首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Microlites (minute spherulitic, dendritic, skeletal, acicular and poikilitic crystals) diagnostic of crystallization in quenched melt or glass in fault rocks have been used to infer fossil earthquakes. High‐P microlites and crystallites are described here in a variably eclogitized gabbro, the wallrock to the coesite‐bearing eclogite breccia at Yangkou in the Chinese Su‐Lu high‐P metamorphic belt. The studied hand specimens are free of discernible shear deformation, although microfractures are not uncommon under the microscope. In the least eclogitized gabbro, the metagabbro, stellate growths of high‐P minerals on the relict igneous minerals are common. Dendritic garnet crystals (<1?5 μm) grew around rutile and/or phengite replacing ilmenite and biotite, respectively. Skeletal garnet also rims broken flakes of igneous biotite and mechanically twinned augite. Radial intergrowths of omphacite and quartz developed around relict igneous orthopyroxene and are rimmed by skeletal or poikilitic garnet where a Ti‐bearing mineral relict is present. Acicular epidote, kyanite and phengite crystallites are randomly distributed in a matrix of Na‐rich plagioclase, forming the pseudomorphs after igneous plagioclase. In the more eclogitized gabbro, the coronitic eclogite located closer to the eclogite breccia, all the igneous minerals broke down into high‐P assemblages. Thick coronas of poikilitic garnet grew between the pseudomorphs after igneous plagioclase and ferromagnesian minerals. The igneous plagioclase is replaced by omphacite crystallites, with minor amounts of phengite and kyanite. Thermodynamic modelling of the plagioclase pseudomorphs shows an increase in P–T in the wallrock from the metagabbro to the coronitic eclogite, and the P–T variation is unrelated to H2O content. The fluid‐poor pressure overstepping scenario is unsupported both by phase diagram modelling and by whole‐rock chemical data, which show that the various types of eclogitized gabbro are all fairly dry. A large pressure difference of >2 GPa between the metagabbro and the coesite‐bearing eclogites ~20 m apart cannot be explained by the subduction hypothesis because this would require a depth difference of >60 km. The microlites and crystallites are evidence for dynamic crystallization due to rapid cooling because constitutional supercooling was unlikely for the plagioclase pseudomorphs. The lack of annealing of the broken biotite and augite overgrown by strain free skeletal garnet is consistent with a transient high‐P–T event at a low ambient temperature (<300 °C), probably in the crust. Therefore, the eclogitization of the wallrock to the eclogite breccia was also coseismic, as proposed earlier for the eclogite facies fault rocks. The outcrop‐scale P–T variation and the transient nature of the high‐P–T event are inconsistent with the other existing tectonic models for high‐P metamorphism. The fact that the less refractory but denser biotite is largely preserved while the more refractory but less dense plagioclase broke down completely into high‐P microlite assemblages in the metagabbro indicates a significant rise in pressure rather than temperature. Given that the metamorphic temperatures are far below the melting temperatures of most of the gabbroic minerals under fluid‐absent conditions, stress‐induced amorphization appears to be the more likely mechanism of the coseismic high‐P metamorphism.  相似文献   

