首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Thickened heavy oils in China are genetically characteristic of continenta .As to their physico-chemical properties,these oils are very high in viscosity and low in sulphur and trace element con-tents.In the group constituents,the concentrations of non-hydrocarbons and asphaltene are very high but those of saturated hydrocarbons and aromatics are very low.The gas chromatograms of alkanes show that these heavy oils have high abundances of iso-alkanes and cyclic hydrocarbons.In all the steroids and terpenoids ,bicyclic sesquiterpenoids,tricyclic diterpenoids,re-arranged steranes and gammacerane are strongly bildegradation-resistent.The formation of heavy oil reservoirs is controlled mainly by late basin ascendance,biodegradation,flushing by meteoric water and oxidation in the oil-bearing formations.Ac-cording to their formation mechanisms,heavy oil reservoirs can be classified as four categories:weathering and denudation,marginal oxidation,secondary migration and thickening of bottom water .Spacially,heavy thick oil reservoirs are distributed regularly:they usually show some paragenetic relationships with normal oil reservoirs.Heavy oil reservoirs often occur in structural highs or in overlying younger strata.Their burial depth is about 200m.Horizontally,most of them are distributed on the margins of basins or depressions.  相似文献   

2.
山东东营凹陷八面河油田稠油成因分析   总被引:8,自引:2,他引:6  
东营凹陷八面河地区原油物性呈规律性的变化,偏离生油中心的构造高部位主要分布稠油,靠近生油中心的构造低部位主要分布正常油。对原油族组成与化学成分的分析表明,八面河油田稠油具有低饱芳比、饱和烃含量低、链烷烃与低分子量萘、菲等轻质馏分严重缺失等轻度-中等降解油特征,邻区草桥油田稠油含较为完整的生物降解标志物--25-降藿烷系列,系严重降解油,反映该区稠油的形成与次生变化有关。同区具有相同或相似油气成因的沙子岭原油的成熟度(C29甾烷ααα20S/(S+R)值为0.24~0.25)低于八面河的(C29甾烷ααα20S/(S+R)值为0.31~0.44),为典型未熟-低熟油。沙子岭的轻度或未降解油同样表现为正常油,反映八面河地区低温成烃与稠油无必然的联系,进一步验证八面河稠油主系次生成因。处于构造高部位的油藏由于埋深浅、保存条件差,导致水洗、生物降解等次生变化相对较强,最终形成稠油。  相似文献   

3.
东营凹陷北部陡坡带稠油地球化学特征与成因   总被引:6,自引:1,他引:6  
对东营凹陷北部陡坡带郑家—王庄地区稠油与相对稀油烃类组成进行了定性与定量分析。发现多数原油遭受不同程度的破坏 ,饱和烃、芳烃馏分呈有序缺失 ,于多数原油中检测到生物降解标志物 2 5 -降藿烷系列。地质与地球化学综合研究认为 ,以生物降解—氧化及相关的生化 /化学作用、以水洗—重力分异—轻质组分逸散为主的物理作用是郑家—王庄原油稠化的重要机理 ;东营凹陷北部“有限后退型”盆地边界发育的风化壳潜山、砂砾岩扇体储层孔渗条件好、油藏埋深浅、盖层条件差和不整合面等通道与外界的连通是郑家—王庄及邻区重质油形成的根本原因。提出生物标志物绝对定量可作为识别原油遭受次生改造作用程度、判断不同类型生物标志物抵抗降解能力大小的有效指标。利用生物标志物 ,发现郑家—王庄局部地区原油具有不同降解级别原油相混的混合现象 ,可能反映两次或多次充注。郑家—王庄及其邻区有望获得相对稀油新增储量。  相似文献   

