首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
西南喀斯特区土层浅薄、成土速率低等特点决定了其允许土壤流失量小,土壤一旦流失,极难恢复,土壤侵蚀及其造成的石漠化现象已成为制约该区可持续发展最严重的生态环境问题。文章首先明晰西南喀斯特区土壤侵蚀特征,从坡面、小流域和区域三个尺度上系统概括西南喀斯特区土壤侵蚀的相关研究进展。针对当前喀斯特区土壤侵蚀研究野外径流小区、小流域及区域空间尺度数据缺少和相关研究模型限制性强等不足,建议从不同尺度深入研究喀斯特区土壤侵蚀发生发展规律及时空演化格局,并结合高新遥感、地球物理探测技术及模型,同步监测坡面—小流域—区域土壤流失,对土壤侵蚀进行定量评估,结合不同空间尺度土壤侵蚀特征构建系统性水土保持生态恢复治理模式和监测系统评价体系。   相似文献   

2.
土壤侵蚀模型研究现状和GIS、RS应用   总被引:12,自引:1,他引:11  
针对当前的土壤侵蚀模型,根据模型考虑的因素和具体研究思路,将模型分为经验模型和物理模型,并介绍了有代表性的经验模型和物理模型。GIS和RS作为新技术,在土壤侵蚀中的应用具有重要的意义.文章对当前的应用状况进行了叙述,指出目前存在的问题。最后,对土壤侵蚀模型应用存在的问题,提出几点建议。  相似文献   

3.
土壤侵蚀模型研究现状与展望   总被引:26,自引:0,他引:26       下载免费PDF全文
张光辉 《水科学进展》2002,13(3):389-396
土壤侵蚀已成为极为严峻的环境问题之一,对它进行准确的预报具有重要的实践意义.本文对国内外土壤侵蚀模型的研究现状进行了详细的回顾,并对我国土壤侵蚀模型研究中相对薄弱的环节进行了深入的分析.旨在借鉴国外研究经验,促进我国土壤侵蚀模型研究的进展.  相似文献   

4.
从GIS和RS研究的角度对沙厂小流域实测的土壤侵蚀数据进行分析,建立基于3S的土壤侵蚀综合评价指标模型,快速地计算出土壤侵蚀量,并对其侵蚀的动态过程进行监测,为沙厂小流域综合治理的快速决策提供科学的平台和依据.  相似文献   

5.
青藏高原水力侵蚀定量研究进展   总被引:1,自引:0,他引:1  
青藏高原生态环境脆弱,土壤侵蚀是严重的生态问题.定量监测和评价水力侵蚀是生态建设和水土保持规划的基础.为系统掌握青藏高原水力侵蚀定量研究现状,在查阅大量文献资料的基础上,系统整理了81篇相关文献.发现青藏高原定量评价方法包括基于坡面侵蚀模型、137Cs核素示踪法、径流小区和水文站观测3种类型,但总的来说研究明显不够.坡面侵蚀模型主要有美国修正通用土壤流失方程和中国土壤流失方程2种.基于修正通用土壤流失方程、中国土壤流失方程、137Cs核素示踪法、径流小区监测和水文站观测小流域得到的青藏高原土壤侵蚀模数分别为大于30、1~8、小于10、0~109和2~3 t/(hm2.a).经过分析发现,青藏高原土壤侵蚀定量研究存在4个方面的问题:模型计算中参数的选择存在问题,137Cs核素示踪法方面背景值不确定性太大,径流小区和小流域监测资料奇缺,没有全区评价结果.今后需要加强小区小流域自动化监测、137Cs背景值采样测试和综合评判以及137Cs核素示踪法土壤侵蚀测定.在这两项定量测定的基础上对全青藏高原土壤侵蚀进行定量评价,为水土保持规划和生态文明建设服务.  相似文献   

6.
坡面侵蚀过程定量研究进展   总被引:8,自引:1,他引:8  
坡面是土壤侵蚀最基本的地貌单元,定量研究坡面侵蚀能为研究土壤侵蚀规律、确定坡面重点侵蚀部位、建立土壤侵蚀预报模型提供科学依据。总结了溅蚀、片蚀、细沟侵蚀、浅沟侵蚀的定量研究进展,简述了土壤侵蚀模型的研究进展,对目前的其它研究方法进行了评述。  相似文献   

7.
海洋生态系统动力学模型及其研究进展   总被引:11,自引:0,他引:11  
海洋生态系统动力学研究是当前多学科交叉研究的热门领域,依据国内外研究进展,分别就人们在模型研究中所采用的过程模型、个体模型、种群模型、种间模型及生态系统模型进行了介绍,并概述了当前国际上的研究热点全球变化与海洋生态系统动力学研究,总结了我国的海洋生态系统动力学研究现状以及进一步研究中存在的问题和发展趋势。  相似文献   

