首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Rock glaciers, a feature associated with at least discontinuous permafrost, provide important topoclimatic information. Active and inactive rock glaciers can be used to model current permafrost distribution. Relict rock glacier locations provide paleoclimatic information to infer past conditions. Future warmer climates could cause permafrost zones to shrink and initiate slope instability hazards such as debris flows or rockslides, thus modeling change remains imperative. This research examines potential past and future permafrost distribution in the Colorado Front Range by calibrating an existing permafrost model using a standard adiabatic rate for mountains (0·5 °C per 100 m) for a 4 °C range of cooler and warmer temperatures. According to the model, permafrost currently covers about 12 per cent (326·1 km2) of the entire study area (2721·5 km2). In a 4 °C cooler climate 73·7 per cent (2004·4 km2) of the study area could be covered by permafrost, whereas in a 4°C warmer climate almost no permafrost would be found. Permafrost would be reduced severely by 93·9 per cent (a loss of 306·2 km2) in a 2·0 °C warmer climate; however, permafrost will likely respond slowly to change. Relict rock glacier distribution indicates that mean annual air temperature (MAAT) was once at least some 3·0 to 4·0 °C cooler during the Pleistocene, with permafrost extending some 600–700 m lower than today. The model is effective at identifying temperature sensitive areas for future monitoring; however, other feedback mechanisms such as precipitation are neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold‐water and oxygen‐demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air‐water regression model (r2: 0·903–0·947). The predictions improved in all instances (r2: 0·927–0·964) by a non‐linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0·933–0·969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un‐shaded sites, relative humidity, precipitation and discharge. Application of the non‐linear logistic model for a warming scenario of 4–5 °C higher air temperatures in Denmark in 2070‐2100 yielded predictions of temperatures rising 1·6–3·0 °C during winter and summer and 4·4–6·0 °C during spring in un‐shaded streams with low groundwater input. Groundwater‐fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Water source and lake landscape position can strongly influence the physico‐chemical characteristics of flowing waters over space and time. We examined the physico‐chemical heterogeneity in surface waters of an alpine stream‐lake network (>2600 m a.s.l.) in Switzerland. The catchment comprises two basins interspersed with 26 cirque lakes. The larger lakes in each basin are interconnected by streams that converge in a lowermost lake with an outlet stream. The north basin is primarily fed by precipitation and groundwater, whereas the south basin is fed mostly by glacial melt from rock glaciers. Surface flow of the entire channel network contracted by ~60% in early autumn, when snowmelt runoff ceased and cold temperatures reduced glacial outputs, particularly in the south basin. Average water temperatures were ~4 °C cooler in the south basin, and temperatures increased by about 4–6 °C along the longitudinal gradient within each basin. Although overall water conductivity was low (<27 µS cm?1) because of bedrock geology (ortho‐gneiss), the south basin had two times higher conductivity values than the north basin. Phosphate‐phosphorus levels were below analytical detection limits, but particulate phosphorus was about four times higher in the north basin (seasonal average: 9 µg l?1) than in the south basin (seasonal average: 2 µg l?1). Dissolved nitrogen constituents were around two times higher in the south basin than in the north basin, with highest values averaging > 300 µg l?1 (nitrite + nitrate‐nitrogen), whereas particulate nitrogen was approximately nine times greater in the north basin (seasonal average: 97 µg l?1) than in the south basin (seasonal average: 12 µg l?1). Total inorganic carbon was low (usually <0·8 mg l?1), silica was sufficient for algal growth, and particulate organic carbon was 4·5 times higher in the north basin (average: 0·9 mg l?1) than in the south basin (average: 0·2 mg l?1). North‐basin streams showed strong seasonality in turbidity, particulate‐nitrogen and ‐phosphorus, and particulate organic carbon, whereas strong seasonality in south‐basin streams was observed in conductivity and dissolved nitrogen. Lake position influenced the seasonal dynamics in stream temperatures and nutrients, particularly in the groundwater/precipitation‐fed north‐basin network. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The Rocky Mountains in the USA and Canada encompass the interior cordillera of western North America, from the southern Yukon to northern New Mexico. Annual weather patterns are cold in winter and mild in summer. Precipitation has high seasonal and interannual variation and may differ by an order of magnitude between geographically close locales, depending on slope, aspect and local climatic and orographic conditions. The region's hydrology is characterized by the accumulation of winter snow, spring snowmelt and autumnal baseflows. During the 2–3-month ‘spring runoff’ period, rivers frequently discharge > 70% of their annual water budget and have instantaneous discharges 10–100 times mean low flow. Complex weather patterns characterized by high spatial and temporal variability make predictions of future conditions tenuous. However, general patterns are identifiable; northern and western portions of the region are dominated by maritime weather patterns from the North Pacific, central areas and eastern slopes are dominated by continental air masses and southern portions receive seasonally variable atmospheric circulation from the Pacific and the Gulf of Mexico. Significant interannual variations occur in these general patterns, possibly related to ENSO (El Niño–Southern Oscillation) forcing. Changes in precipitation and temperature regimes or patterns have significant potential effects on the distribution and abundance of plants and animals. For example, elevation of the timber-line is principally a function of temperature. Palaeolimnological investigations have shown significant shifts in phyto- and zoo-plankton populations as alpine lakes shift between being above or below the timber-line. Likewise, streamside vegetation has a significant effect on stream ecosystem structure and function. Changes in stream temperature regimes result in significant changes in community composition as a consequence of bioenergetic factors. Stenothermic species could be extirpated as appropriate thermal criteria disappear. Warming temperatures may geographically isolate cold water stream fishes in increasingly confined headwaters. The heat budgets of large lakes may be affected resulting in a change of state between dimictic and warm monomictic character. Uncertainties associated with prediction are increased by the planting of fish in historically fishless, high mountain lakes and the introduction of non-native species of fishes and invertebrates into often previously simple food-webs of large valley bottom lakes and streams. Many of the streams and rivers suffer from the anthropogenic effects of abstraction and regulation. Likewise, many of the large lakes receive nutrient loads from a growing human population. We concluded that: (1) regional climate models are required to resolve adequately the complexities of the high gradient landscapes; (2) extensive wilderness preserves and national park lands, so prevalent in the Rocky Mountain Region, provide sensitive areas for differentiation of anthropogenic effects from climate effects; and (3) future research should encompass both short-term intensive studies and long-term monitoring studies developed within comprehensive experimental arrays of streams and lakes specifically designed to address the issue of anthropogenic versus climatic effects. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
Climate models project warmer temperatures for the north‐west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater‐dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff‐dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross‐correlation between precipitation and discharge in the groundwater‐dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter‐annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater‐dominated streams makes them more sensitive than runoff‐dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Region 2 comprises arctic and subarctic North America and is underlain by continuous or discontinuous permafrost. Its freshwater systems are dominated by a low energy environment and cold region processes. Central northern areas are almost totally influenced by arctic air masses while Pacific air becomes more prominent in the west, Atlantic air in the east and southern air masses at the lower latitudes. Air mass changes will play an important role in precipitation changes associated with climate warming. The snow season in the region is prolonged resulting in long-term storage of water so that the spring flood is often the major hydrological event of the year, even though, annual rainfall usually exceeds annual snowfall. The unique character of ponds and