首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>The Huang Shui River,a main tributary of the Yellow River,crosses a series of tectonically subsided and uplifted areas that show different patterns of terrace formation.The distribution of fluvial terrace of the Huang Shui River is studied through topographic and sedimentologic terrace mapping.Three terraces in the Haiyan Basin,four terraces in the Huangyuan Basin,19 terraces in the Xi'ning Basin(the four high terraces may belong to another river),nine terraces in the Ping'an Basin, five terraces in the Ledu Basin and 12 terraces in the Minhe Basin are recognized.Sedimentology research shows that the geomorphologic and sedimentological pattern of the Huang Shui River,which is located at the margin of Tibet,are different from that of the rivers at other regions.The formation process of the terrace is more complicated at the Huang Shui catchment:both accumulation terrace and erosion terrace were formed in each basin and accumulation terraces were developed in some basins when erosion terraces were formed in other basins,indicating fluvial aggradation may occur in some basins simultaneously with river incision in other basins.A conceptual model of the formation process of these two kinds of fluvial terraces at Huang Shui catchment is brought forward in this paper.First,the equilibrium state of the river is broken because of climatic change and/or tectonic movement,and the river incises in all basins in the whole catchment until reaching a new equilibrium state.Then,the downstream basin subsides quickly and the equilibrium state is broken again,and the river incises at upstream basins while the river accumulates at the subsidence basin quickly until approaching a new equilibrium state again.Finally,the river incises in the whole catchment because of climatic change and/or tectonic movement and the accumulation terrace is formed at the subsidence basin while the erosion terrace is formed at other basins.The existence of the accumulation terrace implied the tectonic subsidence in the sub-basins in Huang Shui catchment.These tectonic subsidence movements gradually developed from the downstream Minhe Basin to the upstream Huangyuan Basin.Dating the terrace sequence has potential to uncover the relationship between the subsidence in the catchment and the regional tectonic at the northeastern Tibetan Plateau.  相似文献   

2.
Based on the study of magnetostratigraphy, magnetic susceptibility and grain size of Garzê A section on the southeastern margin of the Qinghai-Tibetan Plateau since the late early-Pleistocene, the basal age of Garzê loess is located at ~1.16?MaBP and a series of abrupt paleoclimatic changes is detected. The times of abrupt changes are of distinct series features, and the interval between each two adjacent abrupt changes is ~50 kyr or ~100?kyr. The most significant abrupt changes occur at around 1.06, 0.85, 0.6, 0.46, 0.39 and 0.14?MaBP. There is a chronological link between the abrupt changes of paleoclimate and the formation of river terraces and it is almost simultaneous with a strengthening trend of neotectonic activities. Therefore, maybe the climatic transition controll the timing of terrace formation, and the tectonic uplift originate potential energy and has a direct effect on channel incision, both the climatic transition and the tectonic uplift are important. Terraces are the products of the interaction of instable climatic variations and tectonic uplift. Like the loess-paleosol sequences, river terrace sequences are also controlled by the climate-tectonic coupling system and are ruled by climate-tectonic gyration with a ~100?kyr paracycle, which may be the short eccentricity period of the earth.  相似文献   

3.
河流阶地形成演化及其对滑坡的控制是近年来古滑坡研究的热点问题。笔者在对岷江上游河流阶地和古滑坡实地调查测试的基础上,对岷江上游河流阶地的级序、拔河高度、成因类型等进行了分析,绘制了阶地高程位相图和年龄位相图,并结合阶地和古滑坡年代,讨论了阶地与古滑坡的发育关系等。主要取得了以下认识:1)岷江上游的河流阶地具有分段性,成因主要为气候多期次波动与构造活动共同作用,古滑坡及堰塞湖是影响高山峡谷区河流阶地发育的重要因素;2)叠溪-茂县段在20~30 ka B.P.发生了多处大型古滑坡,其中20 ka B.P.的古滑坡可能主要是气候波动引发,30 ka B.P.发生的古滑坡可能主要受控于构造活动(地震);3)岷江上游大量分布的古滑坡堆积体与阶地发育的叠置关系有待进一步理清,开展该地区的河流阶地级序研究要充分考虑古滑坡和堰塞湖的影响.  相似文献   

