首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
张志刚  刘凯  陈泓  冯瑞  黄劲  魏晶晶  詹宝 《岩矿测试》2015,34(4):454-458
应用王水溶样-活性炭富集金-氢醌容量法测定高品位锑矿石的金量时,通常受到较高含量的锑硫砷汞等元素的干扰,硫砷汞碳及有机质可以通过阶梯升温焙烧去除,但是对锑则无明显去除作用。本研究在相关实验环节通过加入酒石酸使锑的干扰问题得到解决,包括:王水溶矿时加入酒石酸络合锑,防止锑的化合物在酸度或温度降低时水解,保证吸附金的活性炭灰化后的锑量小于0.3 mg;活性炭灰化除碳后,用王水溶解金时再加入酒石酸,消除了氢醌容量法滴定过程中少量锑的干扰。本方法只需在溶矿时加入一定量酒石酸,与氢溴酸除锑、盐酸等除锑方法相比具有原理简明、测试快速等特点,用于分析实际锑矿石的精密度(RSD)小于5%,加标回收率为92.0%~107.0%。  相似文献   

2.
锑矿石化学物相分析涉及三个矿物相:锑华、辉锑矿和难溶锑酸盐,不同锑矿物相提取的溶剂不同、共存离子复杂、浓度梯度差别大,这些因素影响了电感耦合等离子体发射光谱法(ICP-OES)对锑化学物相的准确测定。本文以锑华、辉锑矿和锑酸盐的选择分离溶剂为研究对象,测试了盐酸、硝酸和硫酸钾-硝酸-硫酸不同介质对ICP-OES测定锑的影响。结果表明:同浓度的盐酸和硝酸介质对锑的测定没有影响,锑华和辉锑矿中锑含量的测定可使用同一标准溶液系列,盐酸或硝酸的浓度控制在15%~20%可避免锑的水解;混合酸介质(4g/L硫酸钾-15%硝酸-3%硫酸)对锑的测定有影响,可采用基体匹配方法解决,在测定锑酸盐相锑含量时,锑校准溶液的配制加入锑酸盐浸出剂相同量的混合酸。选择206.833nm谱线作为分析线,在优化的分析方法流程和测定参数条件下,锑华、辉锑矿和锑酸盐中锑的检出限分别为0.0006%、0.0012%和0.0021%;对不同浓度原生矿和氧化矿12次分析,测定值的相对标准偏差(n=12)为0.16%~5.76%,相态加和与全量的相对偏差绝对值为0.07%~7.38%。本方法精密度和准确度满足锑矿石化学物相分析的质量控制要求,解决了锑矿石化学物相快速准确的测量问题。  相似文献   

3.
原子吸收法测定矿石中高含量锑   总被引:1,自引:0,他引:1  
申云 《岩矿测试》1989,8(1):49-51
原子吸收法测定矿石中0.05~X%的锑已有报道,但原子吸收法测矿石中高含量锑,尚未见报道。本文以盐酸、硝酸分解样品,用柠檬酸防止在盐酸溶矿时锑以三氯化锑形式挥发和锑的水解。在空气一乙炔火焰中,用锑的次灵敏线231.2nm测定0.x~60%的锑。用拟定的方法测锑时速度快,选择性高,重现性好,砷及大多数元素不干扰测定。  相似文献   

4.
钨矿石和锡矿石成分复杂,具有丰富的共生或伴生元素。在国家标准方法中,对其中的微量共生或伴生元素含量多采用单元素测定,分析强度大,效率低。本文采用混合酸在敞开体系中消解样品,以50%盐酸提取盐类,电感耦合等离子体质谱仪(ICP-MS)同时测定钨矿石和锡矿石中的锂钪铬钴镍铜铅锌铷钼铯锑铋钍等14种微量元素。通过比较碱熔法、盐酸+氢氟酸+硝酸+高氯酸四酸溶矿法、氢氟酸+硝酸+高氯酸三酸溶矿法这三种样品前处理方法,确定选择使用氢氟酸+硝酸+高氯酸三酸溶矿法溶解样品。ICPMS测定过程中,选择铑和铼作为内标元素,有效监控分析信号的漂移。测定结果表明,各元素的检出限为0.003~1.64μg/g,相对标准偏差在0.1%~3.1%,方法回收率在93.1%~104.3%。方法应用于实际钨矿石和锡矿石分析,测定结果与各元素标准测定值吻合较好。相对于传统处理方法,本法一次溶样,多元素同时测定,使分析效率得到了有效提高,更适合大批量多元素钨矿石和锡矿石样品的分析。  相似文献   