8.
~7Be是由宇宙射线撞击同温层和对流层大气中氮、氧原子核而生成的天然放射性核素。由于连续沉降、半衰期短(53.3天)以及在土层中分布深度浅(约2 cm)等特点,~7Be在示踪单次暴雨或短期强降雨等短时间尺度的侵蚀产沙空间分布研究中具有独特优势。随着气候变化加剧和暴雨等极端天气增多,~7Be法应用前景广阔。然而该技术目前处于探索阶段,一些重要基础假设尚未得到有效验证,限制了其在土壤侵蚀研究中的广泛应用。简要回顾了利用~7Be法定量土壤侵蚀速率空间分布的历史和现状,介绍了其示踪原理和计算模型及其最新进展;重点评述了~7Be法估算土壤侵蚀速率的关键基础假设及其不确定性,以及植被截留、侵蚀分选等对~7Be法评价土壤侵蚀速率的影响;并对未来研究趋势进行了展望,包括基础假设的验证及不确定性分析、植被影响的定量评价、示踪时空尺度的扩展以及新模型的开发等方面。  相似文献   

9.
土壤侵蚀产沙量的人工神经网络模拟   总被引:12,自引:0,他引:12  
在分析土壤侵蚀产沙过程和神经网络模型特点具有某些相信的基础上,采用三层前馈网络模型(BP算法),模型的第一层有5个结点,分别代表降雨强度、降雨历时、降雨量、前期降雨量(用前10天降雨总量表示)、径流深;第三层只有一个结点,表示土壤侵蚀产沙量;隐层的结点数采用“试错法”确定为3个。利用四川某地水土保持试验观测资料,对土壤侵蚀产沙量进行模拟及预测,通过分析比较,显示了具有较子的模拟预测效果。  相似文献   

10.
区域土壤侵蚀定量研究的国内外进展   总被引:27,自引:0,他引:27  
由于水土保持宏观决策的需要、土壤侵蚀学科自身的进步和全球变化研究的促进,过去的10多年来,国内外研究者对区域尺度土壤侵蚀研究给予了高度重视。已经开展的主要研究包括:全球和区域(包括国家尺度)土壤侵蚀调查、区域土壤侵蚀过程和尺度效应、区域土壤侵蚀因子和区域土壤侵蚀模型等。将区域土壤侵蚀作为现代陆地地表过程的一部分,充分考虑全球变化的影响,集成土壤侵蚀研究成果与遥感和GIS技术,开发分布式区域土壤侵蚀模型,成为区域土壤侵蚀定量评价研究的基本趋势。在对国内外区域土壤侵蚀定量评价研究评述的基础上,提出我国近期在区域土壤侵蚀方面研究的重点问题为:区域土壤侵蚀过程及其尺度效应的量化描述、区域土壤侵蚀模型开发、区域土壤侵蚀动态模拟与趋势预测、区域土壤侵蚀与全球变化关系研究和区域土壤侵蚀数据处理与管理方法。  相似文献   

11.
137Cs示踪农耕地土壤侵蚀速率模型的比较研究   总被引:5,自引:0,他引:5  
^137Cs示踪技术广泛地应用于农耕地土壤侵蚀研究,目前已建立了许多运用^137Cs估算土壤侵蚀速率的模型。这些模型主要分为两类:经验模型与理论模型。其中理论模型中的质量平衡模型应用较多。质量平衡模型主要有:Walling模型、张信宝模型、杨浩模型和周维芝模型。重点讨论这4种质量平衡模型的异同。详细阐述了这四种模型的建立过程,并用图形模拟的方法给出各个模型所刻画的土壤侵蚀速率与土壤剖面中^137Cs相对损失率的关系。分析表明,尽管各个模型在建立的假设和方法上以及对^137Cs沉降过程的处理上存在一定程度的差异,但是各个模型所刻画的土壤侵蚀速率与土壤剖面中^137Cs相对损失率的关系实质上都是幂函数的形式,而且这4条曲线的走势基本一致,各自计算的土壤侵蚀速率差异也较小。因此,在利用^137Cs技术示踪农耕地土壤侵蚀速率时,这4个模型都可以应用。  相似文献   