4.
塔里木盆地北部奥陶系油气相态及其成因分析   总被引:8,自引:3,他引:5  
塔里木盆地北部地区奥陶系是最重要的勘探层系,油气资源丰富;同时油气相态复杂多样,既有凝析气藏、正常油藏,也有稠油油藏、沥青等。通过对油气藏形成演化与保存过程的系统分析,结合油气地球化学和流体包裹体等分析数据,发现油气相态的多样性与油气多期次充注与次生蚀变作用有关。提出塔北隆起的东部奥陶系存在三期油气充注过程,分别发生在加里东运动晚期-海西早期、海西运动晚期、喜马拉雅运动晚期,原油主要来源于中、上奥陶统烃源岩,天然气主要来自与寒武系烃源岩有关的液态烃的裂解;塔北隆起的中西部奥陶系的油气充注主要发生在海西运动晚期。塔北奥陶系油藏形成以后,经历了三期明显的调整改造过程:海西早期构造抬升导致志留-泥盆系遭受剥蚀,东部源自寒武系油气的古油藏遭受破坏,形成沥青;三叠系沉积前的晚海西运动,使得奥陶系生源的油藏大范围遭受降解稠化;晚喜山期,来自于满加尔坳陷的天然气自东向西充注,致使隆起东部早期形成的油藏发生强烈的气侵改造,形成次生凝析气藏。而中西部奥陶系油藏在三叠系沉积前遭受降解稠化后,一直处于沉降深埋过程,油藏得到有效保存;由于成藏时间较早,轻质组分散失较多,气油比极低,油质较稠。研究认为,油气相态的多样性主要受晚海西期构造运动的抬升造成的生物降解作用和喜马拉雅晚期构造运动造成的天然气自东向西大规模充注对油藏进行气洗改造两大过程的控制。  相似文献   

5.
<正>The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution.For this reason,the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area.Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks,i.e.,heavy oils are distributed in the TZ47-15 well-block in the North Slope while normal and light oils in the No.Ⅰfault belt and the TZ16 well-block,which means that the oil properties are controlled by structural patterns.Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks,suggesting a good genetic relationship. However,the compound specific isotope of n-alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian-Lower Ordovician source rocks.Most Silurian oils have a record of secondary alterations like earlier biodegradation,including the occurrence of "UCM" humps in the total ion current(TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils,and regular changes in the abundances of light and heavy components from the structural low to the structural high.The fact that the Silurian oils are enriched in chain alkanes,e.g.,n-alkanes and 25-norhopane,suggests that they were mixed oils of the earlier degraded oils with the later normal oils.It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions.The migration and accumulation models of these oils in the TZ47-15 well-blocks,the No.Ⅰfault belt and the TZ16 well-block are different from but related to each other.The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area.  相似文献   

