首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have developed a method to reconstruct palaeorelief by means of detailed geomorphological and geological studies, geostatistical tools, GIS and a DEM. This method has been applied to the Sierra de Atapuerca (NE Duero Basin, Burgos, Spain), allowing us to model a three‐dimensional reconstruction of the relief evolution from the Middle Miocene to the present. The modelling procedure is based on geostatistical recovery of the palaeosurfaces characteristic of each geomorphological evolution stage, using polynomial regressions, trend surfaces and kriging. The modelling of morphology trends has been useful in establishing new geological and geomorphological relationships in the geodynamic evolution of this basin, such as uplift quantification, correlation of erosion surfaces and sedimentary units, and the evolution of fluvial base levels. The palaeosurface reconstruction together with an analysis of the slope retreat have allowed us to reconstruct the palaeoreliefs that define the Late Cenozoic landscape evolution of this area, where the Lower and Middle Pleistocene archaeopalaeontological sites of the Sierra de Atapuerca are located. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Hypsometry of glaciated landscapes   总被引:1,自引:0,他引:1  
Hypsometry (frequency distribution of elevations) is often used to characterize landscape morphology, traditionally in the context of the degree of ?uvial dissection. Recently, the hypsometry of glaciated regions has been used to infer how rates of glacial erosion compare with tectonic uplift rates. However, many factors other than tectonics can also exert a major in?uence on the hypsometry of a glaciated landscape, resulting in a wide variety of hypsometries. Using examples from the eastern Sierra Nevada, California, the western Sangre de Cristo Range, Colorado, and the Ben Ohau Range, New Zealand, we demonstrate that, all else being equal, the hypsometries of neighbouring basins can indicate the relative degree of glacial modi?cation in each. A selection of drainage basins from the Rocky Mountains shows that the position of the equilibrium line altitude (ELA) within the drainage basin relief is a dominant variable in determining the hypsometry of a glaciated basin. This is a non‐linear effect: once the ELA falls to some critical level, the glaciers scour deeply below the ELA, causing a noticeably different hypsometry. The hypsometry of an arbitrary region encompassing many drainage basins can disguise the variation present in the hypsometries, and thus landforms, of the individual basins. Unique local circumstances, such as the presence of a mountain ice?eld (Waiho Basin, Southern Alps), substantial hanging valleys (Avalanche Creek, Glacier National Park), a narrow outlet canyon (Sawmill Creek, Sierra Nevada), and isolated geologic structures (Baker Creek, Sierra Nevada), can have a major impact on the hypsometry of an individual basin. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
太湖流域水问题及对策探讨   总被引:1,自引:0,他引:1  
孙继昌 《湖泊科学》2005,17(4):289-293
系统回顾了太湖流域自古以来的治水历史和经验教训,详细介绍了新中国成立后太湖治理进展和取得成就,分析 了当前流域存在的主要水问题,指出流域仍存在防洪减灾能力偏低、水资源调控能力不足、水污染严重、水资源和水环境 承载能力偏低等问题.这些问题如不能得到及时解决,将成为今后流域经济社会可持续发展的严重制约因素.在此基础 上,提出了要加快构建流域防洪减灾体系、流域水资源调控体系、流域水生态环境保护体系、流域现代化管理和调度体系 等四大体系的对策,实现太湖流域水资源“引得进、蓄得住、排得出、可调控”的目标,以太湖流域水资源可持续利用支撑 和保障流域经济社会的可持续发展.  相似文献   

5.