4.
山西河曲黄河阶地序列初步研究   总被引:13,自引:10,他引:3       下载免费PDF全文
黄河干流奇特的"几"字形格局是其复杂发育历史的表现。由于流域内的地质与气候条件复杂多样,分段开展深入研究是全面认识黄河的基础。晋陕峡谷是研究黄河演化的关键地段之一,河流阶地忠实地记录着河流发育的历史。文章选择山西河曲县城附近黄河阶地发育典型的河段进行研究,在实测河流阶地地貌剖面的基础上,系统采集了20个年代样品进行光释光(OSL)测年。依据地貌类型、沉积特征以及定年结果,建立了该河段黄河阶地的演化序列,得出以下结论:1)河曲地区黄河曲流凸岸形成有4级阶地,T4阶地的形成主要受构造控制,而T3,T2和T1阶地的形成主要与气候变化有关,各阶地的年龄分别是T4为90ka,T3为30ka,T2为20ka,T1为3.4ka。2)河曲地区约140ka以来河流地貌的演化经历了5个阶段,各阶段以下切侵蚀开始,结束于各阶地堆积面的塑造。约90ka以来,该地区河谷谷底下降速度和曲流可能最大侧蚀速度的平均值分别为0.9mm/a和33.4mm/a。在不同阶段,二者的大小变化及组合状况各异,在构造相对稳定条件下,河流以侧蚀作用为主,其侧蚀速度与气候和岩性条件有关。3)河曲地区的黄河曲流是在河流下切过程中逐渐侧蚀、演化而成的,具有内生曲流的特点。4)T4阶地的泥流沉积和加积堆积,可能记录了地方性气候变化,其范围和意义有待进一步研究,另外,T3,T2和T1形成过程中气候变化的作用也有待探讨。  相似文献   

5.
Huvial systems from the Dutch and Polish lowlands are compared for their evolution during the Weichselian deglaciation period. In both regions the Pleniglacial braided-river pattern changed to a meandering pattern in the beginning of the Lateglacial. Several transitional stages between braided and high-sinuosity meandering systems have been recognized. A difference in fluvial activity is found during the Younger Dryas when the Maas transformed to a braided pattern while the Warta maintained its meandering pattern. Phases of erosion and aggradation are more or less synchronous in the different river basins, but their intensity may differ greatly. The major characteristics of the fluvial systems are obviously a response to the general climatic evolution and related to changes in vegetation. The regional differences are of minor importance and can be explained by site-specific factors. Threshold values within the latter factors define the changes in river dynamics.  相似文献   

6.
安妮  蒋玺  钱焕  陈文奇  宁凡  陈华  秦能旭  周涌 《地质论评》2023,69(5):1991-2002
贵州涟江惠水段级次清晰的四级阶地是流域地貌阶段性演化的直观记录。笔者等利用差分GPS测量法精确厘定了涟江阶地的级序和高程,结合剖面观测发现从上游到下游,涟江惠水段阶地标高和级差逐渐降低,地貌面整体呈“收拢”趋势;阶地沉积物呈现砾石层厚度变小,砾石含量降低、砾径减小,砂质沉积占比增大趋势;阶地类型从基座阶地为主向堆积阶地为主演变。光释光(OSL)测年显示,T1阶地埋藏年龄31.2±2.0 ka BP到14.7±1.3 ka BP,T2阶地122.4±8.5 ka BP到66.9±3.8 ka BP,阶地年龄与贵州高原其他流域十分相近,具有同步演化特征。结合阶地时代和发育特征,认为贵州高原河流阶地是构造运动的产物。涟江四级阶地记录了在更新世以来四次构造抬升背景下,流域经过多期自北向南“削高补低”的地貌改造,逐步由构造洼地演变为山间盆地的地貌过程。  相似文献   