6.
A suite of 18 oils from the Barrow Island oilfield, Australia, and a non-biodegraded reference oil have been analysed compositionally in order to detail the effect of minor to moderate biodegradation on C5 to C9 hydrocarbons. Carbon isotopic data for individual low molecular weight hydrocarbons were also obtained for six of the oils. The Barrow Island oils came from different production wells, reservoir horizons, and compartments, but have a common source (the Upper Jurassic Dingo Claystone Formation), with some organo-facies differences. Hydrocarbon ratios based on hopanes, steranes, alkylnaphthalenes and alkylphenanthrenes indicate thermal maturities of about 0.8% Rc for most of the oils. The co-occurrence in all the oils of relatively high amounts of 25-norhopanes with C5 to C9 hydrocarbons, aromatic hydrocarbons and cyclic alkanes implies that the oils are the result of multiple charging, with a heavily biodegraded charge being overprinted by fresher and more pristine oil. The later oil charge was itself variably biodegraded, leading to significant compositional variations across the oilfield, which help delineate compartmentalisation. Biodegradation resulted in strong depletion of n-alkanes (>95%) from most of the oils. Benzene and toluene were partially or completely removed from the Barrow Island oils by water washing. However, hydrocarbons with lower water solubility were either not affected by water washing, or water washing had only a minor effect. There are three main controls on the susceptibility to biodegradation of cyclic, branched and aromatic low molecular weight hydrocarbons: carbon skeleton, degree of alkylation, and position of alkylation. Firstly, ring preference ratios at C6 and C7 show that isoalkanes are retained preferentially relative to alkylcyclohexanes, and to some extent alkylcyclopentanes. Dimethylpentanes are substantially more resistant to biodegradation than most dimethylcyclopentanes, but methylhexanes are depleted faster than methylpentanes and dimethylcyclopentanes. For C8 and C9 hydrocarbons, alkylcyclohexanes are more resistant to biodegradation than linear alkanes. Secondly, there is a trend of lower susceptibility to biodegradation with greater alkyl substitution for isoalkanes, alkylcyclohexanes, alkylcyclopentanes and alkylbenzenes. Thirdly, the position of alkylation has a strong control, with adjacent methyl groups reducing the susceptibility of an isomer to biodegradation. 1,2,3-Trimethylbenzene is the most resistant of the C3 alkylbenzene isomers during moderate biodegradation. 2-Methylalkanes are the most susceptible branched alkanes to biodegradation, 3-methylalkanes are the most resistant and 4-methylalkanes have intermediate resistance. Therefore, terminal methyl groups are more prone to bacterial attack compared to mid-chain isomers, and C3 carbon chains are more readily utilised than C2 carbon chains. 1,1-Dimethylcyclopentane and 1,1-dimethylcyclohexane are the most resistant of the alkylcyclohexanes and alkylcyclopentanes to biodegradation. The straight-chained and branched C5–C9 alkanes are isotopically light (depleted in 13C) relative to cycloalkanes and aromatic hydrocarbons. The effects of biodegradation consistently lead to enrichment in 13C for each remaining hydrocarbon, due to preferential removal of 12C. Differences in the rates of biodegradation of low molecular weight hydrocarbons shown by compositional data are also reflected in the level of enrichment in 13C. The carbon isotopic effects of biodegradation show a decreasing level of isotopic enrichments in 13C with increasing molecular weight. This suggests that the kinetic isotope effect associated with biodegradation is site-specific and often related to a terminal carbon, where its impact on the isotopic composition becomes progressively ‘diluted’ with increasing carbon number.  相似文献   

7.
含油流体包裹体:地球化学分析与地质应用   总被引:1,自引:2,他引:1  
利用含油流体包裹体可以获得与原油和源区常规分析同等质量的可靠地球化学数据。细致而又小心谨慎地对待各测试步骤(如样品清洗、背景空白等)是成功进行包裹体油气成分分析的基础。从技术上来说,每一分析步骤都具有挑战性,但如果我们能按步骤循序渐进,就不仅能够分析那些含有大量石油包裹体的样品(如当今或古油藏样品),而且可以测试含极少量石油包裹体的样品(如迁移路径或极古老岩石样品)。包裹体中可被测试的碳氢化合物多种多样,包括低分子量的碳氢化合物、n-链烷、类异戊二烯、生物标志物、芳香族碳氢化合物等。流体包裹体内石油成分分析在地质上有广泛应用,比如可以更好地重建储集区石油重注史、确定盆地中以前未知的活性源岩。在储集区内由生物降解造成的石油再造和(或)水洗作用经常被抹去,流体包襄体分析则可以解释储集区复杂成油阶段,当然更可以去除钻孔泥浆添加剂或其他污染物的影响。此外,也可以获知地球早期生物圈碳氢化合物的组成及多样性,以及在勘探区或盆地进行二次迁移路径填图。  相似文献   

8.
轮南地区油气相态分布非常复杂,奥陶系油气藏平面上具有西油东气的特点。西部轮古西油田、塔河油田和轮南1井区油族成熟度略低且有生物降解痕迹,主要以重油形式分布;东部地区油族成熟度略高,主要以轻质油、凝析油形式存在;中间地段桑塔木断垒带、中部平台区和轮南断垒带发生混合作用形成了中一高蜡油。各地区油气在垂向上变化很大,东部地区奥陶系和石炭系为凝析油气,三叠系又为正常油分布区;西部地区奥陶系为稠油,三叠系为正常油。轮南地区奥陶系在纵向上可能受控于岩溶和储层的发育程度,横向上受控于断裂作用。轮南地区油气成藏时间较早,不同物性的原油都是古油藏多期供油的结果。  相似文献   