Fluvial rias are elongated lakes at tributary mouths that can reach dozens of kilometers in length, constituting one of the most remarkable features in the Amazonian landscape. Thus far, definitive data which documents the genesis of fluvial rias have not been published. The main goal of this work was to integrate morphological, sedimentological and chronological information in order to characterize fluvial paleorias in the interfluve of the Purus and Madeira Rivers and discuss the most likely hypothesis for their genesis. These paleorias were first observed through remote sensing imagery as several elongated and interconnecting belts of open vegetation that are in sharp contact with the surrounding dense forest. The belts are branched and form a dendritic pattern similar to many modern drainage networks. The sedimentary record of these belts revealed the prevalence of sharp‐based sandstones and mudstones arranged into fining‐upward successions, which are compatible with deposition within channels. Active channel and abandoned channel deposits were recognized. These are topped by continuous mudstones related to rapid channel abandonment and formation of a low energy basin or ria environment. Radiocarbon dating of these deposits recorded only Late Pleistocene and Holocene ages ranging from 21 547–22 285 cal yr bp to 5928–6124 cal yr bp . This chronology for sediment deposition is not compatible with the hypothesis of Amazonian rias being formed by fluvial erosion during the Last Glaciation Maximum low sea level, with sediment accumulation during the subsequent Holocene transgression. Instead, the studied paleorias record previous tributaries of the Madeira River that became abandoned as the position of this river shifted southeastward and its interfluve tilted northward, inverting the drainage systems. Therefore, a neotectonic origin of some Amazonian paleorias seems most likely. This hypothesis should be considered in further investigations aiming at understanding the origin of numerous modern fluvial rias that typify the Amazonian landscape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes the significant depositional setting information derived from well and seismic survey data for the Upper Cretaceous to Lower Eocene forearc basin sediments in the central part of the Sanriku‐oki basin, which is regarded as a key area for elucidating the plate tectonic history of the Northeast Japan Arc. According to the results of well facies analysis utilizing cores, well logs and borehole images, the major depositional environments were of braided and meandering fluvial environments with sporadically intercalated marine incursion beds. Seismic facies, reflection terminations and isopach information provide the actual spatial distributions of fluvial channel zones flowing in a north–south trending direction. The transgression and regression cycles indicate that the Upper Cretaceous to Lower Eocene successions can be divided into thirteen depositional sequences (Sequences SrCr‐0 to SrCr‐5, and SrPg‐1 to SrPg‐7). These depositional sequences demonstrate three types of stacking patterns: Types A to C, each of which shows a succession mainly comprising a meandering fluvial system, a braided fluvial system with minor meandering aspects in the upper part, and major marine incursion beds in the middle part, respectively, although all show an overall transgressive to regressive succession. The Type C marine incursion beds characteristically comprise bay center and tidal‐dominated bay margin facies. Basin‐transecting long seismic sections demonstrate a roll up structure on the trench slope break (TSB) side of the basin. These facts suggest that during the Cretaceous to Eocene periods, the studied fluvial‐dominated forearc basin was sheltered by the uplifted TSB. The selective occurrences of the Type C sequences suggest that when a longer‐scale transgression occurred, especially in Santonian and early Campanian periods, a large bay basin was developed, creating accommodation space, which induced the deposition of the Cretaceous Kuji Group along the arc‐side basin margin.  相似文献   

7.
-- The main active faults of the Granada Basin are located in its central-eastern sector, where the most important tectonic activity is concentrated, uplifting its eastern part and sinking the western border. Several parameters related to the seismic potentiality of these active, or in some cases probably active, faults in this basin are used for the first time. Many of these faults can generate earthquakes with magnitudes larger than 6.0 MW, although this is not the general case. The fault situated to the N of Sierra Tejeda, probably the one responsible for the big earthquake of 25/12/1884, stands out, because it could generate an earthquake with magnitude 6.9 MW. Although at present all the data needed are not fully known, we consider that the final results show, as a whole, the average expected return periods of the faults in the Granada Basin.  相似文献   

8.
The present work reports the first numerical ages obtained for the two highest fluvial terraces (Qt1 and Qt2) of the Alcanadre River system (Northeastern Spain) representing the earliest remnants of Quaternary morphosedimentary fluvial activity in the Ebro basin. ESR dating method was applied to optically bleached quartz grains and both the Al and Ti centers were measured, in accordance with the Multiple Center approach. The results are overall in good agreement with the existing preliminary chronostratigraphic framework and our interpretation indicate that terraces Qt1 and Qt2 have an ESR age of 1276 ± 104 ka and 817 ± 68 ka, respectively. These data provide some chronological insights on the beginning of the fluvial sedimentary processes in a scenario of incision maintained over Quaternary in the Ebro Basin. These are among the first numerical ages obtained for such high terraces in the Iberian Peninsula.Our results demonstrate the interest of using the Multiple Center approach in ESR dating of quartz, since the two centers provide complementary information, i.e. an independent dose control. The overall apparent consistency between the ESR age estimates and the existing preliminary chronostratigraphic framework may be considered as an empirical evidence that the Ti–Li center may actually work for Early Pleistocene deposits, whereas the Ti–H center shows some clear limitations instead. Finally, these results demonstrate the interest of using ESR method to date Early Pleistocene fluvial terraces that are usually beyond the time range covered by the OSL dating method.  相似文献   

9.