7.
安妮  蒋玺  钱焕  陈文奇  宁凡  陈华  秦能旭  周涌 《地质论评》2023,69(2):2023020028-2023020028
贵州涟江惠水段级次清晰的四级阶地是流域地貌阶段性演化的直观记录。笔者等利用差分GPS测量法精确厘定了涟江阶地的级序和高程,结合剖面观测发现从上游到下游,涟江惠水段阶地标高和级差逐渐降低,地貌面整体呈“收拢”趋势;阶地沉积物呈现砾石层厚度变小,砾石含量降低、砾径减小,砂质沉积占比增大趋势;阶地类型从基座阶地为主向堆积阶地为主演变。光释光(OSL)测年显示,T1阶地埋藏年龄31.2±2.0 ka BP到14.7±1.3 ka BP,T2阶地122.4±8.5 ka BP到66.9±3.8 ka BP,阶地年龄与贵州高原其他流域十分相近,具有同步演化特征。结合阶地时代和发育特征,认为贵州高原河流阶地是构造运动的产物。涟江四级阶地记录了在更新世以来四次构造抬升背景下,流域经过多期自北向南“削高补低”的地貌改造,逐步由构造洼地演变为山间盆地的地貌过程。  相似文献   

8.
末次冰期是距离人类最近的一次冰期,气候异常寒冷且存在高频高幅波动,河流系统如何响应冰期气候的变化值得关注与研究。基于河流系统对气候变化的敏感响应,传统的经典地貌理论认为河流下切在河流阶地形成过程中起着至关重要的作用,河流的下切行为发生在间冰期或者冰期向间冰期的过渡阶段,堆积行为发生于冰期,然而近年来最新的河流地貌研究成果表明,末次冰期河流下切较为普遍。首先对河流阶地形成的传统模式进行总结分析,认为单纯的构造驱动模式存在不合理性,气候也发挥着重要的调节作用;单一的气候变化无法驱动多级且高差较大阶地的形成,地壳抬升往往是必要因素;气候变化是引发河流堆积-下切行为转换形成河流阶地的关键因素。其次通过前人的研究案例总结出末次冰期河流下切行为响应气候变化的三种模式:(1)气候的高度不稳定性引发大规模的洪水事件驱动河流快速下切;(2)快速隆升区气候高频波动叠加构造抬升驱动河流下切;(3)沿海平原地区海平面大幅度下降驱动河流下切。这三种模式对于理解末次冰期河流系统对短尺度高频气候变化的响应以及对河流阶地成因的判断具有十分重要的指导意义。  相似文献   

9.
In the Northeastern Tibetan Plateau (NETP), the courses of the Huang Shui and Huang He near their confluence are characterized by alternating gorges and wide depressions, segmenting the fluvial systems. The river valleys have developed terrace staircases, which are used to infer relative tectonic motions between the segments. The terrace staircases are correlated by means of relative height and optically stimulated luminescence (OSL) dating. At least eight terraces are present, two of which have been dated by OSL (the sixth and the third ones; c. 70 and c. 24 ka, respectively). The correlated longitudinal terrace profiles show no distinct relative tectonic movements within the confluence area, demonstrating that this area behaved as one tectonic block. The correlation of the terrace staircase of this block with areas upstream (Xining area) and downstream (eastern Lanzhou area) indicates relative tectonic movements, which therefore represent different tectonic blocks. The fluvial incision rate since c. 70 ka was much higher in the confluence area than in the blocks upstream and downstream, possibly indicating relative uplift. This relatively strong uplift provided more space for differentiation within the terrace staircase as a result of climatic changes, leading to six terraces formed as a response to minor climatic fluctuations (103–104 year timescale) since the last interglacial. This may indicate that the stronger the tectonic movement the better the climatic imprint as expressed in the form of terrace development. Over a shorter timescale, two accumulation terraces with thick stacked deposits (>18 m) may indicate relative subsidence in the confluence, occurring sometime between 20 and 70 ka. This indicates changes in relative vertical crustal motions at timescales of tens of thousands of years. We speculate that the inferred tectonic motions are related to transpression movements in the NETP as a result of the collision of the Indian and Asian plates.  相似文献   