lakes is a result of the long frozen period, which affects nutrient status and gas exchange during the cold season and during thaw. GCM models are in close agreement for this region and predict temperature increases as large as 4°C in summer and 9°C in winter for a 2 × CO2 scenario. Palaeoclimate indicators support the probability that substantial temperature increases have occurred previously during the Holocene. The historical record indicates a temperature increase of > 1°C in parts of the region during the last century. GCM predictions of precipitation change indicate an increase, but there is little agreement amongst the various models on regional disposition or magnitude. Precipitation change is as important as temperature change in determining the water balance. The water balance is critical to every aspect of hydrology and limnology in the far north. Permafrost close to the surface plays a major role in freshwater systems because it often maintains lakes and wetlands above an impermeable frost table, which limits the water storage capabilities of the subsurface. Thawing associated with climate change would, particularly in areas of massive ice, stimulate landscape changes, which can affect every aspect of the environment. The normal spring flooding of ice-jammed north-flowing rivers, such as the Mackenzie, is a major event, which renews the water supply of lakes in delta regions and which determines the availability of habitat for aquatic organisms. Climate warming or river damming and diversion would probably lead to the complete drying of many delta lakes. Climate warming would also change the characteristics of ponds that presently freeze to the bottom and result in fundamental changes in their limnological characteristics. At present, the food chain is rather simple usually culminating in lake trout or arctic char. A lengthening of the growing season and warmer water temperature would affect the chemical, mineral and nutrient status of lakes and most likely have deleterious effects on the food chain. Peatlands are extensive in region 2. They would move northwards at their southern boundaries, and, with sustained drying, many would change form or become inactive. Extensive wetlands and peatlands are an important component of the global carbon budget, and warmer and drier conditions would most likely change them from a sink to a source for atmospheric carbon. There is some evidence that this may be occurring already. Region 2 is very vulnerable to global warming. Its freshwater systems are probably the least studied and most poorly understood in North America. There are clear needs to improve our current knowledge of temperature and precipitation patterns; to model the thermal behaviour of wetlands, lakes and rivers; to understand better the interrelationships of cold region rivers with their basins; to begin studies on the very large lakes in the region; to obtain a firm grasp of the role of northern peatlands in the global carbon cycle; and to link the terrestrial water balance to the thermal and hydrological regime of the polar sea. Overall, there is a strong need for basic research and long-term monitoring. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, data from MODIS land surface temperature product level 3 (MOD11A2) were used to investigate the spatiotemporal variation of Eurasian lakes water surface temperature (LSWT) from 2001 to 2015, and to examine the most influencing factors of that variation. The temperature of most lakes in the dry climate zone and in the equatorial climatic zone varied from 17 to 31°C and from 23 to 27°C, respectively. LSWTs in the warm temperate and cold climatic zones were in the range of 20 to 27°C and −0.6 and 17°C, respectively. The average day time LSWT in the polar climate zone was −0.71°C in the summer. Lakes in high latitude and in the Tibetan Plateau displayed low LSWT, ranging from −11 to 26°C during the night time. Large spatial variations of diurnal temperature difference (DTD) were observed in lakes across Eurasia. However, variations in DTDs were small in lakes located in high latitude and in tropical rainforest regions. The shallow lakes showed a rapid response of LSWT to solar and atmospheric forcing, while in the large and deep lakes, that response was sluggish. Results of this study demonstrated the applicability of remote sensing and MODIS LST products to capture the spatial–temporal variability of LSWT across continental scales, in particular for the vast wilderness areas and protected environment in high latitude regions of the world. The approach can be used in future studies examining processes and factors controlling large scale variability of LSWT.  相似文献   

8.
