首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the increasing demand for and consumption of crude oils, oil spill accidents happen frequently during the transportation of crude oils and oil products, and the environmental hazard they pose has become increasingly serious in China. The exact identification of the source of spilled oil can act as forensic evidence in the investigation and handling of oil spill accidents. In this study, a weathering simulation experiment demonstrates that the mass loss of crude oils caused by short-term weathering mainly occurs within the first 24h after a spill, and is dominated by the depletion of low-molecular weight hydrocarbons (相似文献   

2.
Song X  Xu Y  Li G  Zhang Y  Huang T  Hu Z 《Marine pollution bulletin》2011,62(10):2122-2128
Rhodococcus sp. P14 was isolated from crude oil-contaminated sediments. This strain was capable of utilizing three to five rings polycyclic aromatic hydrocarbons (PAHs) including phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP) as a sole carbon and energy source. After cultivated with 50mg/L of each PAH, strain P14 removed 43% Phe, 34% Pyr and 30% BaP in 30 d. Four different hydroxyphenanthrene products derived from Phe by strain P14 (1,2,3,4-hydroxyphenanthrene) were detected using SPME-GC-MS. Strain P14 also was capable of degrading mineral oil with n-alkanes of C17 to C21 carbon chain length. Compared with glucose-grown cells, PAHs-grown cells had decreased contents of shorter-chain length fatty acids (≤ C16:0), increased contents of C18:0, Me-C19:0 and disappeared odd-number carbon chain fatty acids. The contents of unsaturated C19:1, Me-C19:0 increased and C18:0 decreased in mineral oil-grown cells. At the same time, the strain P14 tended to float when cultivated in mineral oil-supplemented liquid medium. The degradation capability of P14 to alkane and PAHs and its floating characteristics will be very helpful for future's application in oil-spill bioremediation.  相似文献   

3.
Hydrocarbon degraders from tropical marine environments   总被引:1,自引:0,他引:1  
Analysis of 20 samples of marine mud and water around Mumbai resulted in the isolation of 17 bacteria and yeasts all of which were able to degrade more than 10% of the supplied crude oil. The yeasts strains were important degraders of the aliphatic fraction of crude. All the isolated yeasts belonged to the genus Candida. Using biochemical tests these were identified as Candida parapsilosis, C. albicans, C. guilliermondii, Yarrowia lipolytica, C. tropicalis and C. intermedia. Y. lipolytica was the best degrader utilizing 78% of the aliphatic fraction of Bombay High crude oil. None of these isolates degraded the aromatic or ashphaltene fractions. All the isolates required aeration, nitrogen and phosphate supplementation for optimal degradation. Four out of the six yeasts are human pathogens.  相似文献   

4.
Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the process of oil cracking into gas under different pressures.With an initial experimental temperature set at 300°C,the temperature was increased to 650°C at a heating rate of 30°C/h.The products were tested every 50°C starting at 300°C,and a pressure of 20 MPa was achieved using a water column.The low-maturity crude oil sample was from the Paleogene system in the Dongying sag in eastern China.The threshold temperature obtained for the primary oil cracking process in both pressure systems was 450°C.Before the oil was cracked into gas,some components,including macromolecular n-alkanes,were cracked into medium-or small-sized n-alkanes.The secondary oil cracking of heavy hydrocarbon gases of C2–5to methane mainly occurred between 550°C to 650°C,and the parameters Ln(C1/C2)and Ln(C1/C3),as well as the dry coefficients,increased.Overpressure inhibited the oil cracking process.In the 20 MPa system,the oil conversion rate decreased,the temperature threshold for gas generation rose,and oil cracking was inhibited.Compared with the normal pressure system,high-carbon n-alkanes and other compounds in the 20 MPa pressure system were reserved.Furthermore,the parameters∑C21-/∑22+,Ln(C1/C2),and Ln(C1/C3),as well as the dry coefficients,decreased within the main temperature range.During secondary oil cracking(550°C to 600°C),the Ph/nC18and Pr/nC17decreased.High pressure influenced the evolution of the biomarkers Ts and Tm,C31homohopane,C29sterane,and their related maturity parameters to different extents during oil cracking under different temperature ranges.  相似文献   