12.
137 Cs示踪技术广泛地应用于农耕地土壤侵蚀研究,目前已建立了许多运用 137 Cs估算土壤侵蚀速率的模型。这些模型主要分为两类:经验模型与理论模型。其中理论模型中的质量平衡模型应用较多。质量平衡模型主要有:Wal l ing模型、张信宝模型、杨浩模型和周维芝模型。重点讨论这 4种质量平衡模型的异同。详细阐述了这四种模型的建立过程,并用图形模拟的方法给出各个模型所刻画的土壤侵蚀速率与土壤剖面中 137 Cs相对损失率的关系。分析表明,尽管各个模型在建立的假设和方法上以及对 137 Cs沉降过程的处理上存在一定程度的差异,但是各个模型所 刻画的土壤侵蚀速率与土壤剖面中 137 Cs相对损失率的关系实质上都是幂函数的形式,而且这 4条曲线的走势基本一致,各自计算的土壤侵蚀速率差异也较小。因此,在利用 137 Cs技术示踪农耕地土壤侵蚀速率时,这 4个模型都可以应用。  相似文献   

13.
Riparian zones act as important buffer zones for non-point source pollution, thus improving the health of aquatic ecosystems. Previous research has shown that riparian zones play an important role, and that land use has an important effect, on phosphorus (P) retention. A spatial basin-scale approach for analyzing P retention and land use effects could be important in preventing pollution in riparian zones. In this study, a riparian phosphorus cycle model based on EcoHAT was generated with algorithms from soil moisture and heat models, simplified soil and plant phosphorus models, plant growth models, and universal soil loss equations. Based on remote sensing data, model performance was enhanced for spatial and temporal prediction of P retention in the riparian zone. A modified soil and plant P model was used to simulate the soil P cycle of a riparian zone in a temperate continental monsoon climate in northern China. A laboratory experiment and a field experiment were conducted to validate the P cycle model. High coefficients of determination (R 2) between simulated and observed values indicate that the model provides reliable results. P uptake variations were the same as the net primary productivity (NPP) trends, which were affected by soil temperature and moisture in the temperate continental monsoon climate. Beginning in June, the monthly content increased, with the maximum appearing in August, when the most precipitation and the highest temperatures occur. The spatial distribution of P uptake rates from March to September showed that areas near water frequently had relatively high values from May to August, which is contrary to results obtained in March, April, and September. The P uptake amounts for different land uses changed according to expectation. The average monthly P uptake rates for farmlands and grasslands were more than those for orchards and lowlands, which had moderate P uptake rates, followed by shrubs and forests. The spatial distribution of soil erosion demonstrated that the soil erosion came primarily from high-intensity agricultural land in the western and central areas, while the northern and eastern study regions, which were less affected by human activity, experienced relatively slight soil erosion. From the point of view of P pollution prevention, the spatial structure of riparian zones and the spatial distribution of land use around the Guanting reservoir are thus not favorable.  相似文献   

14.
The karst area of Southwest China is suffering from serious ecological and environmental problems due to soil erosion while the research on soil erosion is not sufficient. Primary achievement was systematically reviewed in this paper in three aspects: erosion characteristics, current researches about erosion on different spatial scales, and key scientific problems. Based on the review, the authors figured out the shortcomings of the existing studies and pointed out the directions on erosion study in southwest China karst region. The results showed that: ① Due to the existence of a dual structure in karst environment including ground and underground erosion, the process of runoff and sediment production on slope scale and confluence and sediment transportation processes on catchment scale were more complex under the unique geological and hydrological backgrounds; ② At present, most researches about erosion mechanism in karst area focus on slope scale and some achievements on quantitative evaluation of erosion factors have been made. Continuous data with high quality about relationship between water and sediment on catchment scale is limited. When data is scarce, river sediment data can be used as an effective way to study soil erosion intensity and spatial-temporal variation in karst area; ③ It is more reasonable to use 50 t/(km2·a) as the grading standard of soil loss tolerance than the previous grading standard of soil erosion intensity. Given the complex relationship between rocky desertification and soil erosion, more quantitative studies about the effects of rocky desertification on soil erosion are still necessary. There are different viewpoints on soil leakage definitions, leakage mechanism and leakage ratios, and new breakthroughs could be achieved by combining different methods and matching multi-scales. In conclusion, in order to further reveal soil erosion laws and establish and revise available regional soil erosion forecasting models for Southwest China karst areas, synchronous test and monitoring on slope, watershed, and channel spatial scales are urgently needed. The results can provide theoretical and technical support for promoting soil and water conservation work for the karst area of Southwest China.  相似文献   

