首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 770 毫秒
1.
本文回顾总结了 2020年地震活动,从全球到局部,呈现了全球、中国和四川的地震活动概况;分析了全球、中国和四川地震活动的特征;记叙了 2020年四川区域内发生的突出地震事件;追踪了 2008年汶川8.0级地震以来四川区域内发生的3次7级以上地震和2019年发生的长宁6.0级地震震群的余震活动。结果显示:2020年全球M_S≥7.0地震活动特征呈现低频次、低强度,主体地区为环太平洋地震带;我国周边未发生M_S≥7.0地震,表明影响我国地震活动的动力边界活动偏弱,我国大陆和邻区地震活动表现出频次低、强度弱的特点,地震分布总体显示强度西部强于东部,区域上显示M_S≥5.0级地震分布于青藏地块、西域地块和华南地块;中国台湾及其附近海域地震活动频次和强度也明显偏低;四川区域地震活动强度继续呈现东部强于西部的特征,5级以上地震零散发生,5级以下地震活动相对集中在川东南部、龙门山断裂带和川滇菱形地块东边界三个区域;2008年汶川8.0级地震余震持续活跃;2013年芦山7.0级地震余震的强度和频次明显减弱;2017年九寨沟7.0级地震余震的强度和频次均衰减明显;2019年发生的长宁6.0级地震震群在2020年仍继续活动,强度明显减弱,小震频次依然密集。  相似文献   

2.
杜方 《四川地震》2023,(2):1-11
归纳性综述了2022年全球到局部尺度的地震活动,讨论了全球、中国大陆及其邻区、四川及其邻区地震活动的概况和特征;记叙了四川区域内发生的突出地震事件;追踪了近年四川区域内已发强震的几个余震区余震衰减活动情况。结果显示:(1)全球大震活动分布不均,呈现北半球弱、南半球强的活动差异,欧亚地震带异常平静、频次和强度均弱的特征。(2)中国大陆及邻区地震活动分布集中、频次高、强度弱,MS≥5.0地震主要集中分布在青藏地块,其次分布在西域地块。(3)四川及邻区地震活动受块体活动调整控制,尤其受巴颜喀拉地块的调整活动控制,呈现频次和强度均高于上一年度的特点。(4)四川境内突出地震有4次,兴文MS5.1地震发生在长宁—珙县—筠连—兴文区域,位于川东南地震重点监视跟踪工作区;芦山MS6.1地震是一次紧邻2013年芦山MS7.0地震的新强震破裂,与芦山MS7.0地震分属不同破裂面;马尔康MS6.0震群属多断层面触发性震群;泸定MS6.8地震属于发生在鲜水河...  相似文献   

3.
2013年4月20日四川芦山M7.0级地震介绍   总被引:20,自引:6,他引:14       下载免费PDF全文
2013年4月20日四川芦山M7.0级地震发生在龙门山断裂带南段,震源机制解为逆冲型.震后3天震区已发生3000多次余震,其中M5级余震4次,最大余震是4月21日17时05分芦山、邛崃交界M5.4级地震,余震区长轴约45 km,短轴约20 km.芦山M7.0级地震与2008年5月12日汶川M8.0级地震均位于龙门山断裂带,但汶川地震发生在该断裂带中-北段,两个地震的余震区存在约45 km的间隔,芦山M7.0级地震不是汶川地震的余震,但两者密切相关.  相似文献   

4.
文章以20世纪60年代以来中国大陆发生的4次MS≥7.8大震,即1970年云南通海7.8级、1976年河北唐山7.8级、2001年青海昆仑山口西8.1级和2008年四川汶川8.0级地震为研究对象,探讨了8级左右巨大地震的余震活动及分类,并以流变模型讨论了序列类型差异性的物理力学成因。初步给出:①4次大震的余震序列可归为两种类型,即低活动序列类型和高活动序列类型;②余震的差异性特征与主震孕育过程密切相联,理论模型和实际震例资料均给出,余震活动持续时间长短与大震孕震时间长短之间呈正相关变化;③根据对汶川8.0级大震的研究,孕震区介质流变性和构造变形速率的高低可能是造成大地震余震序列差异性特征的重要原因。  相似文献   

5.
2013年4月20日在龙门山断裂南段发生的芦山M7.0级地震已过去近1年.本文根据四川省地震台网资料和收集的国内外相关历史资料,研讨了巴颜喀拉地块东缘区域龙门山断裂、岷江断裂、虎牙断裂等历史地震活动;分析了龙门山断裂带2008年5月12日汶川8.0级和2013年4月20日芦山7.0级地震余震时空、震源机制及破裂扩展等特征;讨论了巴颜喀拉地块东缘区域的能量释放特征等.结果表明:(1)芦山7.0级地震西南的龙门山断裂南段仍存在尚未破裂的背景性破裂空段;(2)芦山7.0级地震与汶川8.0级地震两余震区之间的空段区存在能量待释放;(3)龙门山断裂中北段(在汶川余震区内)的北川附近存在能量释放不充分的局部区域.  相似文献   

6.
汶川、 芦山地震前后四川地区应力场时空演化   总被引:1,自引:0,他引:1  
张致伟  阮祥  王晓山  王宇航  祁玉萍 《地震》2015,35(4):136-146
基于四川地区2000年1月~2014年6月ML≥3.0地震震源机制解, 首先分析了四川地区各次级地块和不同断裂带的地震震源机制类型及整体应力场特征, 其次以汶川8.0级、 芦山7.0级地震为例, 研究两次强震发生前后四川各次级地块的主压应力时空演化特征。 获得的主要认识为: ① 四川各次级地块的地震震源机制比较紊乱, 反映了块体内部构造的复杂性, 而断裂带的地震震源机制则相对比较单一, 与其运动类型一致; ② 四川各次级地块及断裂带的整体应力方向比较一致, 优势方位呈现NW和NWW向, 倾角接近水平; ③ 汶川8.0级、 芦山7.0级地震发生前, 震中所在的龙门山断裂带中南段及川青地块的主压应力方位均出现过较好的一致性, 而在芦山地震后, 龙门山断裂带及川青、 川中地块的主压应力优势方位则转变为NE向。  相似文献   