5.
A suite of crude oil samples,that had not been previously characterized geochemically,was collected from two oil fields in the southwest Niger Delta Nigeria.The saturate biomarkers were used to evaluate geochemical characteristics such as depositional environments,sources of organic matter and extent of biodegradation using gas chromatography-flame ionization detector and gas chromatography-mass spectrometry.Distribution of n-alkanes(Pr/Ph,and isoprenoide/n-alkanes ratios),the abundance of hopanes,oleanane skeleton and C27-C29 steranes in the oils indicate that they were formed from mixed sources(marine and terrestrial kerogen) deposited in an oxic paleoenvironment with no particular maturity trend.These parameters also permit the source grouping of the oils into two families.  相似文献   

6.
Among six crude oil-degrading yeasts that were isolated from an oil-polluted area in the Persian Gulf, two yeast strains showed high degradation activity of aliphatic hydrocarbons. From an analysis of 18S rRNA sequences and biochemical characteristics, these strains were identified as Yarrowia lipolytica strains PG-20 and PG-32. Gas Chromatography (GC) analysis of the crude oil remaining in the culture medium after 1 week at 30°C showed that the strains PG-20 and PG-32 degraded 68% and 58% of crude oil, respectively. The optimal growth condition and biodegradation of hydrocarbons was in ONR medium with an acidic pH (pH5). These two strains may degrade aliphatic hydrocarbons more efficiently than aromatic hydrocarbons, although strain PG-20 had better degradation than strain PG-32. The two Y. lipolytica strains reduce surface tension when cultured on hydrocarbon substrates (1% v/v). These strains showed a cell surface hydrophobicity higher than 70%. These results suggested that Y. lipolytica strains PG-20 and PG-32 have high crude oil degrading activity due to their high emulsifying activity and cell hydrophobicity. In conclusion, these yeast strains can be useful for the bioremediation process in the Persian Gulf and decreasing oil pollution in this marine ecosystem.  相似文献   

7.
A set of 34 worldwide crude oils, 12 distilled products (kerosene, gas oils, and fuel oils) and 45 oil samples taken from several Galician beaches (NW Spain) after the wreckage of the Prestige tanker off the Galician coast was studied. Gas chromatography with flame ionization detection was combined with chemometric multivariate pattern recognition methods (principal components analysis, cluster analysis and Kohonen neural networks) to differentiate and characterize the Prestige fuel oil. All multivariate studies differentiated between several groups of crude oils, fuel oils, distilled products, and samples belonging to the Prestige's wreck and samples from other illegal discharges. In addition, a reduced set of 13 n-alkanes out of 36, were statistically selected by Procrustes Rotation to cope with the main patterns in the datasets. These variables retained the most important characteristics of the data set and lead to a fast and cheap analytical screening methodology.  相似文献   

8.
The bacterial composition of the water column around two oil production platforms and a control site was examined. Samples were collected during three seasons of a 12-month sampling period three water depths were sampled at all stations occupied.No major differences were discovered in taxonomic or physiological makeup of bacterial populations of the oil field and control site. The genus Pseudomonas predominated at the oil field stations and the control. Bacterial numbers were lower for oil field stations than the control and generally decreased with depth. Microbial biomass estimates were consistently higher at the control site. Oil degrading and sulphur oxidizing bacteria were more numerous within the oil field, and their numbers decreased with distance from the platforms. Buccaneer crude oil did not adversely affect growth or attachment ability of oil field isolates.  相似文献   

9.
Total 26 modern soil samples were collected from various regions under different climate conditions from tropical to arid temperate in China and systematically analyzed for their organic matters by GC/MS in order to evaluate climatic impacts on soil organic components. Abundant lipids molecules were recognized, including n-alkanes, n-alkenones, and long-chain branched alkanes. We find the predominance of main peaks of long-chain n-alkanes (nC29,nC31,nC33) and short-chain ones(nC16,nC17,nC18) records information of soil generation in warm-humid and cold-dry regions. The proportion of n-alkanes(nC16 nC17 nC18)to(nC29 nC31 nC33)varies in good agreement with moisture-heat conditions and thus probably can serve as a new index for climate change. The ratios of C21-/nC22 ,nC17/nC31 and (nC15 nC17 nC19)/(nC27 nC29 nC31)of n-alkanes, indicating respectively input ratios of lower bacterial alga, aquatic organisms, and higher plants and terraneous organisms, co-vary well in different climate regions from forest to grassland and desert, suggesting that they have also reflected the difference of climates between monsoon region and inland one. The C21-/C22 ratio of n-alkan-2-one records largely the discrepancy of temperature from north to south of China bordered by the Qinling Mountains, but less humidity. The C21-/C22 ratio of n-alkan-3-ones changes well with climatic factors, such as temperature and humidity. The biogenic source of series A-D long-chain branched alkanes may be derived from some kinds of special epiphyte that most likely live in weak oxic-anoxic and moisture-heat environments, suggesting their distribution record as well some information on climatic change. All these researches demonstrate that the distributions of lipids molecules in modern soils in China record well signals of climates from quite different climatic regions, and can serve as important climatic proxies to reveal climatic change over China.  相似文献   