15.
《Earth》2009,95(1-4):23-38
Erosion is a major threat to soil resources in Europe, and may impair their ability to deliver a range of ecosystem goods and services. This is reflected by the European Commission's Thematic Strategy for Soil Protection, which recommends an indicator-based approach for monitoring soil erosion. Defined baseline and threshold values are essential for the evaluation of soil monitoring data. Therefore, accurate spatial data on both soil loss and soil genesis are required, especially in the light of predicted changes in climate patterns, notably frequency, seasonal distribution and intensity of precipitation. Rates of soil loss are reported that have been measured, modelled or inferred for most types of soil erosion in a variety of landscapes, by studies across the spectrum of the Earth sciences. Natural rates of soil formation can be used as a basis for setting tolerable soil erosion rates, with soil formation consisting of mineral weathering as well as dust deposition. This paper reviews the concept of tolerable soil erosion and summarises current knowledge on rates of soil formation, which are then compared to rates of soil erosion by known erosion types, for assessment of soil erosion monitoring at the European scale.A modified definition of tolerable soil erosion is proposed as ‘any actual soil erosion rate at which a deterioration or loss of one or more soil functions does not occur,’ actual soil erosion being ‘the total amount of soil lost by all recognised erosion types.’ Even when including dust deposition in soil formation rates, the upper limit of tolerable soil erosion, as equal to soil formation, is ca. 1.4 t ha 1 yr 1 while the lower limit is ca. 0.3 t ha 1 yr 1, for conditions prevalent in Europe. Scope for spatio-temporal differentiation of tolerable soil erosion rates below this upper limit is suggested by considering (components of) relevant soil functions. Reported rates of actual soil erosion vary much more than those for soil formation. Actual soil erosion rates for tilled, arable land in Europe are, on average, 3 to 40 times greater than the upper limit of tolerable soil erosion, accepting substantial spatio-temporal variation. This paper comprehensively reviews tolerable and actual soil erosion in Europe and highlights the scientific areas where more research is needed for successful implementation of an effective European soil monitoring system.  相似文献   

16.
国内外风蚀监测方法回顾与评述   总被引:3,自引:1,他引:2  
为了准确认识风沙运动规律、建立风蚀模型,必须对风沙过程进行野外实地监测.鉴于风沙过程的复杂性,目前风蚀监测的方法多种多样.根据监测目的和原理的差异,将现有的主要风蚀监测方法分为风蚀量监测和输沙率监测两大类分别评述.风蚀量监测主要包括集沙盘法,降尘缸法,风蚀盘法,风蚀圈法,示踪法,遥感法,侵蚀针法等;输沙率的监测主要使用...  相似文献   

17.
Hyperspectral reflectance is widely used for determining important properties of soil erosion. However, there have been few studies which focus on the influence of soil erosion intensity on the characteristics of hyperspectral reflectance, and such information would provide a new tool to improve quantitative understanding of soil erosion. In this study, 35 soil samples were collected from three regions with different erosion intensities in Changting County, a typical severely eroded county in the ferralic cambisol region of southern China, and classified into three groups according to different erosion controlling status. All the samples were scanned at wavelengths from 400 to 2,498 nm by an ASD Field Spec Portable Spectrometer, and the erosion intensity of each sample was calculated using the Revised Universal Soil Loss Equation. Multivariate stepwise linear regression was then employed to model the soil erosion intensity based on reflectance. The results suggested that the absorption peaks of each sample were in a similar wavelength range, while the absorption depth varied with different erosion status, and the reflectance of extremely eroded soil samples were the highest. During modelling of erosion intensity, the result was poor when all the samples were combined, but improved greatly at certain wavelength ranges when samples were classified into three groups based on different erosion controlling status. The extreme erosion group markedly outperformed the other two groups, in which the R 2 values between the actual and predicted erosion intensity were 0.67, 0.85 and 0.80 for each spectral type. The results indicated that hyperspectral reflectance is a promising method for accurately monitoring erosion intensity.  相似文献   

18.
Sand production by soil erosion in small watershed is a complex physical process. There are few physical models suitable to describe the characteristics of the intense erosion in domestic loess plateau. Introducing support vector machine (SVM) oriented to small sample data and possessing good extension property can be an effective approach to predict soil erosion because SVM has been applied in hydrological prediction to some extent. But there are no effective methods to select the rational parameters for SVM, which seriously limited the practical application of SVM. This paper explored the application of intelligence-based particle swarm optimization (PSO) algorithm in automatic selection of parameters for SVM, and proposed a prediction model by linking PSO and SVM for small sample data analysis. This method utilized the high efficiency optimization property and swarm paralleling property of PSO algorithm and the relatively strong learning and extending capacity of SVM. For an example of Huangfuchuan small watershed, its intensive fragmentation and intense erosion earn itself the name of “worst erosion in the world”. Using four characteristics selection algorithms of correlation feature selection, the primary affecting factors for soil erosion in this small watershed were determined to be the channel density, ravine area, sand rock proportion, and the total vegetation coverage. Based on the proposed PSO–SVM algorithm, the soil erosion modulus in the small watershed was predicted. The accuracy of the simulation and prediction was good, and the average error was 3.85%. The SVM predicting model was based on the monitoring data of sand production. The construction of the SVM erosion modulus prediction model for the small watershed comprehensively reflected the complex mechanism of soil erosion and sand production. It had certain advantage and relatively high practical value in small sample prediction in the discipline of soil erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号