5.
高含量、微量和痕量水平锑的测定已有可靠的分析方法;但对于低含量锑的测定,现有的容量法分析效率较低,操作步骤不易掌握;且原子荧光光谱法对于批量样品中锑的高低含量差异存在记忆效应,分析精密度差,准确度不高。电感耦合等离子体发射光谱法(ICP-AES)较好地弥补了原子荧光光谱法、原子吸收光谱法、容量法等不能解决的问题。本文建立了金锑矿和锑矿石中、低含量锑的分析方法,样品经氢氟酸-硝酸-高氯酸溶解,硫酸助溶,在20%盐酸介质中,用ICP-AES在波长217.5 nm处进行测定。方法检出限为30.0 μg/g,方法精密度小于5%。国家标准物质的测定值与标准值吻合,不同含量的实际样品的测定值与硫酸铈容量法或原子荧光光谱法的测定值基本吻合。本方法适用于锑含量在0.05%~5%范围的矿石样品分析。  相似文献   

6.
建立了王水溶矿-电感耦合等离子体发射光谱法测定砷矿石和锑矿石中主、次量元素砷、锑、硫及含量范围在100μg/g以上的铜、铅、锌等元素的方法。研究了放置时间、溶液酸度、氧化剂与络合剂对砷、锑、硫及其他元素测定的影响。不同王水浓度酸度对可同时测定的其他元素的影响不明显;当溶液酸度较小时,不能放置,应及时测定;如需放置,应在溶液定容前加入酒石酸防止水解。样品中砷、锑、硫的含量在0.74%~39.7%时,相对误差(RE)在-0.17%~7.74%,5次独立测定的相对标准偏差(RSD)均小于2%;含量在100~500μg/g以下的Sb,RE在-2.5%~4.79%,5次独立测定的RSD均小于2%。由于稀释倍数较大(DF=1000),不能准确测定含量在100μg/g以下的铜、铅、锌;含量在100μg/g以上的铜、铅、锌的RE在-10.3%~10.3%,5次独立测定的RSD基本小于5%。经标准物质验证获得满意结果。方法也可应用于砷、锑含量较高的硫化矿的测定。  相似文献   

7.
卢彦  冯勇  李刚  刘卫 《岩矿测试》2015,34(4):442-447
密西西比型(MVT)铅锌矿床的主要矿物有方铅石、闪锌矿,常伴生有重晶石、萤石等矿物,使得MVT型矿石在酸处理过程中易生成不溶于水和酸的硫酸铅钡复盐,故而检测矿样中铅的含量偏低。本文建立了采用盐酸-硝酸-氢氟酸体系酸溶分解MVT型矿石,电感耦合等离子体发射光谱法(ICP-OES)测定铅含量的分析方法。实验比较了盐酸-硝酸-氢氟酸、盐酸-硝酸-氢氟酸-高氯酸、盐酸-硝酸-硫酸三种酸溶体系的溶样效果,并通过X射线衍射论证了方法的可行性。结果表明,盐酸-硝酸-氢氟酸体系克服了复盐硫酸铅钡和硫酸铅沉淀的生成,适量的氢氟酸促进了Pb SO4的溶解,X射线衍射表征也表明此种酸溶体系的沉淀中不含有Pb SO4,可更彻底地分解MVT型矿石。本方法精密度(RSD)为0.3%~0.6%,实际样品的加标回收率为96.0%~99.2%,铅的最佳检测范围为0.01%~20.0%。  相似文献   

