首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
基于GPS和北斗信噪比观测值的雪深反演及其误差分析   总被引:1,自引:0,他引:1  
利用GNSS反射信号反演雪深具有全天时、全天候、数据量大、成本低等突出优点。本文围绕基于信噪比观测值的雪深反演方法,利用参加中国北极科学考察的机会在黄河站设计了GNSS-R试验,采集了GPS和北斗的双频信噪比观测数据,详细讨论了高度角范围、弧段长度、卫星数量、方位角、时间尺度、星座结构、信号频率、信噪比强度等多种因素对雪深反演结果的影响。通过大样本、质量控制、误差分析等手段,雪深反演精度和可靠性得到有效提高。根据误差分析的结果,本文推荐的反演策略如下:选择高度角范围为5°~25°、信噪比强度较高的L1和B1I观测值,充分利用多颗卫星和4个方位角的大量观测数据,在一天的时间尺度上,可以实现5 cm的反演精度。另外,弧段长度、星座结构、信号频率等对反演结果的精度影响较小。  相似文献   

2.
针对地表物体反射信号引起的多路径效应是影响GNSS定位精度的重要误差源的问题,该文采用GNSS静态观测数据中的信噪比反演水面高度的方法,对水面高度进行反演,从而实现对水面高度变化的实时监测。为了验证水位反演的精度,利用平静湖面及海面上的GNSS静态观测数据,提取卫星高度角0~30°区间的卫星信噪比。采用二阶多项式拟合的方法去除趋势项,并利用Lomb-Scargle方法进行频谱分析,获取反射信号频率,从而反演天线相位中心到水面的垂直距离,进而确定GNSS-R技术反演水面高的能力。实验结果表明:GNSS-R技术在平静水面上的反演精度为厘米级,在海面上为分米级。因此,利用GNSS反射信号中的信噪比可以实现对水面高度的实时监测。  相似文献   

3.
目前常用相位或多普勒观测值平滑伪距的方式提高全球导航卫星系统(global navigation satellite system, GNSS)的导航性能。然而在城市环境下,GNSS观测信号中断严重,且行人等载体运动具有很大随机性,常规的相位平滑伪距或者常速度/常加速度导航算法效果有限。因此,提出了一种基于历元间载体位置变化量约束的单机GNSS导航算法,该算法利用历元间相位差分观测值计算高精度历元间位置变化量,并以此描述载体的运动,构建滤波模型的状态方程,同时利用伪距观测值构建观测方程,采用扩展卡尔曼滤波实时估计载体的位置。实验使用低成本的单频u-blox接收机实测数据,结合该算法进行导航解算。结果表明,静态情况下,导航结果的平面精度优于0.56 m;在动态情况下,平面精度优于1.0 m。在使用基站播发的GNSS差分改正数后,导航平面精度、垂向精度分别提高约49%、46%。该算法性能可靠,即使前后历元仅有4颗卫星连续观测,仍能够提供连续、平滑的实时定位结果,为用户提供更优的导航体验。  相似文献   

4.
从信噪比、伪距残差、相位残差等方面对开阔环境下的静态谷歌Nexus 9智能平板终端的原始全球导航卫星系统(Global Navigation Satellite System,GNSS)观测数据质量进行了分析评估,结果表明,Nexus 9平板的全球定位系统(Global Positioning System,GPS)、GLONASS观测值的信噪比比测量型接收机低10 dBHz左右;伪距精度分别为5.43 m、11.39 m,相位精度分别为4.44 mm、4.99 mm;相对于高度角来说,信噪比与伪距残差的相关性更强,更能反映观测数据的质量。在此基础上给出了信噪比定权的随机模型,并进行了开阔环境下的伪距单点定位测试。实验结果表明,基于信噪比定权的单点定位平面精度为2.74 m,高程精度为4.56m,比高度角定权精度提高了约26%。  相似文献   