2.
A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.  相似文献   

3.
High‐pressure (HP) granulites and eclogitized metagabbro are exposed along an orogen‐parallel high‐P belt that was developed at c. 1050–1020 Ma in the NE Grenville Province. Among these rocks, mafic granulites derived from a Labradorian anorthosite suite of the Lelukuau terrane contain garnet, Al‐Na diopside, and, depending on bulk composition, plagioclase and kyanite. Moreover, the distribution of phases is influenced by the original igneous texture. For instance, in high XMgO leucocratic varieties, garnet porphyroblasts nucleated together with kyanite in An‐rich cores of plagioclase domains whereas in low XMgO rocks garnet occurs together with clinopyroxene within formerly igneous ferromagnesian domains and kyanite is missing. In contrast, garnet pseudomorphs after igneous plagioclase in melanocratic varieties display evidence of earlier corona development. Metamorphic textures are consistent with a two stage evolution: (a) development of garnet and Al‐Na‐diopside (Cpx1) under high‐P metamorphic conditions, concomitant with elimination of plagioclase in the mesocratic to melanocratic varieties; and (b) partial loss of Al‐Na from Cpx1 resulting in production of new andesitic plagioclase, and growth of new clinopyroxene (Cpx2) after garnet and quartz in leucocratic to mesocratic rocks consistent with decompression. Widespread equilibrium textures between garnet‐Pl2‐Cpx2 and/or reset Cpx1 are consistent with development at the thermal peak. Estimated P–T conditions for the presumed thermal peak fall in the range 1500–1800 MPa and 800–900 °C and are comparable to those recorded by eclogitized gabbros from other parts of the high‐P belt of the NE Grenville province. Low jadeite content of clinopyroxene from the HP granulites is attributed to the low bulk Na2O/(Na2O + CaO) of these rocks relative to common basaltic compositions. Scarcity of apparent retrograde textural overprint in both the HP granulites and the eclogites suggests fast subsequent cooling, consistent with extrusion of the high‐P belt towards the foreland shortly after the metamorphic peak.  相似文献   

4.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

5.
Experimental modelling of corona textures   总被引:1,自引:0,他引:1  
Formation of corona textures along olivine–plagioclase and orthopyroxene–plagioclase interfaces has been experimentally reproduced at 670 and 700 °C and 5 kbar with either a pure H2O fluid phase or 0.1 and 37 m NaCl–H2O solution fluid. In these experiments, we investigate the interaction of primary olivine and/or orthopyroxene and plagioclase in powders and polished crystals, and in small samples of a natural gabbro. The experiments result in the formation of corona textures with several layers of different assemblages (according to the experimental conditions) consisting of garnet (grossular), clinopyroxene, orthopyroxene, amphibole, chlorite and phlogopite. The experiments show major differences in the number of layers, the mineral assemblages and mineral composition, and in the trends of composition of plagioclase in coronas around olivine and orthopyroxene. The fluid phase composition influences the corona assemblages and the composition of the minerals in the experimental coronas; for example, garnet appears in the coronas in the second experiment where the NaCl–H2O ratio is low. Experimental modelling of corona textures confirms a model of simultaneous growth of layers by the mechanism of diffusion metasomatism with participation of a fluid phase through which mass is transferred. Zoning in the experimental coronas shows opposing diffusion of Al and Ca from plagioclase and Mg and Fe from olivine/orthopyroxene; difference in the mobility of the components is inferred from observations in the coronas. The experimental corona textures are compared with natural coronas from the Belomorian belt (Baltic shield), developed at 670–690 °C and 7–8 kbar, and the Marun‐Keu complex (Polar Urals), developed at 670–700 °C and 14–16 kbar, where the corona textures correspond to a transitional stage of the gabbro‐to‐eclogite transformation.  相似文献   