Variation in fluvial landforms and associated vegetation in the headward (upstream) direction has received little study and the controlling factors are not well understood. The relations among channel gradient, basin area, stream order, and the headward extent of fluvial landforms and vegetation was studied in 18 small basins and larger nearby stream reaches in the Massanutten Mountain area, northern Shenandoah Valley, Virginia. Low-order streams were traversed to their basin heads. Notice was made of the point or region of the disappearance of fluvial landforms. Indicator species were used to confirm landform identification. The studied landforms include the channel bar, channel shelf, floodplain, and terraces. Basin geomorphic characteristics were determined from topographic and geologic maps and ground surveys. Results suggest that gradient is the most important factor controlling the development of fluvial landforms. Floodplains have not developed along stream reaches where average channel gradients exceed 0.15. Channel shelves and associated vegetation occur farther upstream than floodplains.  相似文献   

10.
Fluvial systems in uplifting terrain respond to tectonic, climatic, eustatic and local base‐level controls modified by specific local factors, such as river capture. The Rio Alias in southeast Spain is an ephemeral, transverse‐to‐structure fluvial system. The river drains two interconnected Neogene sedimentary basins, the Sorbas and Almeria basins, and crosses two major geological structures, the Sierras de Alhamilla/Cabrera and the Carboneras Fault Zone. Regional epeirogenic uplift resulted in sustained fluvial incision during the Quaternary, punctuated by major climatically driven periods of aggradation and dissection, which created a suite of five river terraces. The river terrace sequence was radically modified in the late Pleistocene by a major river capture (itself a response to regional tectonics), localized tectonic activity and eustatic base‐level change. The Rio Alias is defined by four reaches; within each the climatically‐generated, region‐wide, fluvial response was modified by tectonics, base‐level change or river capture to varying degrees. In the upper part of the basin (Lucainena reach), climate was the dominant control on river development, with limited modification of the sequence by uplift of the Sierra Alhamilla and local drainage reorganization by a local river capture. Downstream of the Sierra Alhamilla in the Polopus reach, the climatic signal is dominant, but its expression is radically modified by the response to a major river capture whereby the Alias system lost up to 70% of its pre‐capture drainage area. In the reach adjacent to the Carboneras Fault Zone (Argamason reach), modification of the terrace sequence by local tectonic activity and a resultant local base‐level fall led to a major local incisional event (propagating c. 3–4 km upstream from the area of tectonic disturbance). At the seaward end of the system (El Saltador reach) Quaternary sea‐level changes modified the patterns of erosion and incision and have resulted in steep incisional terrace profiles. The signals generated by regional tectonics and the Quaternary climate change can be identified throughout the basin but those generated by ongoing local tectonics, river capture and sea‐level change are spatially restricted and define the four reaches. The connectivity of the system from the headwaters to the coast decreased through time as incision progressed, resulting in changes in local coupling characteristics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The present study focuses on the morphotectonic evolution of the axial portion of the Southern Apennine chain between the lower Calore River valley and the northern Camposauro mountain front (Campania Region). A multidisciplinary approach was used, including geomorphological, field‐geology, stratigraphical, morphotectonic, structural, 40Ar/39Ar and tephrostratigraphical data. Results indicate that, from the Lower Pleistocene onwards, this sector of the chain was affected by extensional tectonics responsible for the onset of the sedimentation of Quaternary fluvial, alluvial fan and slope deposits. Fault systems are mainly composed of NW‐SE, NE–SW and W‐E trending strike‐slip and normal faults, associated to NW‐SE and NE–SW oriented extensions. Fault scarps, stratigraphical and structural data and morphotectonic indicators suggest that these faults affected the wide piedmont area of the northern Camposauro mountain front in the Lower Pleistocene–Upper Pleistocene time span. Faults affected both the oldest Quaternary slope deposits (Laiano Synthem, Lower Pleistocene) and the overlying alluvial fan system deposits constrained between the late Middle Pleistocene and the Holocene. The latter are geomorphologically and chrono‐stratigraphically grouped into four generations, I generation: late Middle Pleistocene–early Upper Pleistocene, with tephra layers 40Ar/39Ar dated to 158±6 and 113±7 ka; II generation: Upper Pleistocene, with tephra layers correlated with the Campanian Ignimbrite (39 ka) and with the slightly older Campi Flegrei activity (40Ar/39Ar age 48±7 ka); III generation: late Upper Pleistocene–Lower Holocene, with tephra layers correlated with the Neapolitan Yellow Tuff (~15 ka); IV generation: Holocene in age. The evolution of the first three generations was controlled by Middle Pleistocene extensional tectonics, while Holocene fans do not show evidence of tectonic activity. Nevertheless, considering the moderate to high magnitude historical seismicity of the study area, we cannot rule out that some of the recognized faults may still be active. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high-elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high-elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration.  相似文献   