The region designated as the Pacific Coastal Mountains and Western Great Basin extends from southern Alaska (64°N) to southern California (34°N) and ranges in altitude from sea level to 6200 m. Orographic effects combine with moisture-laden frontal systems originating in the Pacific Ocean to produce areas of very high precipitation on western slopes and dry basins of internal drainage on eastern flanks of the mountains. In the southern half of the region most of the runoff occurs during winter or spring, while in the northern part most occurs in summer, especially in glaciated basins. Analyses of long-term climatic and hydrological records, combined with palaeoclimatic reconstructions and simulations of future climates, are used as the basis for likely scenarios of climatic variations. The predicted hydrological response in northern California to a climate with doubled CO2 and higher temperatures is a decrease in the amount of precipitation falling as snow, and substantially increased runoff during winter and less in late spring and summer. One consequence of the predicted earlier runoff is higher salinity in summer and autumn in San Francisco Bay. In saline lakes, the incidence of meromixis and the associated reduction in nutrient supply and algal abundance is expected to vary significantly as runoff fluctuates. In subalpine lakes, global warming will probably will lead to increased productivity. Lacustrine productivity can also be altered by changes in wind regimes, drought-enhanced forest fires and maximal or minimal snowpacks associated with atmospheric anomalies such as El Niño–Southern Oscillation (ENSO) events. Reduced stream temperature from increased contributions of glacial meltwater and decreased channel stability from changed runoff patterns and altered sediment loads has the potential to reduce the diversity of zoobenthic communities in predominately glacier-fed rivers. Climatic warming is likely to result in reduced growth and survival of sockeye salmon in freshwater, which would, in turn, increase marine mortality. Further research activities should include expanded studies at high elevations and of glacier mass balances and glacial runoff, applications of remote sensing to monitor changes, further refinement of regional climatic models to improve forecasts of future conditions and continued analyses of long-term physical, chemical and biological data to help understand responses to future climates. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Potential hydrological impacts of climate change on long‐term water balances were analysed for Harp Lake and its catchment. Harp Lake is located in the boreal ecozone of Ontario, Canada. Two climate change scenarios were used. One was based on extrapolation of long‐term trends of monthly temperature and precipitation from a 129‐year data record, and another was based on a Canadian general circulation model (GCM) predictions. A monthly water balance model was calibrated using 26 years of hydrological and meteorological data, and the model was used to calculate hydrological impact under two climate change scenarios. The first scenario with a warmer and wetter climate predicted a smaller magnitude of change than the second scenario. The first scenario showed an increase in evaporation each month, an increase in catchment runoff in summer, fall and winter, but a decrease in spring, resulting in a slight increase in lake level. Annual runoff and lake level would increase because the precipitation change overrides evaporation change. The second scenario with a warmer, drier climate predicted a greater change, and indicated that evaporation would increase each month, runoff would increase in many months, but would decrease in spring, causing the lake level to decrease slightly. Annual runoff and lake level would decrease because evaporation change overrides precipitation change. In both scenarios, the water balance changes in winter and spring are pronounced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The spatial and temporal variations of precipitation in the desert region of China (DRC) from 1951 to 2005 were investigated using a rotated empirical orthogonal function (REOF), the precipitation concentration index (PCI) and the Mann–Kendall trend test method (M‐K method). In addition, the association between variation patterns of precipitation and large‐scale circulation were also explored using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The results indicated that the spatial pattern of precipitation was primarily the local climate effect significant type, with the first three EOFs explaining a total of 55·3% of the variance, and the large‐scale climate system effect type, which explained 9·8% of the variance. Prior to the 1970s, the East Asian summer monsoon was stronger, which resulted in abundant precipitation in the Inner Mongolia region. Conversely, the climate of the Xinjiang region was controlled by westerly circulation and had lower precipitation. However, this situation has been reversed since the 1980s. It is predicted that precipitation will decrease by 15–40 and 0–10 mm/year in the Inner Mongolia plateau and southern Xinjiang, respectively, whereas it will likely increase by 10–40 mm/year in northern Xinjiang. Additionally, 58–62% of the annual rainfall occurred during summer in the DRC, with precipitation increasing during spring and summer and decreasing in winter. The intra‐annual precipitation is becoming uniform, but the inter‐annual variability in precipitation has been increasing in the western portions of the DRC. The probability of precipitation during the study period increased by 30% and 22·2% in the extreme‐arid zones and arid zones, respectively. Conversely, the probability of precipitation during the study period decreased by 18·5% and 37·5% in the semi‐arid zones and semi‐wet zones, respectively. It is predicted that the northwest portion of the DRC will become warmer and wetter, while the central portion will become warmer and drier and the northeast portion will be subjected to drought. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Predictions of a warmer climate over the Great Lakes region due to global change generally agree on the magnitude of temperature changes, but precipitation projections exhibit dependence on which General Circulation Models and emission scenarios are chosen. To minimize model- and scenario-specific biases, we combined information provided by the 3rd phase of the Coupled Model Intercomparison Project database. Specifically, the results of 12 GCMs for three emission scenarios B1, A1B, and A2 were analyzed for mid- (2046–2065) and end-century (2081–2100) intervals, for six locations of a hydroclimatic transect of Michigan. As a result of Bayesian Weighted Averaging, total annual precipitation averaged over all locations and the three emission scenarios increases by 7 % (mid-)–10 % (end-century), as compared to the control period (1961–1990). The projected changes across seasons are non-uniform and precipitation decreases by 3 % (mid-)–5 % (end-) for the months of August and September are likely. Further, average temperature is very likely to increase by 2.02–2.85 °C by the mid-century and 2.58–4.73 °C by the end-century. Three types of non-additive uncertainty sources due to climate models, anthropogenic forcings, and climate internal variability are addressed. When compared to the emission uncertainty, the relative magnitudes of the uncertainty types for climate model ensemble and internal variability are 149 and 225 % for mean monthly precipitation, and they are respectively 127 and 123 % for mean monthly temperature. A decreasing trend of the frost days and an increasing trend of the growing season length are identified. Also, a significant increase in the magnitude and frequency of heavy rainfall events is projected, with relatively more pronounced changes for heavy hourly rainfall as compared to daily events. Quantifying the inherent natural uncertainty and projecting hourly-based extremes, the study results deliver useful information for water resource stakeholders interested in impacts of climate change on hydro-morphological processes.  相似文献   

13.
In most of Europe, an increase in average annual surface temperature of 0·8 °C is observed, and a further increase is projected. Precipitation tends to increase in northern Europe and decrease in southern Europe, with variable trends in central Europe. The climate scenarios for Germany suggest an increase in precipitation in western Germany and a decrease in eastern Germany, and a shift of precipitation from summer to winter. When investigating the effects of climate change, impacts on water resources are among the main concerns. In this study, the first German‐wide impact assessment of water fluxes dynamics under climate change is presented in a spatially and temporally distributed manner using the state‐of‐the‐art regional climate model, Statistical Regional (STAR) model and the semi‐distributed process‐based eco‐hydrological model, soil and water integrated model (SWIM). All large river basins in Germany (lower Rhine, upper Danube, Elbe, Weser and Ems) are included. A special focus of the study was on data availability, homogeneity of data sets, related uncertainty propagation in the model results and scenario‐related uncertainty. After the model calibration and validation (efficiency from 0·6 to 0·9 in 80% of cases) the water flow components were simulated at the hydrotope level, and the spatial distributions were compared with those in the Hydrological Atlas of Germany. The actual evapotransipration is likely to increase in most parts of Germany, while total runoff generation may decrease in south and east regions. The results for the second scenario period 2051–2060 show that water discharge in all six rivers would be 8–30% lower in summer and autumn compared with the reference period, and the strongest decline is expected for the Saale, Danube and Neckar. Higher winter flow is expected in all of these rivers, and the increase is most significant for the Ems (about 18%). However, the uncertainty of impacts, especially in winter and for high water flows, remains high. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
New data and ideas are changing our view of conditions during the Cretaceous.Paleotopography of the continents was lower than originally thought,eliminating the'cold continental interior paradox'of fossils of plants that could not tolerate freezing occurring in regions indicated by climate models to be well below freezing in winter.The controversy over the height of Cretaceous sea levels has been resolved by knowledge of the effects of passage of the subducted slab of the Farallon Plate beneath the North American crust.The cause of shorter term sea level changes of the order of 30 to 50 meters is not because of growth and decay of ice sheets,but more likely the filling and release of water from groundwater reservoirs and lakes although there may have been some ice in the Early and latest Cretaceous.Carbon dioxide was not the only significant greenhouse gas;methane contributed significantly to the warmer climate.Suggestions of very warm tropical ocean temperatures(40℃)have implications for the nature of plant life on land limited by Rubisco activase.The land surfaces were much wetter than has been thought,with meandering rivers and many oxbow lakes providing habitat for large dinosaurs.A major rethinking of the nature of conditions on a warmer Earth is underway,and a new suite of paleoclimate simulations for the Cretaceous is needed.  相似文献   

15.