6.
Polymetamorphic metapelites and embedded eclogites share a complex, episodic interplay of dehydration and fluid infiltration at the eclogite type‐locality (Saualpe–Koralpe, Eastern Alps, Austria). The metapelites inherited a fluid content (i.e. mineral‐bound OH expressed in terms of mol.% H2O) of ~6–7 mol.% H2O from high‐T–low‐P metamorphism experienced during the Permian. At or near Pmax of the subsequent Eoalpine event (~20 kbar and 680°C), the breakdown of paragonite to Na‐rich clinopyroxene and kyanite in metapelites released a discrete pulse of hydrous fluid. Prior to the dehydration event, the rocks were largely fluid absent, allowing only limited re‐equilibration during the prograde Eoalpine evolution. Similarly, Permian‐aged gabbros have persisted metastably due to the absence of a catalyst prior to fluid‐induced re‐equilibration. The fluid triggered partial to complete eclogitization along a fluid infiltration front partially preserved in metagabbro. Near‐isothermal decompression to ~7.5–10 kbar and 670–690°C took place under fluid‐absent conditions. After decompression, a second breakdown of phengitic white mica and garnet produced muscovite, biotite, plagioclase and ~0.1–0.7 mol.% H2O that enhanced extensive fluid‐aided re‐equilibration of the metapelites. Potential relicts of high‐P assemblages were largely obliterated and replaced by the recurrent amphibolite facies assemblage garnet+biotite+staurolite+kyanite+muscovite+plagioclase+ilmenite+quartz. The hydrous fluid originating from the metapelites infiltrated the embedded eclogites at these P–T conditions and induced the local breakdown of the peak assemblage omphacite and garnet to fine‐grained symplectites of diopside and plagioclase. Further fluid infiltration led to the formation of hornblende–quartz poikiloblasts at the expense of the symplectites. The metapelites re‐equilibrated until the growth of retrograde staurolite consumed any remaining free fluid, thereby terminating the process. Further re‐equilibration is inhibited by both the lack of a catalytic fluid and H2O as a reactant essential for rehydration reactions. The interplay between fluid sources and fluid sinks describes a closed cycle for the rocks at the eclogite type‐locality. Final, near‐isobaric cooling is indicated by a slight increase of XFe in garnet rims. Post‐decompression dehydration and fluid‐aided re‐equilibration arrested by the introduction of staurolite might explain the apparently homogeneous retrogression conditions as well as the notorious absence of diagnostic high‐P assemblages in metapelites at the eclogite type‐locality.  相似文献   

7.
A re‐evaluation of the PT history of eclogite within the East Athabasca granulite terrane of the Snowbird tectonic zone, northern Saskatchewan, Canada was undertaken. Using calculated pseudosections in combination with new garnet–clinopyroxene and zircon and rutile trace element thermometry, peak metamorphic conditions are constrained to ~16 kbar and 750 °C, followed by near‐isothermal decompression to ~10 kbar. Associated with the eclogite are two types of occurrences of sapphirine‐bearing rocks preserving a rich variety of reaction textures that allow examination of the retrograde history below 10 kbar. The first occurs as a 1–2 m zone adjacent to the eclogite body with a peak assemblage of garnet–kyanite–quartz interpreted to have formed during the eclogite facies metamorphism. Rims of orthopyroxene and plagioclase developed around garnet, and sapphirine–plagioclase and spinel–plagioclase symplectites developed around kyanite. The second variety of sapphirine‐bearing rocks occurs in kyanite veins within the eclogite. The veins involve orthopyroxene, garnet and plagioclase layers spatially organized around a central kyanite layer that are interpreted to have formed following the eclogite facies metamorphism. The layering has itself been modified, with, in particular, kyanite being replaced by sapphirine–plagioclase, spinel–plagioclase and corundum–plagioclase symplectites, as well as the kyanite being replaced by sillimanite. Petrological modelling in the CFMAS system examining chemical potential gradients between kyanite and surrounding quartz indicates that these vein textures probably formed during further essentially isothermal decompression, ultimately reaching ~7 kbar and 750 °C. These results indicate that the final reaction in these rocks occurred at mid‐crustal levels at upper amphibolite facies conditions. Previous geochronological and thermochronological constraints bracket the time interval of decompression to <5–10 Myr, indicating that ~25 km of exhumation took place during this interval. This corresponds to minimum unroofing rates of ~2–5 mm year?1 following eclogite facies metamorphism, after which the rocks resided at mid‐crustal levels for 80–100 Myr.  相似文献   