10.
Total 26 modern soil samples were collected from various regions under different climate conditions from tropical to arid temperate in China and systematically analyzed for their organic matters by GC/MS in order to evaluate climatic impacts on soil organic components. Abundant lipids molecules were recognized, including n-alkanes, n-alkenones, and long-chain branched alkanes. We find the pre- dominance of main peaks of long-chain n-alkanes (nC29, nC31, nC33) and short-chain ones (nC16, nC17, nC18) records information of soil generation in warm-humid and cold-dry regions. The proportion of n-alkanes (nC16 nC17 nC18) to (nC29 nC31 nC33) varies in good agreement with moisture-heat conditions and thus probably can serve as a new index for climate change. The ratios of C21-/nC22 , nC17/nC31 and (nC15 nC17 nC19) / ( nC27 nC29 nC31) of n-alkanes, indicating respectively input ratios of lower bacterial alga, aquatic organisms, and higher plants and terraneous organisms, co-vary well in different climate regions from forest to grassland and desert, suggesting that they have also reflected the difference of climates between monsoon region and inland one. The C21-/C22 ratio of n-alkan-2-one records largely the discrepancy of temperature from north to south of China bordered by the Qinling Mountains, but less humidity. The C21-/C22 ratio of n-alkan-3-ones changes well with climatic factors, such as tem- perature and humidity. The biogenic source of series A-D long-chain branched alkanes may be derived from some kinds of special epiphyte that most likely live in weak oxic-anoxic and moisture-heat envi- ronments, suggesting their distribution record as well some information on climatic change. All these researches demonstrate that the distributions of lipids molecules in modern soils in China record well signals of climates from quite different climatic regions, and can serve as important climatic proxies to reveal climatic change over China.  相似文献   

11.
Total 26 modern soil samples were collected from various regions under different climate conditions from tropical to arid temperate in China and systematically analyzed for their organic matters by GC/MS in order to evaluate climatic impacts on soil organic components. Abundant lipids molecules were recognized, including n-alkanes, n-alkenones, and long-chain branched alkanes. We find the predominance of main peaks of long-chain n-alkanes (nC29,nC31,nC33) and short-chain ones(nC16,nC17,nC18) records information of soil generation in warm-humid and cold-dry regions. The proportion of n-alkanes(nC16+nC17+nC18)to(nC29+nC31+nC33)varies in good agreement with moisture-heat conditions and thus probably can serve as a new index for climate change. The ratios of C21-/nC22+,nC17/nC31 and (nC15+nC17+nC19)/(nC27+nC29+nC31)of n-alkanes, indicating respectively input ratios of lower bacterial alga, aquatic organisms, and higher plants and terraneous organisms, co-vary well in different climate regions from forest to grassland and desert, suggesting that they have also reflected the difference of climates between monsoon region and inland one. The C21-/C22+ ratio of n-alkan-2-one records largely the discrepancy of temperature from north to south of China bordered by the Qinling Mountains, but less humidity. The C21-/C22+ ratio of n-alkan-3-ones changes well with climatic factors, such as temperature and humidity. The biogenic source of series A-D long-chain branched alkanes may be derived from some kinds of special epiphyte that most likely live in weak oxic-anoxic and moisture-heat environments, suggesting their distribution record as well some information on climatic change. All these researches demonstrate that the distributions of lipids molecules in modern soils in China record well signals of climates from quite different climatic regions, and can serve as important climatic proxies to reveal climatic change over China.  相似文献   

12.
Ochrobactrum sp. N1, Brevibacillus parabrevis N2, B. parabrevis N3 and B. parabrevis N4 were selected when preparing a mixed bacterial consortium based on the efficiency of crude oil utilization. A crude oil degradation rate of the N-series microbial consortium reached upwards of 79% at a temperature of 25 °C in a 3.0% NaCl solution in the shake flask trial. In the mesocosm experiment, a specially designed device was used to simulate the marine environment. The internal tank size was 1.5 m (L)×0.8 m (W)×0.7 m (H). The microbial growth conditions, nutrient utilization and environmental factors were thoroughly investigated. Over 51.1% of the crude oil was effectively removed from the simulated water body. The escalation process (from flask trials to the mesocosm experiment), which sought to represent removal under conditions more similar to the field, proved the high efficiency of using N-series bacteria in crude oil degradation.  相似文献   

