首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Danville Coal Member (Dugger Formation, upper Desmoinesian, Pennsylvanian) is a significant economic coal resource in the Illinois Basin, central USA. Deposition of the Danville Coal (peat) was in coastal environments, varying distances from the coastline and, in turn, variable influences from saline waters. The purpose of this study is to examine the coal quality and petrography of the Danville Coal; and to discuss their relationship with depositional environment as it relates to the final coal product. A medium sulfur (1.0–1.5 wt.%) Danville Coal reserve area (northern Indiana coalfield) was compared to a low sulfur (<1.0 wt.%) Danville Coal (central Indiana coalfield) reserve area, the two being approximately 70 km apart. The medium sulfur coal resulted from the peat being deposited in a near-marine environment less protected from the influence of saline waters, whereas the low sulfur coal resulted from fine-grained, clay-dominated sediment protecting the peat from the direct influence of saline waters. Within both areas, the coal quality, coal composition, and trace element concentrations vary as a function of the proximity of the coal to the overlying Busseron Sandstone Member (Pennsylvanian). Where the Busseron Sandstone rests near or directly on the coal, the sulfur content is significantly higher in the top third of the seam. Conversely, where there is a thick section (>3 m) of finer-grained clastic sediments atop the Danville, the sulfur and trace elements contents are significantly lower.  相似文献   

2.
This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (<1%) Danville Coal Member of the Dugger Formation (Pennsylvanian) and the other mines the high-sulfur (>5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal.  相似文献   

3.
Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur (< 1%) Danville Coal Member of the Dugger Formation and the other is the high-sulfur (> 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in δ34S for sulfur species within and between the low-sulfur and high-sulfur coal. The δ34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the δ34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the δ34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of δ34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in δ34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition.The δ34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7‰) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2‰). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the δ34S values for fly-ash samples from the low-sulfur Danville coal average 10.2‰, only slightly enriched in 34S relative to those from the parent coal (average 7.5‰). The δ34S values for bulk S determined directly from the fly-ash samples show close correspondence with the δ34S values for SO4− 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion.  相似文献   

4.
The Western Kentucky Coal Field is the southern tip of the Eastern Interior, or Illinois Basin. Pennsylvanian rocks in this area, which include conglomerate, sandstone, siltstone, shale, limestone and coal, were deposited primarily in coastal-deltaic settings at a time when western Kentucky was located close to the equator. This paper discusses temporal changes in regional sedimentation patterns and coal-forming floras of Lower and Middle Pennsylvanian strata in the Western Kentucky Coal Field.Lower Pennsylvanian strata of the Caseyville Formation are characterized by paleovalley-filling sedimentation patterns and extabasinal quartz pebbles. Caseyville Formation coals are characteristically thin and discontinuous and were strongly influenced by subsidence within underlying paleovalleys, and the dissected lower Pennsylvanian paleotopography. Caseyville coals are commonly dominated by Lycospora, but can also have variable palynofloras, which probably reflects variable edaphic conditions and edge effects within small, patchy paleomires. Tradewater Formation strata show increased marine influences and tidal-estuarine sedimentation, especially in the middle and upper parts. Coal beds in the lower part of the Tradewater typically are thin and discontinuous, although some economically important beds are present. Coals become thicker, more abundant and more laterally persistent towards the top of the formation. Palynologically, lower and middle Tradewater Formation coals are dominated by Lycospora, but begin to show increased amounts of tree fern spores. Middle and upper Tradewater coals are thicker and more continuous, and contain high percentages of tree fern spores. In addition, cordaite pollen is locally abundant in this interval.Carbondale and Shelburn (Desmoinesian) strata are much more laterally continuous, and occur within classic cyclothems that can be traced across the coal field. Cyclothems have long been interpreted as being eustatically driven, and glacio-eustacy controlled not only sedimentation but also the formation of Desmoinesian paleomires. Palynologically, Carbondale and Shelburn coals are either dominated by Lycospora or have heterogeneous palynofloras. Palynologic and coal-quality data suggest that hydrologic base level may have been the primary control on Desmoinesian paleomires, rather than paleoclimate, as the coals display rheotrophic, rather than ombrotrophic characteristics.  相似文献   