5.
逐历元GNSS-R测高单差和双差算法   总被引:1,自引:0,他引:1  
王娜子  鲍李峰  高凡 《测绘学报》2016,45(7):795-802
GNSS-R测高是一种高效监测水面高度及其变化的新技术。与传统水面测量技术,如验潮站、卫星测高等相比,其主要优点包括可实现更高时空分辨率的观测、测高结果不受板块垂直运动的影响等。本文提出了一种基于单差观测值组合的cGNSS-R逐历元测高算法,可提高水面高度测量的时空分辨率,并给出了基于双差观测值逐历元cGNSS-R测高算法。利用武汉东湖清河桥上cGNSS-R试验中GPS反射信号观测数据,给出了高精度高时空分辨率的湖面到反射天线相位中心垂直距离,验证了本文算法的准确性,精度可达±2~±4 cm。与水面高实际观测比较结果表明,cGNSS-R单差、双差算法可有效削弱钟差以及电离层和对流层误差对反演水面高度的影响。  相似文献   

6.
本文分析了多路径效应产生的原因及其信号特征,利用相同环境下,相邻周期相同时刻的GNSS观测数据多路径误差应有强相关性的特征,采用逐个观测历元差分和卡尔曼滤波相结合的方法来消弱多路径效应的影响,从而提高大型构筑物GNSS监测的成果精度。  相似文献   

7.
观测噪声提取是数据质量分析与随机模型构建的基础。当前手机GNSS观测噪声提取主要采用三阶差分法与历元间差分法,这些方法的提取结果都会受到卫星相关性和历元间相关性的影响。本文提出结合变分模态分解(variational mode decomposition,VMD)提取手机观测噪声的方法。模拟分解试验表明:VMD能够较好地对混合信号进行分解。提取小米8手机GNSS观测噪声并进行分析,结果表明:GPS、BDS和Galileo 3系统伪距观测噪声计算结果一致,GLONASS系统伪距噪声大约是其他系统的两倍,四系统的载波观测噪声相当,手机GNSS观测噪声与Android系统版本无关。相比于高度角随机模型,载噪比随机模型更适用于手机GNSS定位。利用数据质量提取结果拟合载噪比随机模型,并进行定位试验。定位结果表明:相对于高度角随机模型,采用载噪比随机模型后手机伪距单点定位效果能提升25%以上。手机PPP平面定位结果能收敛至0.6 m以内,高程定位精度收敛至1.2 m以内。  相似文献   

8.
代数重构算法在对流层三维水汽反演中具有一定的优势,系统研究了加法代数重构、乘法代数重构、联合代数重构这3种算法,并发展了自适应代数重构算法。该算法针对3种传统算法中误差分配的不足进行了改正,提出了顾及体素块水汽密度变化对全球导航卫星系统(global navigation satellite system, GNSS)斜路径水汽含量影响的动态误差分配原则。此外,将基于GNSS信号的高度角定权模型引入到该算法中,使层析结果更靠近高精度的观测值。利用2016年7月徐州连续运行基准站系统的GNSS实测数据和探空站数据对该算法进行分析,试验结果表明,3种自适应算法反演的水汽密度的均方根误差、标准差、平均绝对偏差都低于传统算法,其中,均方根误差分别降低了25.91%、15.81%和24.64%。在小雨、中雨、大雨3种天气条件下,自适应代数重构算法的水汽廓线分布均优于传统算法的结果,其中,自适应联合代数重构算法反演的水汽廓线与探空廓线最一致。  相似文献   