13.
Two psychrotrophic bacterial strains isolated from Antarctic seawaters were investigated for their capability to degrade commercial diesel oil. The efficiency of hydrocarbon utilization was studied at 4 and 20 degrees C over a period of two-months. Strains were cultured in a mineral liquid medium supplemented with diesel oil as the sole source of carbon and energy. The viable counts for the bacterial abundance estimation and the culture extractions for the subsequent gas-chromatographic analysis were carried out simultaneously. The biodegradation efficiency was higher at 20 degrees C than at 4 degrees C for both strains and the decrease in hydrocarbon concentrations reached more than 85% after 60 days of incubation at 20 degrees C. Our results suggest the possible exploitation of these two bacterial strains in future biotechnological processes, directly as field-released micro-organisms both in cold and temperate contaminated marine environments.  相似文献   

14.
It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity and various chemical features.The central part of southern margin of Junggar Basin, NW China is such an example where there are condensates, light oils, normal density oils, heavy crude oils and natural gases. The formation mechanism of condensates has been seriously debated for long time;however, no study has integrated it with genetic types of waxy and heavy oils. Taking the central part of southern margin of Junggar Basin as a case, this study employs geological and geochemical methods to determine the formation mechanism of condensates,waxy and heavy oils in a complicated petroliferous area, and reveals the causes and geochemical processes of the co-occurrence of different types of crude oils in this region. Based on detailed geochemical analyses of more than 40 normal crude oils, light oils,condensates and heavy oils, it is found that the condensates are dominated by low carbon number n-alkanes and enriched in light naphthenics and aromatic hydrocarbons. Heptane values of these condensates range from 19% to 21%, isoheptane values from1.9 to 2.1, and toluene/n-heptane ratios from 1.5 to 2.0. The distribution of n-alkanes in the condensates presents a mirror image with high density waxy crude oils and heavy oils. Combined with the oil and gas-source correlations of the crude oils, condensates and natural gas, it is found that the condensates are product of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils which were derived from mature Cretaceous lacustrine source rocks in the relatively early stage. The waxy oils are the intermediate products of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils, while the heavy oils are in-situ residuals. Therefore, evaporative fractionation and/or phase-controlled fractionation would account for the formation of the condensate, light oil, waxy oil and heavy oil in the central part of southern margin of Junggar Basin, resulting in a great change of the content in terms of light alkanes, naphthenics and aromatics in condensates, followed by great uncertainties of toluene/n-heptane ratios due to migration and re-accumulation. The results suggest that the origin of the condensate cannot be simply concluded by its ratios of toluene/n-heptane and n-heptane/methylcyclohexane on the Thompson's cross-plot, it should be comprehensively determined by the aspects of geological background, thermal history of source rocks and petroleum generation,physical and chemical features of various crude oils and natural gas, vertical and lateral distribution of various crude oils in the study area.  相似文献   

15.
Method for Determining the Age of Diesel Oil Spills in the Soil   总被引:1,自引:1,他引:1  
This study evaluates the changes in the composition of diesel oil as a function of the time during which the oil has been present in the vadose zone. The study also develops a reliable method for determining the age of diesel oil in the subsurface soil environment at service stations, oil terminals, and similar locations where the diesel is protected from direct exposure to factors increasing the rate of microbial activity.
Analyses demonstrate that n-alkanes are the dominant components of fresh diesel oil and isoprenoids the dominant components of degraded diesel oil. The analyses also show that the composition of fresh diesel oil produced in 1992 and that produced in 1974 is basically the same.
The difference in composition between fresh and degraded oil is the basis for defining a degradation ratio or rate of alteration in the composition of the diesel oil expressed in terms of a ratio between n-alkanes and isoprenoids. At 12 test locations where the date of property damage was known, the C17/pristane ratio had by far the highest correlation factor (.89) with the residence time of the diesel based on the average degradation ratio for each location. Based on this high correlation factor, the C17/pristane ratio can be used to estimate the age of a diesel oil spill. The standard error of such an estimate is approximately two years.  相似文献   