9.
《Applied Geochemistry》2005,20(7):1427-1444
Very high S oils (up to 14.7%) with H2S contents of up to 92% in the associated gas have been found in the Tertiary in the Jinxian Sag, Bohai Bay Basin, PR China. Several oil samples were analyzed for C and S stable isotopes and biomarkers to try to understand the origin of these unusual oil samples.The high S oils occur in relatively shallow reservoirs in the northern part of the Jinxian Sag in anhydrite-rich reservoirs, and are characteristic of oils derived from S-rich source rocks deposited in an enclosed and productive stratified hypersaline water body. In contrast, low S oils (as low as 0.03%) in the southern part of the Jinxian Sag occur in Tertiary lacustrine reservoirs with minimal anhydrite. These southern oils were probably derived from less S-rich source rocks deposited under a relatively open and freshwater to brackish lake environment that had larger amounts of higher plant inputs.The extremely high S oil samples (>10%) underwent biodegradation of normal alkanes resulting in a degree of concentration of S in the residual petroleum, although isoprenoid alkanes remain showing that biodegradation was not extreme. Interestingly, the high S oils occur in H2S-rich reservoirs (H2S up to 92% by volume) where the H2S was derived from bacterial SO4 reduction, most likely in the source rock prior to migration. Three oils in the Jinxian Sag have δ34S values from +0.3‰ to +16.2‰ and the oil with the highest S content shows the lightest δ34S value. This δ34S value for that oil is close to the δ34S value for H2S (∼0‰). It is possible that H2S was incorporated into functionalized compounds within the residual petroleum during biodegradation at depth in the reservoir thus accounting for the very high concentrations of S in petroleum.  相似文献   

10.
The crude oils from Oligocene and Miocene formation of upper Assam basin have moderate API gravity and significant wax content. Crude oils from HJN and MKM fields of upper Assam basin are being produced from Oligocene and Miocene sands. These oils are somewhat biodegraded in nature as evidenced from their API gravity, density, bulk composition, GC fingerprints and relative concentrations of compounds in the gasoline range. It is observed from whole oil gas chromatographic data that the lighter hydrocarbons are more effected as a result of biodegradation and water washing than the heavier components. In the gasoline range compounds highest degradation of n-alkanes are observed followed by iso- and cyclo- alkanes. The extent of the effect of biodegradation of the gasoline range compounds in crude oil samples cannot be illustrated by the concentrations of the compounds. The concentrations only describe qualitative differences in molecular composition. This difficulty can be overcome by using parameters called degradative loss (%). This parameter shows exactly how much loss or gain has taken place in the gasoline range compounds. Within the gasoline range compounds, n-alkanes, Benzene baring HJN 15 and MKM 14 and Toluene experienced degradative loss indicating effects of both biodegradation and water washing in these oils. Cyclo-alkanes are least effected by biodegradation followed by iso-alkanes in all the oils. The extent of biodegradation and water washing is different for each oils from HJN and MKM fields as indicated by the degradative loss (%) of the compounds in the gasoline range.  相似文献   

11.
稠油成因研究综述   总被引:5,自引:0,他引:5  
在阐述稠油地球化学特征基础上,对稠油的成因及其判识的最新研究进展进行了综述,稠油成因类型分原生型和次生型,其中,次生型稠油主要由生物降解、水洗和氧化作用分解、消耗或氧化原油中的烃类组分,使非烃和沥青质含量相对增加,致使原油密度和黏度增大,油质变稠.最后指出了目前稠油成因机制研究中存在的问题以及今后发展的方向.  相似文献   