13.
Factors influencing sediment transport and storage within the 156·6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11 000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a ‘quaternary terrace a (Qta)’ PRC terrace/PRC‐tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene‐Holocene transition caused intense debris‐flow erosion of PRC‐tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary‐valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene‐Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene‐Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene‐Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream‐capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley‐Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly interpret terrestrial sedimentary sequences in tectonically active areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Evolution of the Yangtze River in East Asia is closely linked to the evolving topography following India-Eurasia collision and plays an important role in connecting the Tibetan plateau and the marginal sea, which is of great significance for understanding the evolution of modern Asian landform pattern and exploring the response of river development to tectonic uplift and monsoon evolution. Thus, many methods have been performed to reconstruct the evolution history of the Yangtze River, but there are still some disputes about the age of the Yangtze River, which has been strongly debated for over a century with estimates ranging from late Cretaceous to late Pleistocene. At present, sediment provenance tracing is one of the most important methods for studying the Yangtze River drainage evolution, for the provenance tracers could effectively represent the source area information and the various dating methods would provide reliable chronology framework. Previous studies showed that the zircon high closure temperature, wide distribution in fluvial sediment, and convenient sampling and analyzing made the zircon U-Pb dating a unique indicator recording the source area information. However, the Yangtze River drains a large basin and runs through different geological blocks with complicated lithology, as well as the abundant thermal historical events, leading to the zircon U-Pb dating a challenge work in tracing the sediment source within the Yangtze River Basin. In this study, based on the combination of previous research data and the "source to sink" system, the limitations and disadvantages of the detrital zircon U-Pb dating in the studies of sediment provenance tracing of the Yangtze River Basin were re-analyzed and re-discussed. Considering the evolving process of the large river system, some key areas and diagnostic information carrier, including bedrock and fluvial sediments deposited in present day or geo-history, would provide significant constraints on the evolution process. The former records the original information of the source region, and the latter reserves the practical information preserved in the downstream sink. As for the Yangtze River Basin, the limitation and disadvantages of the detrital zircon U-Pb dating in tracing sediment provenance are showed as follows:Firstly, six major tectonic units in the source region shows four similar age peaks, which closely corresponds to the previously identified synchronous major granitoid magmatic episodes. Five similar age peaks obviously exist in the sediment of the downstream sink both in the modern fluvial sediment and the geo-historical deposits such as outcrops and basin sediments. Thus, detrital zircon U-Pb chronology is indistinguishable from source to sink, making it unreliable in provenance tracing of the Yangtze River. Secondly, comparing with the detrital zircon spectra of tributary downstream and the upper reaches, all the tributaries below the Three Gores, the running-through of which is regarded as the symbol of the establishment of the modern Yangtze River system, could make up the similar spectra with the modern river sediments. Moreover, Sichuan Basin and Jianghan Basin, which is the last basin and first basin in western and eastern of the Three Gorges, are crucial basins for recording the incision information. However, sediment in these two basins show the similar spectra with five major age peaks from early Jurassic to late Cretaceous, which means the detrital zircon U-Pb chronology could not efficiently record the capture information no matter in spatial scale or time scale. In addition, the same results are also shown in Neogene gravel layer both in Jianghan Basin and Nanjing area. In summary, we propose that the similarity of the detrital zircon age spectra exists widely in Yangtze River system, and this greatly restricts the application of detrital zircon chronology in provenance tracing in the Yangtze River Basin, and the combination of multi-index and multi-method will shed new light in the future studies of provenance tracing within Yangtze River drainage system.  相似文献   

15.