This paper evaluates the performance and winter hydrology of two small‐scale rain gardens in a cold climate coastal area in Trondheim, Norway. One rain garden received runoff from a small residential watershed over a 20 month study period while the second rain garden with a shorter study period of 7 months was used as a control. The objective of the study was to investigate the extent to which cold climatic conditions would influence the hydrology and performance of the rain gardens. The hydraulic detention, storm lag time and peak flow reduction were measured and compared seasonally. No significant difference between seasonal lag time could be found, but there was a clear decreasing trend in lag time between rain, rain‐on‐snow and snowmelt. The average peak flow reduction for 44 storms in the study period was 42% compared to 27% for the winter seasons, indicating that the performance of the rain garden is reduced in the cold season (below 0 °C). The average hydraulic detention time for the rain garden was 0·84 ( ± 0·73) with runoff inflow and 1·91 ( ± 3·1) with only precipitation. A strong positive correlation was found between the time since the last wetting event and lag time, and between air temperature and hydraulic detention. This indicates that the time between events and seasonal air temperatures are key parameters in the hydraulic performance of cold climate rain gardens. The rain gardens were not used for snow storage areas, and a volume requirement for this was not evaluated in the study. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
There is increasing evidence that the global climate is changing as a result of anthropogenic activity. Short‐term mean, maximum, and minimum temperatures of the city Rize located at the Eastern Black Sea Coast of Turkey were analyzed to reveal trends, change points, significant warming (cooling) periods, and trend rates per year. An increasing trend of approximately 1.27°C/33 years (α = 0.001) in the annual mean temperatures is found during the period from 1975 to 2007. Two periods, averaging 13.78 and 14.66°C, respectively, were detected from fluctuation in the annual mean temperatures. The trend of the first period (1975–1993) is towards a cooler climate, whereas the trend of the second period (1994–2007) is towards a warmer climate. Summer, autumn and, particularly, the spring mean temperatures have tended to increase strongly, whereas the winter mean temperatures have increased slightly over the whole period. For the winter mean temperature, the trend rate indicates a slight increase, which is insignificant. Maximum temperatures have dramatically increased with 1.61°C (α = 0.001) over the last 33 years. However, annual minimum temperatures have increased by 0.99°C (α = 0.01) over the same period.  相似文献   

17.
Temperature observations at 25 sites in the 2000 km2 Dee catchment in NE Scotland were used, in conjunction with geographic information system (GIS) analysis, to identify dominant landscape controls on mean monthly maximum stream temperatures. Maximum winter stream temperatures are mainly controlled by elevation, catchment area and hill shading, whereas the maximum temperatures in summer are driven by more complex interactions, which include the influence of riparian forest cover and distance to coast. Multiple linear regression was used to estimate the catchment‐wide distribution of mean weekly maximum stream temperatures for the hottest week of the 2‐year observation period. The results suggested the streams most sensitive to high temperatures are small upland streams at exposed locations without any forest cover and relatively far inland, while lowland streams with riparian forest cover at locations closer to the coast exhibit a moderated thermal regime. Under current conditions, all streams provide a suitable thermal habitat for both, Atlantic salmon and brown trout. Using two climate change scenarios assuming 2·5 and 4 °C air temperature increases, respectively, temperature‐sensitive zones of the stream network were identified, which could potentially have an adverse effect on the thermal habitat of Atlantic salmon and brown trout. Analysis showed that the extension of riparian forests into headwater streams has the potential to moderate changes in temperature under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3–4°C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature–dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled ‘glacial’ periods (marine isotope stages 96 to 80) and eight ‘interglacial’ periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the ‘interglacials’ as compared to the present-day climate in the study area. During the ‘glacials’, temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive ‘interglacials’, a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive ‘glacials’, a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of ‘interglacial–glacial’ transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid–cold/dry ‘interglacial–glacial’ cycles which are superimposed by precession related warm/dry– cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.  相似文献   

20.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号