8.
Although ophiolitic rocks are abundant in Anatolia (Turkey), only in rare cases have they experienced high‐grade metamorphism. Even more uncommon, in Anatolia and elsewhere are high‐grade meta‐ophiolites that retain an oceanic lithosphere stratigraphy from upper crustal mafic volcanic rocks through lower crustal gabbro to mantle peridotite. The Berit meta‐ophiolite of SE Turkey exhibits both features: from structurally higher to lower levels, it consists of garnet amphibolite (metabasalt), granulite facies metagabbro (as lenses in amphibolite inferred to be retrogressed granulite) and metaperidotite (locally with metapyroxenite layers). Whole‐rock major and trace‐element data indicate a tholeiitic protolith that formed in a suprasubduction setting. This paper presents new results for the metamorphic PT conditions and path of oceanic lower crustal rocks in the Berit meta‐ophiolite, and an evaluation of the tectonic processes that may drive granulite facies metamorphism of ophiolite gabbro. In the Do?an?ehir (Malatya, Turkey) region, granulite facies gabbroic rocks contain garnet (Grt)+clinopyroxene (Cpx)+plagioclase (Pl)+corundum (Crn)±orthopyroxene (Opx)±kyanite (Ky)±sapphirine (Spr)±rutile. Some exhibit symplectites consisting of Crn+Cpx, Ky+Cpx and/or coronas of garnet (outer shell) around a polygonal aggregate of clinopyroxene that in some cases surrounds a polygonal aggregate of orthopyroxene. Coronitic and non‐coronitic textures occur in proximity in mm‐ to cm‐scale layers; corona structures typically occur in plagioclase‐rich layers. Their formation is therefore related primarily to protolith type (troctolite v. gabbro) rather than P–T path. Phase diagrams calculated for a kyanite‐rich granulite, a plagioclase‐rich non‐coronitic granulite, and a plagioclase‐rich coronitic granulite (taking into account changes in effective bulk composition during texture development) predict peak conditions of ~800°C, 1.1–1.5 GPa; these conditions do not require invoking an unusually high geothermal gradient. In the coronitic metagabbro, reaction textures formed along the prograde path: Crn–Cpx symplectites grew at the expense of garnet, sapphirine and plagioclase. Peak conditions were followed by isobaric cooling of ~150°C. Hornblende–plagioclase thermometry results for host amphibolite (Hbl+Pl±Crn±Grt±relict Cpx) indicate retrograde conditions of 620–675°C and 0.5–0.8 GPa accompanied by infiltration of H2O‐rich fluid. This anticlockwise P–T path differs from an isothermal decompression path previously proposed for these rocks based on the presence of symplectite. Metamorphism of the ophiolitic rocks was driven by closing of the southern Neotethys Ocean, as oceanic lithosphere was obducted (most SE Anatolian ophiolites) or underthrust (Berit meta‐ophiolite). This was followed by subduction of a continental margin, driving cooling of the Berit granulite after the thermal peak at depths of ~40 km.  相似文献   

9.
Layers or bodies of intermediate granulite on scales from a centimetre to a hundred metres occur commonly within the felsic granulite massifs of the Bohemian Massif. Their origin is enigmatic in that they commonly have complex microstructures that are difficult to interpret, and therefore even the sequence of crystallization of minerals is uncertain. At Kle?, in the Blanský les massif, there is a revealing outcrop in a low‐strain zone in which it is clear that intermediate granulite can form by the interaction of felsic granulite with eclogite. The eclogite, retains garnet from its eclogite heritage, the grains at least partially isolated from the matrix by a plagioclase corona. The original omphacite‐dominated matrix of the eclogite now consists of recrystallized diopsidic clinopyroxene, orthopyroxene and plagioclase, with minor brown amphibole and quartz. The modification of the eclogite is dominated by the addition of just K2O and H2O, rather than all the elements that would be involved if the process was one of pervasive melt infiltrations. This suggests that the main process involved is diffusion, with the source being the felsic granulite, or local partial melt of the granulite. The diffusion occurred at ~950 °C and 12 kbar, with the main observed effects being (i) the un‐isolation and preferential destruction of the interior part of some of the garnet grains by large idiomorphic ternary feldspar; (ii) textural modification of the matrix primarily involving the recrystallization of clinopyroxene into large poikiloblasts containing inclusions of ternary plagioclase; and (iii) conversion of low‐K plagioclase in the matrix into ternary feldspar by incorporation of the diffused‐in K2O. The phase equilibria in the intermediate granulite are consistent with the chemical potential relationships that would be superimposed on the original eclogite by the felsic granulite at 950 °C and 12 kbar.  相似文献   