9.
GNSS多径反射探测海平面变化初探   总被引:1,自引:0,他引:1  
随着GNSS研究与应用的不断深入,GNSS多径反射技术用于地表环境监测已成为一种新兴的遥感手段。针对目前国内对GNSS多径反射技术开展海平面变化探测研究较少的现状,该文通过分析信噪比值的变化特性,详细给出了基于信噪比观测值的GNSS多径反射技术探测海平面变化的基本原理。利用布设在美国华盛顿州Friday Harbor岸边的GPS连续运行跟踪站SC02观测数据反演了海平面变化,并与该站相距359m的Friday Harbor验潮站的监测数据进行了对比分析,误差均值为0.091m,相关系数为0.99。实验结果进一步验证了基于大地测量型GPS接收机用于海平面变化监测的有效性。  相似文献   

10.
基于全球导航卫星系统反射测量(global navigation satellite system reflectometry, GNSS-R)数据的雪厚反演具有低成本、低功耗、全天时采集数据的特点,但利用GNSS信噪比观测值进行雪厚反演时,观测值受噪声信号功率影响较大,反演精度较低。基于此,提出一种基于小波分解的雪厚反演改进算法,利用小波分解良好的去噪效果,在不改变原始信号中的频率组成的情况下,较好地将噪声功率与信号功率分离。通过北极黄河站2017年年积日第32—100天采集的信噪比数据对此算法进行验证,由于黄河站雪厚变化复杂,同时对比分析了不同积雪状态下该算法的适用性。结果表明,所提反演算法与现有的雪厚反演算法相比,单天时间尺度上的反演结果与实测值的最大偏差由13.71 cm下降到9.43 cm,反演结果与实测值的中误差由7.08 cm下降到5.98 cm,反演结果本身的标准差由8.19 cm下降到7.07 cm,数据利用率由82.60%提升到89.31%。在雪面消融、积累、稳定时,反演结果与实测值的中误差分别由9.02 cm、10.30 cm、7.59 cm下降到5.82 cm、5.64 cm、7.17 cm,平均绝对误差分别由6.77 cm、7.52 cm、7.00 cm下降到5.39 cm、4.72 cm、6.73 cm。可见,在复杂的积雪变化下,所提改进算法反演结果的精度和可靠性有明显的改善。  相似文献   

11.
建筑物高度是现代化都市监测、规划、管理及各城市经济活动中的基础性数据,为实现建筑物高度信息的提取,本文提出了一种基于玻尔兹曼曲线的建筑物高度反演方法。首先,利用建筑物影像的光谱特性,采用多尺度分割和遥感指数分类的办法获取建筑物阴影感兴趣区域,根据玻尔兹曼曲线函数拟合获取阴影的亚像素位置,线性拟合得到阴影边界;然后,根据太阳、卫星、建筑物和其阴影的几何关系,构建高度反演模型,估算建筑物高度;最后,选择宁海为研究区,选取在轨的主流亚米级高分二号、高景一号、北京二号、WorldView-2卫星遥感数据进行精度验证。试验结果表明,计算的建筑物高度中误差优于2.5 m,可用于一般的城市卫星遥感监测。  相似文献   

12.
张一  周立 《测绘通报》2022,(2):90-94
有效波高是海洋动力环境的主要参数,针对现有岸基双天线GNSS-R有效波高反演方法必须使用专用型接收机,以及相关测站布设较少、数据获取困难等限制,本文提出了一种利用普通单天线测量型GNSS接收机的GNSS-IR数据反演有效波高的方法。首先,利用NARX回归神经网络构建潮高反演误差与有效波高大小之间的相关模型,并给出了从数据选取、数据集制作到反演模型构建的相关流程与方法。然后,使用斯坦福大学哈勃肯斯海洋实验站中P231站两年的数据,开展了基于NARX回归神经网络的岸基单天线GNSS-IR有效波高反演模型试验。试验结果表明,该模型适用于0.1~2.5 m (即二~四级海况之间)范围内有效波高的反演应用,反演有效波高的MSE最小为0.01 m。  相似文献   