8.
电感耦合等离子体原子发射光谱法测定锑矿选冶中砷锑   总被引:1,自引:0,他引:1  
马玲  查立新 《安徽地质》2010,20(3):219-221
采用电感耦合等离子体发射光谱法测定锑矿选冶过程中精矿、中矿、尾矿样品中的砷和锑元素。对矿样溶解、测定条件、介质酸度和基体干扰进行了实验,选用王水溶解矿样,在20%盐酸介质中测定,具有快捷、简便、测定范围宽等特点。砷和锑的质量浓度在0~20μg/mL范围内相关系数分别为0.9993和0.9998.对11份空白溶液进行测定,得到的砷和锑检出限分别为0.051μg/mL和0.080μg/mL;对GBW07174和GBW07175锑矿标样进行7次测定,相对标准偏差为1.26%~2.47%之间。  相似文献   

9.
西藏锑矿中金和锑的测定方法研究   总被引:4,自引:0,他引:4  
西藏锑矿资源丰富,该矿的复杂性(含硫高,锑金共生)以及地理条件的特殊性,使得我们在分析金和高含量锑 的时候存在两个问题:首先是对测定锑的影响,其次是锑的干扰造成金测定结果不准确。本文采用王水溶矿,柠檬酸防止锑挥发及水解,氯化钡消除硫干扰,原子吸收分光光度法测定高含量锑,线性范围为0.xx-xx,xx%。根据锑量加入适量氯化铵,能有效消除锑对金的干扰,从而准确测定金;采用氢醌容量法可准确测定0.1-200μg/g的金;原子吸收分光光度法可以准确测定0.05-30μg/g的金。  相似文献   

10.
准确测定砷和锑的含量是化探样品测定中的重要内容。本文介绍了测定这两种元素的一种新方法,笔者基于原子荧光光谱仪,试样经氢氟酸-盐酸-硝酸混酸微波消解,高氯酸-硫酸混酸蒸发除去氢氟酸,由盐酸-酒石酸混合溶液定容,从而得到样品中准确的砷、锑含量。本方法砷、锑校准曲线的线性相关系数均大于0.999;检出限分别为砷0.039μg/L、锑0.005 8μg/L。按照实验方法测定水系沉积物、土壤标准物质中砷、锑,结果的相对误差砷为1.52%~6.77%,锑为1.25%~7.17%;相对标准偏差(RSD,n=6)砷为2.27%~5.15%、锑为1.88%~5.81%。本方法适用于化探样品中砷含量在0.05~500μg/g、锑含量在0.05~300μg/g之间的样品测定。  相似文献   

11.
氢化物发生—原子荧光法直接测定锑及其化合物中的铅   总被引:1,自引:0,他引:1  
通过在样品处理阶段用HBr除去大量锑基体,实现了不需再通过其他化学分离直接运用氢化物发生-原子荧光法测定锑及其相关产品中的微量铅,并用于实际样品的分析.该方法对样品检测下限小于10-6,在实际样品分析中,分析结果与原子吸收法测定结果之间无显著性差异,RSD<2.0%(n=4),对样品分析的加标回收率在95%~105%.  相似文献   

12.
氢化物发生—原子荧光法快速测定锑及其化合物中的锡   总被引:6,自引:5,他引:6  
通过研究在不同酸度、还原剂浓度下Sn(Ⅱ)、Sb(Ⅴ)发生氢化反应的差异性,建立了不需通过化学预分离,原子荧光直接测定锑及其相关产品中微量锡的快速方法,并运用于实际样品的分析,结果与石墨炉原子吸收法结果相符。方法对样品加标测定的回收率大于94%,对实际样品的检测最低含量为1.0×10  相似文献   

13.
按Tessier连续浸提法对德安锑矿区土壤样品进行了分析,得出锑的存在状态主要以残渣态为主,其次是Fe/Mn结合态,有机/硫化物结合态和碳酸盐结合态,可交换态和水溶态占的比率最小。矿区土壤中锑生物可利用态锑占0.52%~3.51%,其浓度一般在1.78~17.48μg/g,中等可利用态占1.04%~5.56%,生物难利用态锑的浓度占92.1%~98.4%。  相似文献   

14.
盐酸除锑—原子吸收测定锑矿中的金   总被引:5,自引:2,他引:5  
徐洛  章勇  马玲  胡浩 《岩矿测试》2001,20(2):142-144
将样品灼烧后,用HCl浸煮、蒸发除锑,消除锑对原子吸收法测金的干扰;并讨论了除锑条件和除锑效率。将所拟方法与HBr除锑测金的方法进行比较,分析结果基本一致,样品加标的回收率为98%~104%,RSD(n=5)<2.5%。  相似文献   