10.
Troctolitic gabbros from Valle Fértil and La Huerta Ranges, San Juan Province, NW‐Argentina exhibit multi‐layer corona textures between cumulus olivine and plagioclase. The corona mineral sequence, which varies in the total thickness from 0.5 to 1 mm, comprises either an anhydrous corona type I with olivine|orthopyroxene|clinopyroxene+spinel symplectite|plagioclase or a hydrous corona type II with olivine|orthopyroxene|amphibole|amphibole+spinel symplectite|plagioclase. The anhydrous corona type I formed by metamorphic replacement of primary olivine and plagioclase, in the absence of any fluid/melt phase at <840 °C. Diffusion controlled metamorphic solid‐state replacement is mainly governed by the chemical potential gradients at the interface of reactant olivine and plagioclase and orthopyroxene and plagioclase. Thus, the thermodynamic incompatibility of the reactant minerals at the gabbro–granulite transition and the phase equilibria of the coronitic assemblage during subsequent cooling were modelled using quantitative μMgO–μCaO phase diagrams. Mineral reaction textures of the anhydrous corona type I indicate an inward migration of orthopyroxene on the expense of olivine, while clinopyroxene+spinel symplectite grows outward to replace plagioclase. Mineral textures of the hydrous corona type II indicate the presence of an interstitial liquid trapped between cumulus olivine and plagioclase that reacts with olivine to produce a rim of peritectic orthopyroxene around olivine. Two amphibole types are distinguished: an inclusion free, brownish amphibole I is enriched in trace elements and REEs relative to green amphibole II. Amphibole I evolves from an intercumulus liquid between peritectic orthopyroxene and plagioclase. Discrete layers of green amphibole II occur as inclusion‐free rims and amphibole II+spinel symplectites. Mineral textures and geochemical patterns indicate a metamorphic origin for amphibole II, where orthopyroxene was replaced to form an inner inclusion‐free amphibole II layer, while clinopyroxene and plagioclase were replaced to form an outer amphibole+spinel symplectite layer, at <770 °C. Calculation of the possible net reactions by considering NCKFMASH components indicates that the layer bulk composition cannot be modelled as a ‘closed’ system although in all cases the gain and loss of elements within the multi‐layer coronas (except H2O, Na2O) is very small and the main uncertainties may arise from slight chemical zoning of the respective minerals. Local oxidizing conditions led to the formation of orthopyroxene+magnetite symplectite enveloping and/or replacing olivine. The sequence of corona reaction textures indicates a counter clockwise P–T path at the gabbro–granulite transition at 5–6.5 kbar and temperatures below 900 °C.  相似文献   

11.
The metamorphic evolution of a granulitized eclogite from Punta de li Tulchi, NE Sardinia, Italy, reconstructed utilizing a combined microstructural (symplectitic, coronitic and kelyphytic features) and thermodynamic approach, involved a complex metamorphic history with equilibrium attained only at a domainal scale. Microstructural analysis and mineral zoning allow recognition of reactants and products involved in successive balanced mineral reactions. The P–T conditions at which each microstructure was formed are constrained by calculating isochemical phase diagrams (pseudosections) for the composition of effectively reacting domains. A pre‐symplectite stage developed during prograde metamorphism under conditions ranging from 660–680 °C, 1.6–1.8 GPa to 660–700 °C at 1.7–2.1 GPa. Pseudosections calculated for subsequent clinopyroxene + plagioclase and orthopyroxene + plagioclase symplectitic coronae using the composition of effectively reacting microdomains suggest temperature in excess of 800 °C and pressures of 1.0–1.3 GPa. Modelling the development of later plagioclase + amphibole coronae around garnet during decompression yields conditions of 730–830 °C and 0.8–1.1 GPa. H2O (wt%) isomodes indicate that the granulitized eclogites were H2O‐undersaturated at peak‐P conditions and during most of the subsequent heating and decompression. This allowed the preservation of prograde garnet zoning in spite of the strong granulite facies overprint. The P–T evolution of Punta de li Tulchi granulitized eclogite is very similar in shape to that registered by other NE Sardinia retrogressed eclogites thus suggesting a common tectonic scenario for their evolution.  相似文献   