16.
Due to the potentially accumulative nature of the Fladen Ground, an area of intense oil activity in the North Sea, a survey was carried out in 1989 to map the distribution of contamination in relation to these oil activities. All the sediments collected were screened by ultraviolet fluorescence (UVF) for polycyclic aromatic hydrocarbons (PAHs) and selected samples were analysed for n-alkanes (by GC-FID), PAHs and biomarkers (by GC-MSD). This survey was repeated in 2001, with all the 1989 sites being resampled. All of these sediments were analysed for UVF oil equivalents, PAHs, n-alkanes and biomarkers. The concentrations of these parameters decreased between 1989 and 2001, with average decreases ranging from 43% to 88%. In addition, no significant difference was found, for all the parameters, between near field (<5 km from an oil installation) and far field (>5 km from an oil installation) sites in 2001 indicating that the Fladen Ground is approaching a 'steady state' or background concentration for contamination.  相似文献   

17.
A preliminary study was undertaken to determine the optimal conditions for the biodegradation of a crude oil. Among 57 oil‐degrading bacterial cultures isolated from oil‐contaminated soil samples, Bacillus sp. IOS1‐7, Corynebacterium sp. BPS2‐6, Pseudomonas sp. HPS2‐5, and Pseudomonas sp. BPS1‐8 were selected for the study based on the efficiency of crude oil utilization. Along with the selected individual strains, a mixed bacterial consortium prepared using the above strains was also used for degradation studies. The mixed bacterial consortium showed more growth and degradation than did individual strains. At 1% crude oil concentration, the mixed bacterial consortium degraded a maximum of 77% of the crude oil. This was followed by 69% by Pseudomonas sp. BPS1‐8, 64% by Bacillus sp. IOS1‐7, 45% by Pseudomonas sp. HPS2‐5, and 41% by Corynebacterium sp. BPS2‐6. The percentage of degradation by the mixed bacterial consortium decreased from 77 to 45% as the concentration of crude oil was increased from 1 to 12%. Temperature of 35°C and pH 7 were found to be optimum for maximum degradation.  相似文献   

18.
The pentacyclic triterpene 17 beta(H),21 beta(H)-hop-22(29)-ene (diploptene) occurs in sediments throughout the Columbia River drainage basin and off the southern coast of Washington state in concentrations comparable to long-chain plantwax n-alkanes. The same relationship is evident for diploptene and long-chain n-alkanes in soils from the Willamette Valley. Microorganisms indigenous to soils and soil erosion are indicated as the biological source and physical process, respectively, for diploptene in coastal sediments. Similarity between the stable carbon isotopic composition (delta 13CPDB) of diploptene isolated from soil in the Willamette Valley (-31.2 +/- 0.3%) and from sediments deposited throughout the Washington coastal environment (-31.2 +/- 0.5%) supports this argument. Values of delta for diploptene in river sediments are variable and 8-17% lighter, indicating that an additional biological source such as methane-oxidizing bacteria makes a significant contribution to the diploptene record in river sediments. Selective biodegradation resulting from a difference in the physicochemical association within eroded particles can explain the absence of the more-13C-depleted form of diploptene in Washington coastal sediments, but this mechanism remains unproven.  相似文献   

19.
Oil-degrading bacteria isolated from oil spills, an industrial bay, and an offshore oil field by liquid enrichment on crude oils and polynuclear aromatic hydrocarbon compounds were screened for extra-chromosomal DNA. Plasmids were detected in 21% of the strains isolated on whole crude oil and in 17% of the strains isolated on polynuclear aromatic hydrocarbons. Multiple plasmids were observed in 50% of the plasmid-containing strains. Pseudomonas was the predominant genus isolated during the study. Plasmids do not appear to be of importance to these strains during degradation of freshly introduced oil at a nonpolluted site such as might be the case in an ocean oil spill. Plasmids do appear to be significant in the adaptation of Pseudomonas species to chronic petroleum pollution.  相似文献   

20.
Copyright by Science in China Press 2004 High-waxy condensate is a kind of special hy-drocarbon resources, i.e., the high molecular weight (HMW) alkanes, which usually appear in a solid wax fraction under normal temperature and pressure, but are dissolved by hydrocarbon gas as a high-waxy condensate of single gaseous phase under subsurface high temperature and pressure. Nevertheless, once produced in an oil-gas well, the subsurface condensate flows into the well-bottom, and then immediately …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号