5.
With pending regulation of mercury emissions in United States power plants, its control at every step of the combustion process is important. An understanding of the amount of mercury in coal at the mine is the first step in this process. The Springfield coal (Middle Pennsylvanian) is one of the most important coal resources in the Illinois Basin. In Indiana and western Kentucky, Hg contents range from 0.02 to 0.55 ppm. The variation within small areas is comparable to the variation on a basin basis. Considerable variation also exists within the coal column, ranging from 0.04 to 0.224 ppm at one Kentucky site. Larger variations likely exist, since that site does not represent the highest whole-seam Hg nor was the collection of samples done with optimization of trace element variations in mind. Estimates of Hg capture by currently installed pollution control equipment range from 9–53% capture by cold-side electrostatic precipitators (ESP) and 47–81% Hg capture for ESP + flue-gas desulfurization (FGD). The high Cl content of many Illinois basin coals and the installation of Selective Catalytic Reduction of NOx enhances the oxidation of Hg species, improving the ability of ESPs and FGDs to capture Hg.  相似文献   

6.
An evaluation was made of the degree of coalification of two coal balls from the Illinois Basin of the Pennsylvanian (upper Carboniferous) of the United States. Previous interpretations are mainly misleading and contradictory, primarily because of the assumption that the brown color and exceptional cellular and subcellular preservation typical of American coal balls imply chemical preservation of cellulose and lignin, the primary components of peat. Xylem tissue from a medullosan seed fern contained in a coal ball and the coal attached to the coal ball from the Calhoun coal bed, Mattoon Formation, Illinois, was analyzed by elemental, petrographic, and nuclear magnetic resonance (NMR) techniques to determine the degree of coalification. The NMR and elemental data indicate the lack of cellulose and lignin and a probable rank of high-volatile C bituminous coal. These data corroborate data for a coal ball from the Herrin (No. 6) coal bed (Carbondale Formation, Middle Pennsylvanian) and support our hypothesis that the organic matter in coal balls of the Pennsylvanian strata of the United States is coalified to about the same degree as the surrounding coal. Data presented show a range of lower reflectances for xylem tissue and vitrinite in the analyzed coal balls compared with vitrinite in the attached coal.The data reported indicate that physical preservation of organic matter in coal balls does not imply chemical preservation. Also our study supports the hypothesis that compactional (static load) pressure is not a prerequisite for coalification up to a rank of high-volatile C bituminous coal.A whole-rock analysis of the Calhoun coal ball indicates a similarity to other carbonate coal balls from the United States. It consists primarily of calcium carbonate and 1–2% organic matter; silica and alumina together make up less than 0.5%, indicating the lack of minerals such as quartz and clays.  相似文献   

7.
More than 130 Mt of Pennsylvanian coal is produced annually from two coal fields in Kentucky. The Western Kentucky Coal Field occurs in part of the Illinois Basin, an intercratonic basin, and the Eastern Kentucky Coal Field occurs in the Central Appalachian Basin, a foreland basin. The basins are only separated by 140 km, but mined western Kentucky coal beds exhibit significantly higher sulfur values than eastern Kentucky coals. Higher-sulfur coal beds in western Kentucky have generally been inferred to be caused by more marine influences than for eastern Kentucky coals.Comparison of strata in the two coal fields shows that more strata and more coal beds accumulated in the Eastern than Western Kentucky Coal Field in the Early and Middle Pennsylvanian, inferred to represent greater generation of tectonic accommodation in the foreland basin. Eastern Kentucky coal beds exhibit a greater tendency toward splitting and occurring in zones than time-equivalent western Kentucky coal beds, which is also inferred to represent foreland accommodation influences, overprinted by autogenic sedimentation effects. Western Kentucky coal beds exhibit higher sulfur values than their eastern counterparts, but western Kentucky coals occurring in Langsettian through Bolsovian strata can be low in sulfur content. Eastern Kentucky coal beds may increase in sulfur content beneath marine zones, but generally are still lower in sulfur than mined Western Kentucky coal beds, indicating that controls other than purely marine influences must have influenced coal quality.The bulk of production in the Eastern Kentucky Coal Field is from Duckmantian and Bolsovian coal beds, whereas production in the Western Kentucky Coal Field is from Westphalian D coals. Langsettian through Bolsovian paleoclimates in eastern Kentucky were favorable for peat doming, so numerous low-sulfur coals accumulated. These coals tend to occur in zones and are prone to lateral splitting because of foreland tectonic and sedimentation influences. In contrast, Westphalian D coal beds of western Kentucky accumulated during low differential tectonic accommodation, and therefore tend to be widespread and uniform in characteristics, but exhibit higher sulfur values because they accumulated in seasonally drier paleoclimates that were unfavorable for peat doming. Hence, basin analyses indicate that many differences between the mined coals of Kentucky's two coal fields are related to temporal changes in paleoclimate and tectonic accommodation, rather than solely being a function of marine influences.  相似文献   