12.
Mafic granulite, generated from eclogite, occurs in felsic granulite at Kle?, Blanský les, in the Bohemian Massif. This is significant because such eclogite is very rare within the felsic granulite massifs. Moreover, at this locality, strong interaction has occurred between the mafic granulite and the adjacent felsic granulite producing intermediate granulite, such intermediate granulite being of enigmatic origin elsewhere. The mafic granulite involves garnet from the original eclogite, containing large idiomorphic inclusions of omphacite, plagioclase and quartz, as well as rutile. The edge of the garnet is replaced by a plagioclase corona, with the garnet zoned towards the corona and also the inclusions. The original omphacite–quartz–?plagioclase matrix has recrystallized to coarse‐grained polygonal (‘equilibrium’‐textured) plagioclase‐diopsidic clinopyroxene–orthopyroxene also with brown amphibole commonly in the vicinity of garnet. Somewhat larger quartz grains are embedded in this matrix, along with minor ilmenite, rutile and zircon. Combining the core garnet composition with core inclusion compositions gives a pressure of the order of 18 kbar from assemblage and isopleths on a P?T pseudosection, with temperature poorly constrained, but most likely >900 °C. From this P?T pseudosection, the recrystallization of the matrix took place at ~12 kbar, and from Zr‐in‐rutile thermometry, at relatively hot conditions of 900–950 °C. It is largely at these conditions that the eclogite/mafic granulite interacted with the felsic granulite to make intermediate granulite (see next paper).  相似文献   

13.
The gneisses of the Makuti Group in north-west Zimbabwe are characterized by complex geometries that resulted from intense non-coaxial deformation in a crustal scale high-strain zone that accommodated extensional deformation along the axis of the Zambezi Belt at c. 800 Ma. Within low-strain domains in the Makuti gneisses, undeformed metagabbroic lenses preserve eclogite and granulite facies assemblages, which record a part of the metamorphic history that predates Pan-African events. Eclogitic rocks can be subdivided into: (1) corona-textured metagabbros that preserve igneous textures, and (2) garnet–omphacite rocks in which primary textures are destroyed. The lenses of eclogitic rocks are enveloped in a mantle of garnet–clinopyroxene–hornblende gneiss, which is a common rock type in the Makuti gneisses. The eclogites preserve multi-staged, domainal, symplectic reaction textures that developed progressively as the rocks experienced loading followed by decompression–heating. In the metagabbros, the original clinopyroxene, plagioclase and olivine domains acted separately during the peak of metamorphism, with plagioclase being replaced by garnet and kyanite, and olivine being replaced by orthopyroxene and possibly omphacite. The peak assemblage was overprinted by: (1) the multi-mineralic corona assemblage pargasite–orthopyroxene–spinel–plagioclase replacing garnet–kyanite–clinopyroxene (possibly at c. 19 kbar, 760±25 °C); (2) orthopyroxene–pargasite–plagioclase–scapolite coronas replacing orthopyroxene (15±1.5 kbar, 750±50 °C); and (3) moats of orthopyroxene–plagioclase replacing garnet (10±1 kbar, 760±50 °C). The garnet–omphacite rocks record similar peak conditions (15±1.1 kbar, 760±60 °C). Garnet–clinopyroxene–hornblende–plagioclase gneisses envelop the eclogites and record matrix conditions of 11±1.5 kbar at 730±50 °C using assemblages that are oriented in the regional fabric. These rocks are characterized by decompression-heating textures, reflecting temperature increases during exhumation of the Makuti gneisses. The eclogite facies rocks formed during a collisional event prior to 850 Ma. Their formation could be related to a suture zone that developed along the axis of the Zambezi Belt during the formation of Rodinia (between 1400 and 850 Ma). The main deformation-metamorphism in the Makuti gneisses occurred around 800 Ma and involved extension and exhumation of the high-P rocks (break-up of Rodinia), which experienced a high-T metamorphic overprint. Around 550–500 Ma, a collisional event associated with the formation of Gondwana resulted in renewed burial and metamorphic recrystallization of the Makuti gneisses.  相似文献   