10.
本文通过黄河晋陕峡谷河段21个地点的阶地横剖面观察和阶地对比研究,确定出6级宽谷阶地序列,同时,依据17个放射性测年数据对阶地定年。6级宽谷阶地序列揭示了鄂尔多斯高原第四纪区域造陆隆起和局部构造变形,区域造陆隆起的发生时间比之青藏高原隆起要滞后0.113~0.25Ma,而且,平均区域造陆隆起量比之青藏高原的内部和边缘的隆起量小得多。晋陕峡谷河段发生过3期加积作用幕,指示着造陆隆起景观中的气候变化时间线。渭河盆地北缘的韩城断裂悬崖带记录着构造基准面下降,影响的河流长度仅为21~127km。  相似文献   

11.
The competing roles of bedrock uplift and climatic change in the formation of fluvial terraces remain uncertain. Most of recent studies have attributed terrace formation to climatic changes and held that, even in tectonically active settings, climate variations control cycles of terrace planation and abandonment. Based on field investigations of loess-paleosol sequences, magnetostratigraphy and optically stimulated luminescence (OSL) dating, we develop a new chronology for a spectacular flight of terraces along the Yellow River near Lanzhou, China over past 1.24 Ma. All the terraces are strikingly similar in that they have several meters of paleosol developed directly above fluvial deposits on the terrace treads, suggesting that the abandonment of each terrace due to river incision occurs during the transition from glacial to interglacial climates. However, the ages of terraces cluster in two relatively short time periods (1.24–0.86 Ma and 0.13 Ma – present). During the intervening time between 0.86 Ma and 0.13 Ma, terraces either did not form or were not preserved. We suggest that this record indicates that rock uplift rates varied through time and influenced terrace formation/preservation. Thus, our results demonstrate the utility of deep chronologic records from fluvial terraces for deconvolving the effects of tectonics and climate on fluvial incision.  相似文献   

12.
采用热释光(TL)测年方法对龙虎山丹霞地貌区泸溪河的阶地进行了年代学研究,获得了低阶地沉积物的堆积年代及其阶地面的形成时代,该区河流主要发育两级阶地,T1阶地堆积于3 400~6 000 a B.P.,其地貌面形成于3 400~4 000 a,T2阶地堆积于7 600~11 200 a B.P.,该级地貌面形成于7 600~8 000 a B.P.。利用低阶地地貌面的年代学成果,推算出龙虎山丹霞地貌区地壳隆升速率为0.33~0.63 m/ka,根据这一速率推算得出,第一夷平面形成于6×104a左右,第二夷平面形成于28×104a左右。分布于这些夷平面上的丹霞地貌景观的年龄与此相当。  相似文献   

