明,与传统BP神经网络预测算法相比,使用PSO算法优化的BP神经网络预测算法可以得到更优的预测结果。  相似文献   

6.
针对反向传播(back propagation,BP)神经网络在训练过程中存在的易过度拟合、收敛速度慢和易陷入局部最优等问题,引入天牛须搜索(beetle antennae search,BAS)算法优化传统BP神经网络中的权值和阈值,建立了BAS-BP神经网络模型。利用深圳市某深基坑开挖的周围道路地表沉降监测数据进行BAS-BP模型仿真测试。实验结果表明,BAS-BP模型在均方误差(mean square error,MSE)、平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)精度指标上均优于BP神经网络模型,预测精度更高。  相似文献   

7.
蚩志锋  杨先武 《测绘科学》2012,37(3):139-141
本文首先针对标准粒子群优化算法容易陷入局部最优的缺点,采用动态自适应调节策略,使得粒子的惯性权重随群体聚集程度而适时变化,从而调整粒子群搜索的速度和方向以跳出局部最优;然后将粒子群算法的全局搜寻能力和RBF网络的局部优化能力相结合,利用改进的粒子群优化算法优化RBF神经网络的关键参数;并将其应用于地理信息的预测,得到满意的结果。  相似文献   

8.
针对验潮站潮位预报的需求,提出一种基于分群策略的粒子群优化神经网络(SSPSO-BP)的预报方法。该方法通过建立多个不同功能且具有交流能力的智能粒子群,经SSPSO和BP的两次优化,构建潮高预报模型。实验研究表明,SSPSO-BP模型在Oga站的潮位资料上高、低潮位间的时刻基本保持一致,高潮时刻最大潮高差为7.37 cm,低潮时刻最大潮高差为4.21 cm,该模型比标准BP神经网络及PSO优化神经网络在准确度和精度上有了很大的提高,其平均绝对误差、均方误差相较于BP神经网络分别提升了16.2%、79.2%,相较于PSO-BP神经网络提升了13.9%、79.6%。  相似文献   

9.
本研究利用大气制图扫描成像吸收仪SCIAMACHY(Scanning Imaging Absorption Spectrometer for Atmospheric Chartography)和傅里叶变换光谱仪FTS(Fourier Transformation Spectrometer)卫星遥感传感器反演的CO_(2)产品,结合瓦里关地面站点观测的CO_(2)浓度数据进行验证,并对遥感数据进行校正,最后分析了2003年—2018年中国CO_(2)时空变化特征及其影响因素。结果表明,中国区域CO_(2)柱浓度呈近12个月周期变化且持续上升的趋势。2003年CO_(2)柱浓度年均值为374.4 ppm,2018年CO_(2)柱浓度年均值为413.7 ppm,16年间增加了39.3 ppm,约为10.51%,年均增长率为0.59%。中国区域大气CO_(2)柱浓度的月变化存在明显的时空差异,月变化呈现弦曲线变化,最小值和最大值分别出现在8和4月,2018年月平均大约分别为407.7 ppm和416.3 ppm。CO_(2)柱浓度的高值区主要出现在东部的亚热带和温带地区,2018年年平均最大可达417.9 ppm;最低值是在内蒙古北部,2018年平均约为409.5 ppm。从省级行政单元来看,2018年平均CO_(2)柱浓度最高和最低的省份是浙江省和青海省,分别约为417.8 ppm和412.1 ppm。中国2003年—2018年CO_(2)柱浓度在整个区域出现较大的增长,但是增长率在空间上存在明显的异质性。在空间上,2018年比2003年增长的数值在31.0—45.4 ppm之间,增长的百分比范围在8.9%—12.2%之间,增长较大的区域在高值区,最大增长出现在辽宁和吉林的交界处,约为12.2%;增长较小的区域出现在中国中部,最低的增长约为8.9%。  相似文献   

10.
阐述了引入时间距离权的传统GM(1,1)模型的建模过程以及灰色模型等级的判断方法,深入分析了白化背景参数λ取值对建模精度的影响;同时针对传统λ取值的缺陷,提出使用基于实数编码的改进遗传算法(IRCGA)对其进行优化处理,并用多个工程实例分析验证了优化后的GM(1,1)模型相对传统的灰色模型及其优化模型拟合效果更好,更加贴近真实数据序列。  相似文献   