14.
Garnet–clinopyroxene intermediate granulites occur as thin layers within garnet–kyanite–K–feldspar felsic granulites of the St. Leonhard granulite body in the Bohemian Massif. They consist of several domains. One domain consists of coarser‐grained coexisting ternary feldspar, clinopyroxene, garnet, quartz and accessory rutile and zircon. The garnet has 16–20% grossular, and the clinopyroxene has 9% jadeite and contains orthopyroxene exsolution lamellae. Reintegrated ternary feldspar and the Zr‐in‐rutile thermometer give temperatures higher than 950 °C. Mineral equilibria modelling suggests crystallization at 14 kbar. The occurrence and preservation of this mineral assemblage is consistent with crystallization from hot dry melt. Between these domains is a finer‐grained deformed matrix made up of diopsidic clinopyroxene, orthopyroxene, plagioclase and K‐feldspar, apparently produced by reworking of the coarser‐grained domains. Embedded in this matrix, and pre‐dating the reworking deformation, are garnet porphyroblasts that contain clinopyroxene, feldspar, quartz, rutile and zircon inclusions. In contrast with the garnet in the coarser‐grained domains, the garnet generally has >30% grossular, the included clinopyroxene has 7–27% jadeite and the Zr content of rutile indicates much lower temperatures. Some of these high‐grossular garnet show zoning in Fe/(Fe + Mg), decreasing from 0.7 in the core to 0.6 and then increasing to 0.7 at the rim. These garnet are enigmatic, but with reference to appropriate pseudosections are consistent with localized new mineral growth from 650 to 850 °C and 10 to 17 kbar, or with equilibration at 20 kbar and 770 °C, modified by two‐stage diffusional re‐equilibration of rims, at 10–15 and 8 kbar. The strong pervasive deformation has obscured relationships that might have aided the interpretation of the origin of these porphyroblasts. The evolution of these rocks is consistent with formation by igneous crystallization and subsequent metamorphism to high‐T and high‐P, rather than an origin by ultrahigh‐T metamorphism. Regarding the petrographic complexity, combination of the high grossular garnet with the ternary feldspar to infer ultrahigh‐T metamorphism at high pressure is not justified.  相似文献   

15.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

16.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   

17.
The El Arenal metagabbros preserve coronitic shells of orthopyroxene ± Fe‐oxide around olivine, as well as three different types of symplectite consisting of amphibole + spinel, clinopyroxene + spinel and, more rarely, orthopyroxene + spinel. The textural features of the metagabbros can be explained by the breakdown of the olivine + plagioclase pair, producing orthopyroxene coronas and clinopyroxene + spinel symplectites, followed by the formation of amphibole + spinel symplectites, reflecting a decrease in temperature and, possibly, an increase in water activity with respect to the previous stage. The metagabbros underwent a complex P–T history consisting of an igneous stage followed by cooling in granulite, amphibolite and greenschist facies conditions. Although the P–T conditions of emplacement of the igneous protolith are still doubtful, the magmatic assemblage suggests that igneous crystallization occurred at a pressure lower than 6 kbar and at 900–1100 °C. Granulitic P–T conditions have been estimated at about 900 °C and 7–8 kbar combining conventional thermobarometry and pseudosection analysis. Pseudosection calculation has also shown that the formation of the amphibole + spinel symplectite could have been favoured by an increase in water activity during the amphibolite stage, as the temperature of formation of this symplectite strongly depends on aH2O (<740 °C for aH2O = 0.5; <790 °C for aH2O = 1). Furthermore, but not pervasive, re‐equilibration under greenschist facies P–T conditions is documented by retrograde epidote and chlorite. The resulting counterclockwise P–T path consists of progressive, nearly isobaric cooling from the igneous stage down to the granulite, amphibolite and greenschist stage.  相似文献   