13.
The Niers valley was part of the Rhine system that came into existence during the maximum Saalian glaciation and was abandoned at the end of the Weichselian. The aim of the study was to explain the Late Pleniglacial and Late Glacial fluvial dynamics and to explore the external forcing factors: climate change, tectonics and sea level. The sedimentary units have been investigated by large‐scale coring transects and detailed cross‐sections over abandoned channels. The temporal fluvial development has been reconstructed by means of geomorphological relationships, pollen analysis and 14C dating. The Niers‐Rhine experienced a channel pattern change from braided, via a transformational phase, to meandering in the early Late Glacial. This change in fluvial style is explained by climate amelioration at the Late Pleniglacial to Late Glacial transition (at ca. 12.5 k 14C yr BP) and climate‐related hydrological, lithological and vegetation changes. A delayed fluvial response of ca. 400 14C yr (transitional phase) was established. The channel transformations are not related to tectonic effects and sea‐level changes. Successive river systems have similar gradients of ca. 35–40 cm km?1. A meandering river system dominated the Allerød and Younger Dryas periods. The threshold towards braiding was not crossed during the Younger Dryas, but increased aeolian activity has been observed on the Younger Dryas point bars. The final abandonment of the Niers‐Rhine was dated shortly after the Younger Dryas to Holocene transition. Traces of Laacher See pumice have been found in the Niers valley, indicating that the Niers‐Rhine was still in use during the Younger Dryas. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
《Quaternary Science Reviews》2007,26(22-24):2758-2782
The paper discusses the Quaternary evolution of the Danube and Tisza rivers and their main tributaries in the context of evolution of the entire Pannonian Basin, which is Europe's largest intramontane basin, within the Alp–Carpathian orogen. The palaeo-drainage reconstruction of the Pannonian Basin for the pre-Quaternary period is outlined in connection with the gradual regression of Lake Pannon since the Late Miocene. Deltas of rivers that entered the basin from the northwest and northeast were gradually transformed into extended alluvial plains; thus, the earliest possible ancestor of the Danube coming southeastwards from the Alps could be as old as Late Miocene. By the Pliocene the whole Lake Pannon was infilled. The former extensional basin formation was replaced by a compresional stress field, which resulted in an uplift of the marginal flanks and late-stage subsidence anomalies. The increasing relief led to the formation of the Quaternary drainage pattern. The actively subsiding young basins were filled by fluvial sediments, transported by the Danube and Tisza river systems from the uplifting mountains. Between the subsiding regions of the Little and Great Plains, the Danube has formed an antecedent valley with terrace staircases between the uplifting sections of the Transdanubian Range and the North Midmountains. The formation of the terraces is attributed to periodic climate changes during the Pleistocene combined with differences in the uplift rate. The paper gives a complex overview of the classical chronology of the six terraces based on various data sources: mostly dating of loess/paleosol sequences, travertines, aeolian sand, and tephra strata overlying the fluvial sediments, complemented by scattered vertebrate faunal data and archaeological evidence directly from the terrace sediments.The Quaternary drainage pattern evolution of the Great Plain, with a strong tectonic control, is discussed in detail. Rivers originating from the uplifting marginal areas were drawn towards the subsiding depressions which served as local base level. Changes in subsidence rates in space and time throughout the Quaternary resulted in the evolution of a complex drainage pattern. A special emphasis is placed on the Late Pleistocene–Holocene development of the Middle–Tisza region and the Körös basin, where the Berettyó–Körös Rivers form an eastern tributary system of the Tisza River. A comparative evaluation of these two areas is especially relevant, as they provide insights into large-scale Late Pleistocene avulsion of the Tisza River. OSL dating, complemented with inferred transport directions determined from heavy mineral analysis of fluvial sediments in the Körös basin, has revealed an ancient large meandering river system that can be identified with the palaeo-Tisza, which was flowing along a tectonically controlled depression during the Late Pleniglacial. Successions in the Middle Tisza region have allowed differentiation between the older channels of the palaeo-Bodrog River and the Sajó–Hernád alluvial fan and the younger meander belts of the new course of the Tisza. In the Tisza system, changes in river style (braided to various scales of meandering) show correspondence to millennial-scale climate changes of the last 25 ka, while in the Körös basin the effects of tectonics are overprinted onto the regional climatic signals.  相似文献   

15.
河流沉积与地貌对构造与气候的变化极为敏感,可记录区域构造活动、气候变化和环境演变等多方面的丰富信息。由于独特的构造背景与气候条件,帕隆藏布不仅成为雅鲁藏布水系水量最大的支流,而且其流域在藏东南地区占有重要的地位。帕隆藏布流域内地表过程活跃且河流地貌演化过程快速,是揭示青藏高原东南部构造地貌演化的重要载体。通过对该河流地貌的形态学和沉积学分析发现,帕隆藏布河流形态具有明显的线状特征,其干流近似直线展布,而主要支流呈羽状分布,两者多呈直角交汇,表明河流形态明显受到嘉黎断裂带的构造形迹控制。进一步利用光释光和14C定年方法,对帕隆藏布的晚第四纪河流地貌演化,尤其是干流和东久河支流的晚第四纪河流阶地进行研究后发现,末次冰期以来的气候变化导致帕隆藏布的晚第四纪河流地貌呈现出典型的分段式特征,根据海拔高度主要可划分为3段:1)海拔2 600 m以下的河谷地貌呈V形峡谷,河谷比降大,阶地沉积年龄均在9.0~2.0 kaBP间,沉积属性以河流相和坡积相为主,表明是全新世以来气候变暖条件下形成的;2)海拔2 600~3 300 m的中游段河谷呈冰蚀围谷盆地、U形槽谷等,河谷比降小,河岸谷坡坡度小,主谷两岸冰碛垄发育,存留了古冰缘地貌遗迹,阶地沉积属性以古湖相、冰水相及河流相为主,测年结果在29.8~10.9 kaBP和50.9~39.8 kaBP间,显示其曾经为末次冰期和冰消期冰缘湖泊体系,后被现今的帕隆藏布所贯通;3)海拔3 300 m以上河流地貌为典型的冰川U形槽谷,谷底平坦,发育现代冰湖,仅发育Ⅰ级阶地并上面覆有冰碛物堆积体,有末次冰期的冰缘地貌遗迹,但主要受周围海洋性冰川作用,呈现现代冰缘地貌特征。整体上看,帕隆藏布的现今河流地貌上、下游两端年轻,主要形成于全新世期间;中游的河流地貌出现较早,残留了末次冰期和冰消期的冰缘地貌特征,并保留了广泛的古冰湖相沉积物。因此,帕隆藏布现今的河流形态主要出现在末次冰期以来。  相似文献   