The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted Miocene shallow marine to terrestrial and lacustrine sediments and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle Miocene Salyan, Middle-upper Middle Miocene Gövdelidağ and Upper Miocene Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to Early Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which Miocene sediments were intensely deformed. The Early Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.  相似文献   

16.
The paper describes a sequence of Pliocene(? ) to Quaternary age calcretes developed within alluvial fan and fluvial gravels in the Tabernas Basin, Almería Province, southeast Spain. Calcrete profiles are described from sites adjacent to major tributaries of the Rambla de Tabernas. Six distinct calcrete units are identified within the basin. These have variable distributions but have developed in an identifiable evolutionary sequence. Two pairs of calcrete units are widely present across the basin preserving two former land surfaces. Each of the former land surfaces has been planated and subsequently buried by alluvial fan or fluvial gravels. A massive calcrete unit is present at the base of each gravel sequence, immediately in contact with the underlying bedrock, with a less well developed calcrete unit situated at the top of the gravel sequence. The lowest two calcrete units within the basin are more spatially restricted and are confined to the floors and flanks of incised drainage lines. The geochemistry, macro- and micromorphological properties and geomorphological positions of the calcrete units are outlined and, on the basis of this information, their mode of origin identified. Two main modes of calcrete genesis appear to be present: massive calcretes situated in direct contact with bedrock are suggested to have formed by groundwater processes, whilst calcretes situated at the top of gravel sequences are likely to have developed by pedogenic processes. Calcrete genesis is subsequently considered in the context of the reconstruction of the early phases of landscape development, and is suggested to have been controlled by phases of uplift and stability within the Tabernas Basin. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Kazuo Kimura 《Island Arc》1999,8(1):99-113
The geomorphology and related geostructures in the region of the dun valleys in Nepal (e.g. the Deukhuri Dun, the Chitwan Dun, the Hetauda Dun and the Trijuga Dun) have been surveyed in order to understand the neotectonics along the Himalayan front. The sub-Himalayan intermontane basins developed as piggyback basins located on the thrust-sheet of the Himalaya Front Fault (HFF equivalent to the Frontal Churia Thrust, the Main Siwalik Thrust or the Main Frontal Thrust). Each piggyback basin is a result of the north-northeast–south-southwest crustal shortening between the Indian Shield and the Himalayas. The evolution of the dun valleys is recorded as current reversals between the Upper Siwalik Group and the basin fills. The Upper Siwalik Group formed as piedmont alluvial fans distributed along the foot of the Lesser Himalaya and/or the Inner Churia Range, and show predominantly southerly current directions. In contrast, the basin fills distributed along the southern margin of the dun valleys formed by north-flowing drainage systems. The oldest basin fills of the piggyback basins appear to have commenced by the middle Pleistocene in the Deukhuri Dun and the Chitwan Dun, by the late Pleistocene in the Hetauda Dun, and by the latest Pleistocene in the Trijuga Dun. The diachronous evolution of the dun valleys suggest that the morphogenesis of the HFF zone was controlled by west-to-east propagation in late Quaternary time. These morphotectonics suggest the oblique-slip thrusting of the HFF zone which can be related to the oblique convergence between the Indian Shield and the Himalayas, and/or the counter-clockwise rotation of the Indian Subcontinent.  相似文献   

18.