8.
The Herrin (Western Kentucky No. 11) coal bed in the Dixon 7 1/2 min quadrangle, Webster County, Kentucky, displays another manifestation of the thinning margin of the coal bed. Previous studies in adjacent Hopkins County have demonstrated that the coal is brecciated as the margin is approached. The brecciated coal is not always thin; 1.5 m of brecciated, inertinite-rich coal was previously described to the southeast of the present study area. In general, the brecciated coals are considerably thinner than the 1.5–2-m-thick, “normal” Herrin coal. Both cores studied are thin (22.6 and 33 cm) and display petrographic characteristics different from thicker Herrin coals. The cores described in the present study show some signs of brecciation; in certain cases, the fragmented macerals are cemented by exsudatinite. Multiple generations of pyrite mineralization were noted in one core, with total sulfur exceeding 13% in the upper 8.48 cm lithotype.Overall, the cores investigated in this study, along with examples from previous studies, illustrate the progression of the Herrin coal from its absence, either through nondeposition or erosion, through thin, brecciated coals, to mineable coals. No other economic coal in western Kentucky shows as many examples of the depositional edge as does the Herrin. All of the examples studied are from cores, emphasizing the need to study more than just the thick, mineable coals if the total extent of the coal body is to be understood.  相似文献   

9.
The coals of the upper part of the Mansfield, Brazil, and the lower part of the Staunton Formations (Atokan and Desmoinesian, Pennsylvanian) in Indiana (Illinois Basin) are characteristically thin and discontinuous. As a result, problems with correlation and identification of the seams have persisted for both researchers and industry. These discrepancies affect coal exploration, mine planning, and subsequently coal-fired utilities. This study presents exploration and operational examples demonstrating some of the correlation problems associated with the coals of the Brazil Formation, and the Upper Block and Lower Block, in particular, and the surrounding upper part of the Mansfield Formation and lower part of the Staunton Formations. Based on exploration boreholes, mine scale observations, and coal quality and petrographic data, this study suggests that (1) the coal mapped as the Upper Block Coal Member of Clay County may, in fact, be the same seam as the Lower Block Coal Member of Daviess County; and (2) the Lower Block coal of Clay County is not present south of the Switz City area of central Greene County, IN.  相似文献   

10.
The chemical properties of two high-volatile bituminous coals, the Danville Coal Member of the Dugger Formation and the Lower Block Coal Member of the Brazil Formation from southern Indiana, were compared to understand the differences in their coking behavior. It was determined that of the two, the Lower Block has better characteristics for coking. Observed factors that contribute to the differences in the coking behavior of the coals include carbon content, organic sulfur content, and oxygen/carbon (O/C) ratios. The Lower Block coal has greater carbon content than the Danville coal, leading to a lower O/C ratio, which is more favorable for coking. Organic sulfur content is higher in the Lower Block coal, and a strong correlation was found between organic sulfur and plasticity. The majority of the data for both seams plot in the Type III zone on a van Krevelen diagram, and several samples from the Lower Block coal plot into the Type II zone, suggesting a perhydrous character for those samples. This divergence in properties between the Lower Block and Danville coals may account for the superior coking behavior of the Lower Block coal.  相似文献   

11.
This paper presents for the first time a petrological and geochemical study of coals from the Central Asturian Coal Basin (North Spain) of Carboniferous (Pennsylvanian), mainly of Moscovian, age. A paleoenvironmental approach was used, taking into account both petrographic and organic geochemical studies. Vitrinite reflectance (Rr) ranges from 0.5% to 2.5%, which indicates a high volatile bituminous to semianthracite and anthracite coal rank. The coal samples selected for paleoenvironmental reconstruction are located inside the oil–gas-prone phase, corresponding to the interval between the onset of oil generation and first gas generation and efficient expulsion of oil. This phase is represented by coals that have retained their hydrocarbon potential and also preserved biomarker information. Paleodepositional reconstruction based on maceral and petrographic indices points to a swamp environment with vitrinite-rich coal facies and variable mineral matter content. The gelification index (GI) and groundwater influence index (GWI) indicate strong gelification and wet conditions. The biomarkers exhibit a high pristane/phytane ratio, suggesting an increase in this ratio from diagenetic processes, and a high diterpanes ratio. This, in turn, would seem to indicate a high swamp water table and a humid climate. The maximum point of coal accumulation occurred during the regressive part of the Late Moscovian sequence and in the most humid climate described for this period of time in the well-known coal basins of Europe and North America.  相似文献   