16.
陈孝红  程龙 《地质学报》2008,82(2):269-280
构造运动和气候变化是制约内陆地区河流阶地发育的两个关键因素,而不同地区的河流对它们的响应方式多种多样.研究区海子山位于青藏高原东部的沙鲁里山中段,在第四纪期间经历了大幅度构造抬升及第四纪冰川作用.海子山北缘牙着库河谷保留着6级河流阶地,南缘稻城河谷完好地保留着第四纪冰川作用遗迹.本研究运用电子自旋共振技术对牙着库4级高阶地(第3~第6级)的砾石层及稻城河谷的第四纪冰川沉积物进行了测年,并对这4级阶地的形成过程进行了分析.结果表明,牙着库3~6级阶地基座及相应的砾石层均形成于冰消期,分别与深海氧同位素2、6、12、16阶段晚期相对应.待气候进一步变暖而逐渐进入间冰期,海子山冰川消融殆尽,下伏地壳负荷锐减,构造抬升效应的释放结合冰川均衡抬升使得牙着库河谷梯度增大,而同期的河流沉积物通量较小,结果导致流水切割前期加积的沉积物及其下伏基座形成一级新的河流阶地.牙着库河谷自深海氧同位素16阶段后期以来的平均下切速率为0.43 mm/a左右,小于海子山的平均抬升速率2 mm/a,与"河谷下切速率不大于山地抬升速率"一致.  相似文献   

17.
We synthesize a new fluvial terrace chronostratigraphy of the Bidente and Musone Rivers cast within a broader European framework, which forms the basis of a terrace genesis and river incision model for the northern Apennines, Italy. Our model, supported by terrace long profiles, correlation to Po foreland sediments, 15 new radiocarbon dates, and published numeric and relative stratigraphic ages, highlights how drainage basin substrate drives concurrent formation of strath terraces in the Bidente basin and fill terraces in the Musone basin. Quaternary climate change paces the formative geomorphic processes through unsteady discharges of water and sediment. In the weathering-limited setting represented by the Bidente basin, siliciclastic detritus carves broad strath surfaces during glacial climates that are preserved as terraces as the river incises during the transition to an interglacial climate. In contrast, the transport-limited and carbonate detritus dominated Musone basin sees valleys deeply buried by aggradation during glacial climates followed by river incision during the transition to an interglacial climate. Incision of these rivers over the past ~1 million years has been both unsteady and non-uniform. These and all Po-Adriatic draining rivers are proximal to a base level defined by mean sea level and have little room for increasing their longitudinal profile concavities through incision, particularly in their lower reaches despite periodic glacio-eustatic drawdowns. As a result, the observed incision is best explained by rock uplift associated with active local fault or fold growth embedded in the actively thickening and uplifting Apennine foreland.  相似文献   