13.
全球卫星导航系统(GNSS)反射测量技术的出现,为高时空分辨率水位监测提供了一种新的解决方案.?尤其在我国,大中型大坝、库岸高边坡大多建立了GNSS变形监测系统,为全球卫星导航反射信号(GNSS-R)技术监测水位提供了不需重复建设的硬件设备与丰富的数据资源.?以GPS信噪比(SNR)数据为观测量,详细推导了卫星反射信号...  相似文献   

14.
GNSS-R interferometric reflectometry (also known as GNSS-IR, or GPS-IR for GPS signals) is a technique that uses data from geodetic-quality GNSS instruments for sensing the near-field environment. In contrast to positioning, atmospheric, and timing applications of GNSS, GNSS-IR uses the signal-to-noise ratio (SNR) data. Software is provided to translate GNSS files, map GNSS-IR reflection zones, calculate GNSS-IR Nyquist frequencies, and estimate changes in the height of a reflecting surface from GNSS SNR data.  相似文献   

15.
Groves  Paul D.  Adjrad  Mounir 《GPS Solutions》2017,21(4):1805-1816

The accuracy of conventional global navigation satellite systems (GNSS) positioning in dense urban areas is severely degraded due to blockage and reflection of the signals by the surrounding buildings. By using 3D mapping of the buildings to aid GNSS positioning, the accuracy can be substantially improved. However, positioning performance must be balanced against computational load. Here, a likelihood-based 3D-mapping-aided (3DMA) GNSS ranging algorithm is demonstrated that enables signals predicted to be non-line-of-sight (NLOS) to contribute to the position solution without explicitly computing the additional path delay due to NLOS reception, which is computationally expensive. Likelihoods for an array of candidate positions are computed based on the difference between the measured and predicted pseudoranges. However, a skewed distribution is assumed for those signals predicted to be NLOS on the basis that the ensuing ranging errors are always positive. An overall position solution is then extracted from the likelihood surface. GNSS measurement data have been collected at several locations in both traditional and modern dense urban environments. Horizontal root-mean-square single-epoch position accuracies of 4.7, 5.6 and 6.5 m are obtained using, respectively, a Leica Viva geodetic receiver, a u-blox EVK M8T consumer-grade receiver and a Nexus 9 tablet incorporating a smartphone GNSS antenna and a GNSS chipset that outputs pseudoranges. The corresponding accuracies using single-epoch conventional GNSS positioning are 20.5, 23.0 and 28.4 m, about a factor of four larger. The 3DMA GNSS algorithms have also been implemented in real time on a Raspberry Pi 3 at a 1-Hz update rate.

  相似文献   

16.
高分辨率遥感影像建筑区域局部几何特征提取   总被引:1,自引:0,他引:1  
及时准确地获取城市建筑区域的空间分布及其变化信息对于城市规划、空间地理数据库建设及区域社会经济分析具有重要意义。本文提出一种基于多尺度Gabor变换和感知聚类方法即张量投票TV (Tensor Voting)相结合的自适应局部几何不变特征检测方法,并将其应用于高空间分辨率遥感影像建筑区域提取。首先,考虑到高分辨率遥感影像复杂的几何结构特征,使用Gabor滤波器组对影像进行多尺度多方向变换检测奇异性特征。然后,在感知聚类框架下,根据张量投票理论将不同方向子带系数位置编码为相应的二阶对称方向张量,为了突出影像几何特征,对不同尺度、不同方向子带中任意像素位置方向张量使用滤波器响应系数加权并求和完成多尺度特征融合。再次,对张量特征分解得到点结构与线结构显著性图并使用非极大抑制提取相应角点和曲线等局部几何特征,同时生成约束准则筛选角点以确定建筑物坐标。最后,利用概率密度估计结合局部角点特征生成全局概率密度场描述影像中像素从属于建筑目标的概率,并使用最大类间方差法(Otsu)阈值分割自动提取居民地多边形区域。使用分辨率分别为0.49 m、0.98 m的Google Earth及0.8 m的高分二号等影像数据集进行实验,实验结果表明本文方法相对于已有的Harris和HSCD点检测算法,在建筑区域提取质量上(Quality)上分别提高了4.79%,5.96%;1.47%,3.76%和1.91%,4.08%。  相似文献   