12.
Deeply buried heavy oils from the Tabei Uplift of the Tarim Basin have been investigated for their source origin, charge and accumulation time, biodegradation, mixing and thermal cracking using biomarkers, carbon isotopic compositions of individual alkanes, fluid inclusion homogenization temperatures and authigenic illite K–Ar radiometric ages. Oil-source correlation suggests that these oils mainly originated from Middle–Upper Ordovician source rocks. Burial history, coupled with fluid inclusion temperatures and K–Ar radiometric ages, suggests that these oils were generated and accumulated in the Late Permian. Biodegradation is the main control on the formation of these heavy oils when they were elevated to shallow depths during the late Hercynian orogeny. A pronounced unresolved complex mixture (UCM) in the gas chromatograms together with the presence of both 25-norhopanes and demethylated tricyclic terpanes in the oils are obvious evidence of biodegradation. The mixing of biodegraded oil with non-biodegraded oil components was indicated by the coexistence of n-alkanes with demethylated terpanes. Such mixing is most likely from the same phase of generation, but with accumulation at slightly different burial depths, as evidenced by overall similar oil maturities regardless of biodegradation level and/or amount of n-alkanes. Although these Ordovician carbonate reservoirs are currently buried to over 6000 m with reservoir temperatures above 160 °C, no significant secondary hydrocarbon generation from source rocks or thermal cracking of reservoired heavy oil occur in the study area. This is because the deep burial occurred only within the last 5 Ma of the Neogene, and there has not been enough heating time for additional reactions within the Middle–Upper Ordovician source rocks and reservoired heavy oils.  相似文献   

13.
通过对稠油进行常规物性、碳同位素和有机地球化学分析,系统阐述了查干凹陷稠油地化特征及其形成的主控因素。查干凹陷存在原生和次生两类稠油,原生稠油非烃含量高于饱和烃含量,原油族组分富集轻碳同位素,C29规则甾烷系列中以ααα构型为主,αββ构型甾烷含量低,没有重排甾烷。三环萜/五环萜值低,伽马蜡烷含量高,姥植比值低,其成烃母质沉积于高盐还原环境,多种地化参数表明原生稠油是巴音戈壁组烃源岩低熟演化阶段排烃的产物。次生稠油为油气运聚成藏之后,由于后期保存条件改变并经历次生改造作用形成的高密度、高黏度和低凝固点的原油。次生稠油埋深一般小于1200 m,主要为生物降解油,其中部分属于多期混源稠油。次生稠油正构烷烃损失严重,类异戊二烯烃不同程度遭受侵蚀,甾萜烷分布完整,表征原油达到中等降解程度。研究表明,原油稠化是多种稠化因素共同作用的结果,生物降解作用是研究区稠油形成的主要机制,查干凹陷后期的构造抬升为原油稠化提供了必要条件,活跃的水介质条件为浅层喜氧微生物活动提供了良好的氧化环境和营养物质。  相似文献   

14.
OILFIELDWATER,WHICHEXISTSCONCOMITANTLYWITH OILORGASINSUBSURFACERESERVOIRS,ISAKINDOFIMPOR TANTCOMPONENTOFRESERVOIRFLUIDANDALSOISADRIVING FORCEANDCARRIERFORHYDROCARBONMIGRATION,ACCUMULA TIONANDHYDROCARBONRESERVOIRFORMATION.OILFIELDWA TER,HYDROCARBONANDRESER…  相似文献   

15.
生物降解原油地球化学研究新进展   总被引:18,自引:0,他引:18  
生物降解作用是原油的一种重要的蚀变作用,对原油的物性和经济价值有着负面的影响。全球石油大多遭受过生物降解。生物降解作用对常见生物标志物的影响得以较好的描述,综述了近年来高分子量正构烷烃、三环萜烷、25 降藿烷生物降解的新进展。目前对生物降解作用的细节、发生机理尚不十分清楚,讨论了原油喜氧和厌氧降解机制,认为厌氧作用可能起主导作用,降解速率很慢。温度是控制生物降解作用的重要因素,储层温度大于80℃不会发生生物降解作用。生物降解原油多为混源油,介绍了研究生物降解原油的多期成藏方法。沥青质不易生物降解,其热解产物及钌离子催化氧化产物在生物降解原油对比、油源对比中具有重要的作用;最后指出了今后的发展方向。  相似文献   