Hui-Ping  Zhang  Shao-Feng  Liu  Nong  Yang  Yue-Qiao  Zhang  Guo-Wei  Zhang 《Island Arc》2006,15(2):239-250
Abstract   The Minshan Mountain and adjacent region are the major continental escarpments along the eastern Tibetan Plateau. The Minjiang drainage basin is located within the plateau margin adjacent to the Sichuan Basin. Based on the analysis of the digital elevation model (DEM) acquired by the Shuttle Radar Topography Mission (SRTM), we know that the Minjiang drainage basin has distinct geomorphic characteristics. The regular increasing of local topographic relief from north to south is a result of the Quaternary sediment deposition within the plateau and the holistic uplift of the eastern margin of the Tibetan Plateau versus the Sichuan Basin. Results from DEM-determined Minjiang drainage sub-basins and channel profiles show that the tributaries on the opposite sides are asymmetric. Lower perimeter and area of drainage sub-basins, total channel length and bifurcation ratio within eastern flank along the Minjiang mainstream are the result of the Quaternary differential uplift of the Minshan Mountain region. Shorter stream lengths and lower bifurcation ratio might be the indications of the undergrowth and newborn features of these eastern streams, which are also representative for the eastern uplift of the Minshan Mountain.  相似文献   

19.
We present new data about the morphological and stratigraphic evolution and the rates of fluvial denudation of the Tavoliere di Puglia plain, a low‐relief landscape representing the northernmost sector of the Pliocene‐Pleistocene foredeep of the southern Apennines. The study area is located between the easternmost part of the southern Apennine chain and the Gargano promontory and it is characterized by several orders of terraced fluvial deposits, disconformably overlying lower Pleistocene marine clay and organized in a staircase geometry, which recorded the emersion and the long‐term incision history of this sector since mid‐Pleistocene times. We used the spatial and altimetric distribution of several orders of middle to late Pleistocene fluvial terraces in order to perform paleotopographic reconstruction and GIS‐aided eroded volumes estimates. Then, we estimated denudation rates on the basis of the terraces chronostratigraphy, supported by published OSL and AAR dating. Middle to upper Pleistocene denudation rates estimated by means of such an approach are slightly lower than 0.1 mm yr‐1, in good agreement with short‐term data from direct and indirect evaluation of suspended sediment yield. The analysis of longitudinal river profiles using the stream power erosion model provided additional information on the incision rates of the studied area. Middle to late Quaternary uplift rates (about 0.15 mm yr‐1), calculated on the basis of the elevation above sea level of marine deposits outcropping in the easternmost sector of the study area, are quite similar to the erosion rates average value, thus suggesting a steady‐state fluvial incision. The approach adopted in this work has demonstrated that erosion rates traditionally obtained by quantitative geomorphic analysis and ksn estimations can be successfully integrated to quantify rates of tectonic or geomorphological processes of a landscape approaching steady‐state equilibrium. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Fluvial terraces are important geomorphic markers for modern valley development.When coupled with numeric ages,terraces can provide abundant information about tectonic,climatic,paleohydrological and the paleoenvironmental changes.On the basis of the paleomagnetic,electron spin resonance(ESR) and optically stimulated luminescence(OSL) dating,in addition to an investigation of local loess-paleosol sequences,we confirmed that 13 fluvial terraces were formed,and then preserved,along the course of the Upper Weihe River in the Sanyangchuan Basin over the past 1.2 Ma.Analyses of the characteristics and genesis of these terraces indicate that they resulted from the response of this particular river system to climate change over an orbital scale.These changes can further be placed within the context of local and regional tectonic uplift,and represent an alternation between lateral migration and vertical incision,dependent upon the predominance of climatic and tectonic controls during different periods.Most of the terraces are strikingly similar in that they have several meters of paleosols which have developed directly on top of fluvial deposits located on the terrace treads,suggesting that the abandonment of terraces due to river incision occurred during the transitions from glacial to interglacial climates.The temporal and spatial differences in the distribution patterns of terraces located on either side of the river valley indicate that a tectonic inversion occurred in Sanyangchuan Basin at-0.62 Ma,and that this was characterized by a transition from overall uplift to depression induced by fault activity.Synthesized studies of the Basin's terraces indicate that formation of the modern valley of the Upper Weihe River may have begun in the late Early Pleistocene between1.4-1.2 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号