17.
The current low-cost global navigation satellite systems (GNSS) receiver cannot calculate satisfactory positioning results for pedestrian applications in urban areas with dense buildings due to multipath and non-line-of-sight effects. We develop a rectified positioning method using a basic three-dimensional city building model and ray-tracing simulation to mitigate the signal reflection effects. This proposed method is achieved by implementing a particle filter to distribute possible position candidates. The likelihood of each candidate is evaluated based on the similarity between the pseudorange measurement and simulated pseudorange of the candidate. Finally, the expectation of all the candidates is the rectified positioning of the proposed map method. The proposed method will serve as one sensor of an integrated system in the future. For this purpose, we successfully define a positioning accuracy based on the distribution of the candidates and their pseudorange similarity. The real data are recorded at an urban canyon environment in the Chiyoda district of Tokyo using a commercial grade u-blox GNSS receiver. Both static and dynamic tests were performed. With the aid of GLONASS and QZSS, it is shown that the proposed method can achieve a 4.4-m 1σ positioning error in the tested urban canyon area.  相似文献   

18.
GNSS高程拟合常用的是二次曲面拟合法,该方法需要控制点位分布均匀,针对实际作业中受观测条件的影响部分控制点位数据无法获取,影响到GNSS高程测量精度问题,引入期望极大算法(EM算法),提出高斯分布下的EM算法与二次曲面拟合法相结合的组合算法模型,运用高斯分布下的EM算法的二次曲面拟合法对缺失数据的控制点进行建模分析。该组合算法可以获得缺失数据下未知参数的最佳估值,可有效提高水平面的拟合精度。将某区域的高程拟合控制点作为实验数据,结果表明,组合算法模型可以对缺失数据进行高程拟合,检核点最大误差为0.8 cm,组合模型拟合精度较高。  相似文献   

19.
船载气象要素传感器距水面高度是使用块体参数化方法预测近海面大气折射率廓线的必要参数,对于海面蒸发波导等无线电气象系统监测结果的准确性具有重要意义. 利用全球卫星导航系统(GNSS)载噪比(CNR)时间序列反演船载气象要素传感器距水面高度. 该方法提取船舶GNSS接收机输出的卫星信号CNR,采用Lomb Scargle周期谱分析GNSS直射信号与反射信号相干性,反演天线相位中心距水面高度. 根据GNSS天线与气象要素传感器几何关系换算船载气象要素传感器距水面高度. 利用趸船实验数据对该方法进行验证,统计有效反演次数,分析海况对反演结果的影响以及反演高度时均变化. 结果表明:利用该方法反演船载气象要素传感器距水面高度是可行的.   相似文献   

20.
陈辉  张卡  宿东  王蓬勃 《测绘通报》2019,(9):34-37,72
针对现有利用阴影长度法提取建筑物高度时存在的阴影间相互遮挡问题,提出了一种基于建筑物侧面轮廓线进行建筑物高度估算的新方法。首先,利用RPC模型计算建筑物像点位移的方向与卫星成像角度,再将遥感影像进行旋转,使建筑物像点位移沿水平方向;然后,利用Canny算法进行轮廓检测,并构建一定长度的矩形形态学结构元素,对轮廓图像进行形态学开运算,以提取侧面轮廓线,再利用Hough变换与建筑物角点约束,对所提取的轮廓线进一步筛选;最后,根据卫星侧视成像时建筑物高度与像点位移的几何关系进行建筑物的高度估算。利用实际的高分辨率卫星影像对本文方法进行了验证,并与阴影法估算建筑物高度进行了对比。试验结果证明,利用建筑物侧面轮廓线进行建筑物高度估算平均误差可以达到0.7 m,且实际精度优于使用阴影法进行建筑物高度估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号