18.
The sub-solidus fields of crystallization of a spectrum of synthetic aluminous basic compositions (high-alumina basalt, anorthite-enriched high-alumina basalt, kyanite eclogite, grosspydite and gabbroic anorthosite) have been investigated at pressures of up to 36 kb. At low pressures the assemblages are characterized by abundant plagioclase, clinopyroxene and possibly minor olivine and orthopyroxene. These correspond to natural gabbroic and pyroxene granulite assemblages. As pressure is increased garnet appears and increases gradually in amount at the expense of other ferromagnesian minerals and plagioclase, until finally at pressures of >23 kb at 1,100° C, plagioclase disappears and high pressure clinopyroxene+garnet+kyanite±quartz assemblages equivalent to eclogite are obtained. In the eclogite stability field, with further rise in pressure, the ratio ga/cpx and the grossular content of the garnet increase.In the high-alumina basalt composition the transitional garnet granulite assemblage (clinopyroxene+plagioclase+garnet±quartz) is spread over a pressure interval of 11 kb at 1,100° C. This is a greater interval than observed for other basalt compositions and is important in considering the hypothesis that the Mohorovicic Discontinuity is a phase change from basalt to eclogite. It indicates that the change in V p would be spread over a significant depth range, and no sharp seismic velocity discontinuity could result.The first experimental synthesis of kyanite eclogite from both high-alumina basalt and kyanite eclogite compositions has been obtained, as well as synthesis of unusual grossular-clinopyroxene-kyanite assemblages (grosspydite) from grosspydite and gabbroic anorthosite compositions. The pressures needed to synthesize these assemblages are somewhat greater than the pressures needed to synthesize eclogite from basic compositions of lower alumina content at the same temperature. Experimental confirmation of the observation that there is a direct relation between Gross/Alm + Py ratio of garnet and the Jd/Di ratio of co-existing pyroxene in grosspydite and kyanite eclogite assemblages found in kimberlite pipes has also been obtained.  相似文献   

19.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

20.
Calculated mineral equilibria are used to account for the formation of sapphirine–plagioclase, spinel–plagioclase and corundum–plagioclase symplectites replacing kyanite in quartz–plagioclase–garnet–kyanite granulite facies gneisses from the Southern Domain of the Athabasca granulite terrane, a segment of the Snowbird tectonic zone in northern Saskatchewan, Canada. Metamorphic conditions of >14 kbar and 800 °C are established for the high pressure, garnet–kyanite assemblage using constraints from P–T pseudosections and Zr‐in‐rutile thermometry. Replacement of kyanite by symplectites reflects the reaction of kyanite with the matrix following near‐isothermal decompression to <10 kbar. The chemical potential gradients developed between the kyanite and the matrix led to diffusion that attempted to flatten the gradients, kyanite persisting as a stable phase while it is consumed by symplectite from its edge. In this local equilibrium model, the mineral and mineral compositional spatial relationships are shown to correspond to paths in μ(Na2O)–μ(CaO)–μ(K2O)–μ(FeO)–μ(MgO) in the model chemical system, Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2 (NCKFMAS), with SiO2 and Al2O3 taken to be completely immobile. The values of μ(Na2O) and μ(CaO) are constrained by fixing P–T conditions and choosing appropriate μ(Na2O) and μ(CaO) values that correspond to the observed plagioclase compositions. μ(FeO)–μ(MgO) diagrams show the corresponding spatial relationships with kyanite and the symplectite phases. These results demonstrate that the replacement of kyanite by sapphirine–plagioclase and spinel–plagioclase appears to be metastable with respect to replacement by corundum–plagioclase. Replacement by corundum–plagioclase does also occur, apparently overprinting pre‐existing symplectite and also kyanite. Ignoring corundum, the resulting diagrams account for the spatial relationships and compositions observed in the spinel–plagioclase and sapphirine–plagioclase symplectites. They are predicted to occur over both a wide range of P–T conditions (6–11 kbar, 650–850 °C) and plagioclase compositions (XAn = 0.5–0.9). The wide range of P–T conditions that may result in identical spatial and compositional relationships suggests that such reaction textures may be of limited use in accurately quantifying the P–T conditions of retrograde metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号