12.
The Springfield (Western Kentucky No. 9) coal of the Carbondale Formation (Middle Pennsylvanian) in the Western Kentucky Coal Field of the Illinois Basin was sampled in eleven mines from one to three channels of three equal benches. The rank of the coal is high-volatile C bituminous in the Moorman Syncline and in the Henderson Basin and high-volatile B bituminous in the Webster Syncline. The percentage of total vitrinite macerals and of total vitrinite plus liptinite was found to decrease significantly from the bottom bench through to the top bench. In a comparison of the sources of variation within the set of maceral data it was found that the only significant variation in the vitrinite and vitrinite plus liptinite percentages was between the benches. Both the rank of the coal and the maceral percentages are varying in a predictable manner.  相似文献   

13.
Channel samples of the Springfield (No. 9) and Herrin (No. 11) (Pennsylvanian, Desmoinesian/Westphalian D) coals were acquired in three mines each in the Western Kentucky coal field. Pyrite was characterized petrographically in terms of its size, form, and microlithotype association. Within each coal seam significant variations in the amount of pyrite of certain forms occurred between the sites. Pyritic sulfur as determined chemically did not exhibit significant variation between the seams or between the sites. The variation in dendritic pyrite in vitrite plus clarite between seams and between sites was highly significant and the variation in framboidal pyrite in vitrite plus clarite between sites was also highly significant.  相似文献   

14.
15.
To develop a method for quantifying the vegetation of Pennsylvania-age coal beds, of four coal-ball (permineralized peat) profiles and four coal column samples from the Herrin coal bed (Kentucky No. 11) Carbondale Formation in western Kentucky were compared. An estimated 89.5% of the coal can be identified botanically. Compaction ratios for individual tissues were estimated using point counts of organic matter in coal balls. The estimated abundances of major plant groups (lycopods, ferns, sphenopsids, and pteridosperms) in coal balls differ by less than 10% compared to coal after accounting for differential compaction of plant tissues. Standard deviations in taxonomic and maceral composition among coal columns are generally less than 2%.Consistent differences in botanical composition were found between benches showing that the method is consistent when applied to sufficient thicknesses of coal. It was not possible to make fine-scale correlations within the coal bed using the vegetational data; either the flora varied considerably from place to place or the method of quantification is unreliable for small increments of coal (5 cm or less).In the coal, pteridosperm abundance is positively correlated with underlying shale partings. This correlation suggests that pteridosperms are favored either by higher nutrient levels or disturbance.In the third of four benches in the Herrin coal bed, a succession from Sigillaria-containing zones to zones dominated by Lepidophloios hallii is interpreted as a shift towards wetter conditions. In the other benches, the main factors controlling the taxonomic composition appear to have been the relative abundance of nutrients and/or the frequency of disturbance as indicated by the relative abundance of partings.Criteria for distinguishing between domed and planar swamps are discussed. These include: distribution of partings, type of plant succession, and changes in plant diversity, average plant size, preservational quality and sporinite content. The infrequency of partings in bench C suggests a peat dome developed while the peat of that bench was accumulating but other evidence either fails to support the development of a peat dome or is ambiguous. The maceral composition resembles those of other Carboniferous coals which are thought to have formed from planar peat swamps.Formation of fusain bands appears to be associated with processes occurring above the peat surface, such as burning or prolonged oxidative exposure. Oxidation of accumulated peat is unlikely because fusain bands rarely include more than a single plant.  相似文献   

16.
The main purpose of this study was to recognise the variability of petrographical structure of two coal seams occurring in the Cracow Sandstone Series (Upper Carboniferous/Pennsylvanian, Upper Westphalian), being exploited in the Siersza mine. This mine is located in the eastern part of the Upper Silesia Coal Basin (USCB). The chemical analyses and petrographical features allow the inclusion of these coals to the group of hard brown coals belonging to subbituminous class.Two coal seams (207 and 209/210) of a considerable thickness (7.44 and 6.54 m, respectively), representative of the Cracow Sandstone Series (CSS), were chosen for the petrographic studies. Dominant macroscopic constituents of both seams are banded bright coal and banded coal.The coal seams were sampled in 284 intervals using a channel profile sampling strategy. The microscopical examinations revealed the majority of macerals from the vitrinite group (55%), followed by inertinite (21%), liptinite (11%), and mineral matter (13%). Low values of the vitrinite reflectance (Ro=0.46%) confirm very low coalification of the coal in both seams. Facies analysis indicates that in the course of a mire development, in which the studied coal seams originated, wet forest swamp conditions dominated characterized by a high degree of flooding and gelification as well as by a prevalence of arborescent plants. In such conditions, lithotypes with a large content of bright coal were mainly formed. Petrographic and facies data point to the rheotrophic character of these peatbogs. Frequent changes of the conditions in the peatbog, as it is shown by the variability of petrographic structure of the studied profiles, as well as by lateral changes of the phytogenic sedimentary environment within the coal seams, indicate a strong influence of a river channel on the adjoining peatbogs. An accretion of clastic sediments within the wide river channel belts was balanced mainly by the peatbog growth on the areas outside channels. Frequency and rate of avulsion of the river channels influenced the size, continuity and variability of the peatbogs.  相似文献   