15.
超大型锑矿床定位机制剖析——以锡矿山锑矿床为例   总被引:2,自引:1,他引:2  
从地质时期、地质构造环境和物理化学条件出发,以锡矿山锑矿床为例初步剖析了超大型锑矿床在时间和空间上的定位机制。研究表明。锑成矿定位时间为66.4-51.6Ma,相当于燕山晚期-喜马拉雅早期,锑矿床多赋存于上泥盆统佘田桥组陆源细碎屑岩-碳酸盐岩建造中,特别是碳酸盐岩的中上部位,主要受区域性深大断裂与次级复式短轴背斜的联合控制,并与碳酸盐岩的层间构造有密切的空间关系,锑成矿定位的温度,压力,pH及fo2都偏低,分别为200-100℃,30-20MPa,6.5-5,10^-37-10^-43Pa。  相似文献   

16.
锑矿区水体水环境锑污染及硫同位素示踪研究   总被引:4,自引:0,他引:4  
本文系统研究了贵州省半坡锑矿区水环境锑污染现状,用硫同位素指示采矿活动对矿区水体的影响,以查明锑矿区水环境中Sb的释放迁移过程和水污染程度。研究发现,矿区水体中Sb和SO42-含量分别高达1377μg/L和1926 mg/L;岔河下游近10 km处仍保持较高水平(182.5μg/L Sb和59.8 mg/L SO42-)。岔河水体中,δ34S-Sb、δ34S-SO42-和Sb-SO42-间均具显著正相关,相关系数分别为r=0.68(p<0.05)、r=0.89(p<0.01)、r=0.72(p<0.05)。表明岔河水体中,δ34S和SO42-能很好地指示矿业活动引起的Sb污染程度和扩散范围。根据同位素质量平衡原理估算,发现矿区下游水体中的硫主要来自矿山,表明矿区下游水体污染受采矿活动影响显著。  相似文献   

17.
锑矿石分析通常分别采用酸分解系统和碱熔系统,萃取分离后应用容量法、原子吸收光谱法、原子荧光光谱法等分析手段进行单项测定,样品处理繁琐、操作复杂,分析过程常因熔矿不完全而导致结果偏低或失真,难以满足地质测试的需要。本文建立了玻璃熔融制样,波长色散X射线荧光光谱测定锑矿石中的锑及14种次量元素与伴生元素(Cu、Pb、Zn、As、Co、Ni、W、Ba、S、SiO2、Al2O3、TFe、CaO、MgO)的快速分析方法。用国家标准物质和人工合成标准参考物质拟合校准曲线,对熔融条件进行了研究。确定样品与四硼酸锂-偏硼酸锂-氟化锂复合熔剂的熔融稀释比例为1:20,以硝酸铵为氧化剂,碳酸锂为保护剂,700℃预氧化,在1050℃温度下熔融完全,有效地防止了As、S的挥发损失,解决了化学法测试样品处理复杂、不能同时测定多元素、测试元素偏少的问题。一些元素的检出限为Sb 0.14%,Cu 0.0027%,Pb 0.0025%,Zn 0.0046%,As 0.0028%,S 0.021%;方法精密度(RSD,n=12)小于5%;选用合成标准物质和实际生产锑矿试样进行验证,测定结果与参考值或化学值一致性良好。本法大部分元素检出限都要稍高于粉末压片法,但操作简单,测试范围更宽,适用于实验室对不同锑矿矿种批量样品中多元素快速、准确检测的需要。  相似文献   

18.
详细考察了用氢化物发生-光导比色法在野外实验条件下测定Sb的各种条件及影响因素,制定了适合野外的氢化物发生-光导比色快速测定锑的方法。样品经王水封闭溶解后,在掩蔽剂存在下,用自制的硼氢化钾片使经预还原的Sb生成氢化物逸出,将吸收液中的Fe(Ⅲ)还原为Fe(Ⅱ)与邻菲口罗啉显色,用自行开发、研制的光导分光光度(比色)计进行比色测定。方法的检出限(3s)为0.18μg/g,加标回收率为96.0%~98.0%,11次测定的精密度(RSD)小于8.2%。方法经国家一级标准物质验证,分析结果与标准值吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号