18.
潘保田  胡振波 《冰川冻土》2021,43(3):853-863
揭示河流系统响应气候变化和地表抬升的机制是理解流域地貌演化以及水系发育过程的基础,其核心难题是如何充分认识它们在阶地发育中扮演的角色。以往的研究倾向于分开讨论气候变化和地表抬升在河流阶地发育中的作用,认为河流堆积/侧蚀和下切行为分别与冰期和间冰期气候对应,或者将阶地作为地表抬升的直接证据。首先,从上下游河段对比的视角初步解释了黄河中游响应气候变化和地表相对汾渭盆地抬升发育阶地的过程。1.2 Ma以来黄河下蚀鄂尔多斯地块和峨眉台地分别形成了7级阶梯状阶地和6级堆积阶地序列。黄土地层分析结合年代学研究揭示这些阶地面都直接上覆一层古土壤,指示它们形成于气候由冰期向间冰期的过渡阶段,即使在沉降的盆地依然如此。然而,黄河中游并没有在1.2 Ma以来的每一次冰期向间冰期转换都发育阶地,说明气候虽能通过控制河流堆积-侧蚀与下切行为的转换决定阶地的形成时代,但其本身并不是阶地形成的唯一控制因素。在峨眉台地沉降的背景下,黄河无法形成正常的阶梯状阶地序列,取而代之的是堆叠的阶地序列(阶地越年轻拔河高度越大);而当鄂尔多斯地块相对汾渭盆地抬升缓慢时,黄河仅能在极为干旱的冰期向间冰期过渡阶段形成阶地;相比之下,它们相对汾渭盆地抬升速率都足够快速时,驱动黄河近乎对每一次的冰期向间冰期转换都能做出响应而发育阶地。以上黄河中游阶地与气候和地表抬升的对比模式揭示出,快速地表抬升也是阶梯状阶地序列发育不可或缺的因素,能驱使河流在冰期向间冰期过渡阶段显著下切,拉大相邻阶地面垂直距离从而利于后期保存。因此,研究认为黄河中游发育的系列阶地是响应气候变化和地表相对汾渭盆地抬升的结果。  相似文献   

19.
河流沉积的重矿物可以较为准确反映源区的母岩性质,进而揭示河流的演化过程。本研究以岷江下游河流阶地沉积与现代沉积的重矿物为主要研究对象,开展了古流向、重矿物组合特征、特征重矿物类型及重矿物特征指数分析。研究结果表明: 岷江下游Ⅴ级阶地至Ⅲ级阶地沉积中的重矿物以岩浆岩型重矿物为主,其物源来自龙门山构造带;现代沉积中的重矿物以变质岩型重矿物为主,其物源来自松潘—甘孜褶皱带。结合重矿物特征指数对比分析,认为造成这种重矿物类型差异的原因是青藏高原东缘阶段性隆升引起的岷江溯源侵蚀。受昆黄运动B幕影响,岷江于0.73—0.7 Ma下切至汶川附近,Ⅴ级阶地形成;受昆黄运动C幕影响,岷江于0.5—0.3 Ma强烈下切,Ⅳ级阶地形成;受共和运动影响,岷江在0.11—0.09 Ma下切至石大关,同时形成Ⅲ级阶地;此后岷江继续溯源侵蚀,在距今27 ka左右形成现代岷江。  相似文献   

20.
东昆仑山东段北坡河流阶地发育及其与构造隆升的关系   总被引:21,自引:2,他引:19  
河流系统的发育往往能反映相关地质作用的细节.对东昆仑山东段北坡众多河流阶地及其沉积物的研究表明, 该区在早更新世晚期昆仑-黄河运动之后形成的东西向盆岭相间的地貌特征奠定了早期河流为东西向外流水系的基础; 中更新世晚期以来的又一次强烈构造抬升事件———共和运动, 导致昆仑山北坡各主要河流迅速溯源侵蚀发展, 伴随河流袭夺而形成现今的水系格局; 晚更新世晚期存在一段相对较长的构造稳定期, 河谷普遍发生堆积作用, 形成分布广泛且厚度较大的晚更新世冲积层; 接近全新世以来构造运动频繁而隆升的幅度趋于减弱, 形成了5级河流阶地, 并且阶地的发育类型普遍为以高级阶地(T5) 为基座的上叠阶地, 河流至今未能切穿晚更新世稳定期形成的厚冲积层.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号