17.
The vegetational history of the Springfield (No. 5) Coal Member in the southwestern and southeasternmost portion of the Illinois Basin is reconstructed from palynological profiles of the coal seam. In most parts of the swamp dominance was shared by arborescent lycopods that produced Lycospora granulata, and two tree ferns that produced Thymospora pseudothiessenii and Laevigatosporites globosus. The profiles suggest that populations of the Thymospora producing tree fern occupied sites for long periods. In the Southwestern portion of the basin vegetation changes can be correlated to the splitting of a coal in the proximity to a paleochannel. A greater understanding of the ecological requirements of some of the spore taxa of the Springfield Coal is seen by the patterns of the same taxa in surrounding Spoon and Carbondale Coals. Some taxa appear to be more generalists and other more specialists that are more restricted to a certain type of coal.  相似文献   

18.
This is the fourth installment in a series of papers on the Asturian (Westphalian D) disrupted mire margins, termed the “ragged edge” in previous papers, and limestone distributions in the Herrin–Baker coal interval in the Western Kentucky extension of the Illinois Basin. New data, indicating in-situ peat development and marine influence, collected from the first in-mine exposure of this interval are presented. Borehole data from the region are examined in the context of “ragged edge” exposures and a carbonate platform depositional model for this portion of the Illinois Basin is presented. This shows that deposition of the sequence was influenced both by the underlying sediments and by a marine transgression. The former influence is seen in variations in coal and limestone thickness over sandstone-filled channels versus over shale bayfill deposits. The latter is marked by the progressive upwards loss of coal benches (i.e., the bottom bench of both coals is the most extensive and the Herrin coal is more extensive than the overlying Paradise coal) and by marine partings in both coals. Further, the brecciated margins seen in both coal seams are similar to brecciated peats encountered along the Everglades margins of Southwest Florida. Overall coal distributions are similar to both those along the Everglades margins and those along a transect from the Belize coast to Ambergis Caye.  相似文献   

19.
The maceral and microlithotype composition of selected coals has been investigated with respect to the grinding properties, specifically Hardgrove grindability index (HGI), of the coals. The study expands upon previous investigations of HGI and coal petrology by adding the dimension of the amount and composition of the microlithotypes. Coal samples, both lithotypes and whole channels, were selected from restricted rank ranges based on vitrinite maximum reflectance: 0.75–0.80% Rmax, 0.85–0.90% Rmax and 0.95–1.00% Rmax. In this manner, the influence of petrographic composition can be isolated from the influence of rank. Previous investigations of high volatile bituminous coals demonstrated that, while rank is an important factor in coal grindability, the amount of liptinite and liptinite-rich microlithotypes is a more influential factor. In this study, we provide further quantitative evidence for the influence of microlithotypes on HGI and, ultimately, on pulverizer performance.  相似文献   

20.
Abstract

Mineral matter in coals has been found to host valuable elements including germanium, lithium and rare-earth elements (REE), but such content of Australian coals remains under-explored. The aim of this paper is to provide a proof-of-concept study that determines elemental concentrations in the mineral matter of the high-ash, Fort Cooper Coal Measures (FCCM), Bowen Basin, Queensland. Coal in the FCCM has good coking properties but has not been extensively explored owing to its high ash content. This study performs a preliminary assessment of the elements from the coal portion that would typically become waste after washing or combustion. Given that the needs for industrial extraction methods will change over time, cataloguing and documenting the elemental composition of coal may assist future development of multiple products for the benefit of both the coal and mineral industries. This preliminary study has revealed similar elevations of REE and higher-than-average crustal concentrations of lithium, bismuth and scandium in some of the samples. Further analyses will be required on a larger dataset to better understand elemental associations and explore spatial patterns of elemental content that may indicate localised enrichments. Understanding the potential of valuable elements in the FCCM may stimulate interest in multiple-product-coal (or elemental-coal) mining in this under-exploited resource and further encourage the reduction of waste from other Australian coals at the wash-plant stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号