16.
Natural gas resources occur extensively along the east coast of China, with a number of large and medium-sized gas fields being discovered in recent years. Gas reservoirs include Neogene, Paleogene and the underlying Mesozoic and Paleozoic basement. Of the total proven natural gas reserves in the Jiyang Superdepression, Bohai Bay Basin, almost 89.7% is present in the shallow Neogene gas pools, in traps formed on top of the paleotopographic highs and along the margin of the secondary depressions. These gases are closely associated with heavy oils, occurring as gas caps or associated gases within the heavy oil pools, or in separate gas pools above, or updip from, the heavy oil pools. The gases contain over 95% methane and small quantities of alkanes, nitrogen and carbon dioxide. The stable carbon isotopes of methane in these gases are up to 10‰ more positive than those of the thermogenic gases in the deep Paleogene reservoirs, with propane more enriched in 13C than butane. This study demonstrated that the majority of the petroleum source rocks in the Jiyang Superdepression tend to be oil-prone, and are currently within or shallower than the conventional oil window (0.45–1.0% Ro). The chemical and carbon isotopic compositions of the gases, together with the moderate to severe biodegradation of the associated heavy oils in the shallow Neogene strata, clearly suggest that the formation of the shallow natural gases in the Jiyang Superdepression result from the anaerobic degradation of accumulated oils in reservoir.  相似文献   

17.
Forty-six crude oil samples were selected from the Ordovician in the northwestern part of the Tahe oilfield for detailed molecular geochemical and isotopic analysis, including group compositions, carbonhydrogen isotopes and gas chroma-tograms of saturated hydrocarbons, as well as the characteristics of terpane, sterane and other biomarkers, indicating that crude oils are of the same origin from different districts in the Tahe oilfield and were derived from the same source kitchen (or oil source formation), i.e., mainly stemming from marine hydrocarbons. Detailed studies of oil physical properties of 25-honpane revealed that such oils have heavy or thick oil qualities due to biodegradation. Comprehensive assessment in terms of five maturity parameters shows that the oils from the Ordovician with Ro values varying from 0.80% to 1.59% are widely distributed in the northwest of the Tahe oilfield.  相似文献   

18.
混合原油的地球化学特征及成藏贡献率   总被引:1,自引:0,他引:1  
含油气盆地中存在混合原油的现象非常普遍,按照形成条件可区分出4种不同的混合类型.地球化学研究表明不同有机相原油混合后体现各自母源的生物标志化合物组合特征;生物降解原油与正常原油混合后具有完整的饱和烃谱峰,同时还反映生物降解特点;不同成熟度的原油混合后既可检出热稳定性低的化合物,部分成熟度参数还可指示成熟特征;高成熟天然气与原油混合后,往往会使不同组分段的成熟度产生明显变化.特殊化合物绝对浓度定量法、生物标志化合物参数法、碳同位素法和拟合图版法是常见的定量成藏贡献率方法.针对混合原油地球化学识别和贡献率定量中的局限性,提出了利用指纹技术进行优化的思路.  相似文献   

19.
GC、GC-MS、GC-MS-MS分析表明,塔河17区块各油藏原油饱和烃、芳烃生物标志物组成和稳定碳同位素特征具有同源性,即塔河原油来自相同的烃源灶(或烃源层)。然而,对原油物性特征、成熟度特征、生物降解特征及原油馏分碳同位素组成等的深入研究发现,塔河原油属于早、晚两次充注成藏:早期充注为一般成熟型原油,相当于Ro值0.70%0.80%成熟阶段的生排烃产物,遭受生物降解后具有重、稠油特征,主要分布在4、6、7区下奥陶统储层中;晚期成藏原油相当于Ro值0.80%1.00%的高成熟阶段的生烃产物,表现为正常油、甚至轻质油或凝析油,在塔河油田广泛分布,并可以与早期充注油藏原油的生物降解残留成分进行充分混合,呈现复杂的地球化学特征。   相似文献   

20.
青海柴达木盆地南八仙油气田油源与成藏机理   总被引:12,自引:1,他引:11  
柴达木盆地南八仙油气田不同油气藏间原油性质特征变化明显,油层在纵向井段上分布范围逾3000余m。通过地球化学实验并结合构造等地质条件分析,认为该区各种深、浅层油气藏中的原油具有煤成烃的基本地球化学特征,并且为同一来源,油源为临近地区较深部位中侏罗统煤系地层;该区深、浅层原油物性间的差异也反映在地球化学指标上,其成因或成藏机理是:深部早期油藏在断裂等地质作用下发生了明显的蒸发分馏作用,其分馏出的产物在浅部再次聚集成藏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号