11.
针对当前我国大部分地区正面临严重的空气污染问题,对重污染区域进行时空建模具有重要的意义。该文基于贝叶斯时空模型建立了京津冀区域的PM2.5浓度时空预测模型,该模型充分考虑了PM2.5浓度的时间变异特性与空间分布特性,并引入了气象数据作为协变量对没有监测站的位置进行预测。实验结果表明,该方法具有很好的预测精度,其在测试站点上的拟合优度达到了0.9以上,能够应用于区域级PM2.5浓度的时空分布建模与预测。  相似文献   

12.
对BP,RBF,Elman 3种神经网络模型进行了简要概括,将其应用于实际工程案例中,经过多角度综合分析,验证了3种模型进行变形预报的可行性,同时得出对实际工程具有指导性意义的结论。  相似文献   

13.
地震预测是一个世界性科学难题,特别是短期与临震预测的水平与社会需求相距甚远。论文在详细分析研究地震数据特征以及常规地震预测方法的基础上,提出了一种可以实现地震震级量化预测的新方法,此方法通过解算出地震参数和天文时变参数并建立地震预测模型,对未来预测周期内发生的最大地震震级进行量化预测。本文以实验区域为研究对象并选取6个月为预测周期,采用线性回归分析方法和常规BP神经网络方法进行研究。经回溯检验,其地震震级预测中误差分别为±0.78级和±0.61级,精度均有待提高。经过总结上述两种方法的优缺点,创新的提出了基于线性回归与神经网络技术的地震预测融合模型,回溯检验结果表明,融合模型的震级预测中误差为±0.41级,地震预测效果显著提高。  相似文献   

14.
针对BP神经网络预测方法的稳定性较差,提出运用增加动量项的小波神经网络方法,进行沉降预测,并选出最优的隐含层节点数目,结合某高铁路基沉降监测数据进行实验分析。实验表明,该方法实际可行,稳定性较好并且预测精度高。  相似文献   

15.
基于BP神经网络建立尾矿坝沉降预报模型,重点对BP神经网络的拓扑结构和学习算法进行研究。并以某尾矿库初期坝的沉降监测数据为例,对模型的拟合、预测精度进行验证。实例表明,BP神经网络自学习、自组织能力强,具有极强的线性逼真能力,能够准确地反映输入、输出变量之间的非线性关系,有效地表征尾矿坝的沉降变形规律,对即将发生的变形情况做出科学、合理的预报。  相似文献   

16.
BP神经网络初始权值和阈值输入不同,将导致BP神经网络预测不稳定,精度也不是很高.通过遗传算法(GA)对BP神经网络的初始权值和阈值进行优化,能很大程度上提高预测的精度,但是,由于输入层不可能将影响输出的所有因素都包含在内,而这些没有考虑到的因素势必影响预测结果.文中将这些无法得知的不确定因素当做一个综合影响因素,定义为X因素,在建立模型时加以考虑.实验结果表明,这种顾及不确定因素的GA-BP神经网络模型能进一步提高预测精度.  相似文献   

17.
GPS导航解算中常用最小二乘算法。随着高动态用户需求精度的不断提高,且由于线性化忽略高次项,初始值精度低以及差分后剩余或放大误差的存在。导航解精度很难满足高动态用户的需求。为此,本文基于BP神经网络的非线性逼近性能。给出了基于BP神经网络的GPS导航算法。实测数据计算结果表明该算法能够真实地反映载体运动轨迹,其导航解的精度和可靠性有明显的提高。  相似文献   

18.
BP神经网络具有非常强的非线性映射能力,广泛应用于分类识别、逼近、回归、压缩等领域。本文基于BP神经网络的理论基础,利用某矿区地表沉降观测点1~10期的实测沉降数据资料,结合MATLAB建立针对矿区地表沉降的预测模型,并预测其11~15期的沉降情况。通过将预测值与实测值进行对比,分析预测模型精度,结果表明BP神经网络用于矿区地表的沉降研究是可行的。  相似文献   

19.
利用人工神经网络强大的非线性映射和学习能力,提出了基于BP人工神经网络的建筑物沉降预测方法。以某实例工程1期~12期的沉降观测数据为基础,建立网络模型,并对13期~l6期实际观测值与预测值进行了比较,结果比较理想,从而验证了改进的BP人工神经网络对建筑物的沉降预测是可行的,且具有广阔的工程应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号