7.
汶川Ms8.0级地震发生背景与过程的研究   总被引:5,自引:2,他引:3       下载免费PDF全文
本文首先阐明汶川Ms8.0级地震发生在由区域布格重力异常和地震震中分布所确定的武都-松潘-茂汶-汶川-泸定地震带上.汶川地震所在地段是地震前兆和中小地震(M≤7.0)的空白区,震前出现明显的孕震空区,Ms8.0级地震发生在空区周围区域中小地震活动峰值之后的减少段里.地震的破裂超出孕震空区范围,空区内、外余震活动呈现出不同的衰减特征,依此将余震活动分为WS和NE两个区段.地震破裂过程、4级以上余震矩张量及震区应力场反演和余震应力降的测定结果表明,两个区域的位错、余震机制解和应力降及最大主应力的方向等明显有别.根据这些特征和地震应力触发的研究,推测NE段地震的发生可能是由WS段主破裂的发生所触发.  相似文献   

8.
四川芦山7.0级地震及其与汶川8.0级地震的关系   总被引:8,自引:1,他引:7       下载免费PDF全文
2013年4月20日在四川省雅安市芦山县发生M7.0级地震.根据四川省台网资料和收集的国内外相关资料,我们分析了芦山地震的基本参数、余震分布、序列衰减等特征.结果表明:芦山地震位于龙门山断裂南段,其震源力学机制显示为纯逆冲性质,与龙门山断裂构造特征相符合;芦山地震的余震较丰富,震后15天震区已发生7800多次余震,其中,5级以上余震4次,最大余震是4月21日17时5分芦山、邛崃交界M5.4级地震;余震分布形成的图形显示其长轴走向与龙门山断裂构造走向一致,余震分布显示密集区长轴约40 km,短轴约20 km.与汶川M8.0级地震在震源力学机制、破裂过程、余震空间展布以及地表破裂等对比分析后表明:芦山地震与汶川地震的震源错动类型、破裂过程、地表破裂以及余震活动等特征存在明显差异;芦山地震与汶川地震震中位置相距90 km,两次地震的余震密集区相距50 km;汶川8.0级地震造成龙门山断裂中北段较充分破裂,芦山7.0级地震则展布于龙门山断裂南段且破裂尺度有限;两者有发震构造上的联系,但两次地震是相对独立的地震事件.  相似文献   

9.
汶川8.0级地震后中国大陆强震活动状态研究   总被引:1,自引:0,他引:1  
本文从不同空间、 时间尺度对2008年四川汶川8.0级地震的影响意义进行了初步讨论, 并以此分析了其后我国大陆的强震活动状态。研究结果表明, 1800年以来中国大陆西部及邻区的大三角地区8级地震活动呈现为100年左右丛集性时间过程, 具有地震平静、 地震丛集、 地震丛集发生前的过渡和丛集发生后的调整等时间特征; 2001年11月14日昆仑山口西8.1级地震和2008年5月12日四川汶川8.0级地震的发生表明, 目前该地区可能处于8级地震丛集发生前的过渡时段。20世纪以来, 中国大陆7级强震的时间活动过程明显受大三角地区8级地震时间进程的影响, 在8级地震活动的1900—1955年时段内, 7级地震幕式活动划分不显著, 而在8级地震平静的1956—2000年时段内, 7级地震幕式活动划分清晰; 以2008年汶川8.0级地震为标志, 受大三角地区8级左右巨大地震活跃控制, 中国大陆可能将进入一组新的幕式活动不清晰的、 类似于1900—1955年的强震活跃时段。  相似文献   

10.
2008年汶川8.0级地震前川滇地区6级以上地震平静异常   总被引:3,自引:0,他引:3  
2008年5月12日四川汶川8.0级地震前,川滇地区出现了显著的地震平静异常:M≥6.0、M≥6.5和M≥7.0地震平静时间分别达3.63年、8.29年和12.27年。通过对1900年以来川滇地区M≥6.0、M≥6.5和M≥7.0地震时间分布特征的统计分析,发现这些平静异常现象在川滇地区近100年来的地震活动性中是非常显著的。在M≥7.0地震平静时间大于5年的条件下,M≥6.0(1.0σ以上)和M≥6.5地震(1.5σ以上)平静异常在统计上具有显著性和重现性,可能是这类7级地震前一个重要或典型的异常现象。  相似文献   

11.
中强地震平静是汶川8.0级地震前最显著的地震活动异常   总被引:1,自引:0,他引:1  
高立新  孙加林  张晖 《地震》2010,30(1):90-97
本文对四川地区1923年以来5.0级以上地震资料进行了分析研究。 结果表明, 研究区中强地震经历了4个较为完整的周期活动, 中强地震具有16年的准周期活动特征, 平静期持续5年左右, 从2008年汶川8.0级地震开始, 研究区将进入第5个活动周期, 其可能的持续时间为2024年前后。 2008年汶川8.0级地震前, 5.0~5.9级、 6.0~6.9级、 7.0~8.0级三个档次的地震事件的平静间隔均达到统计时段的历史之最, 三个档次地震的平静均被汶川8.0级地震直接打破, 中强地震超长平静是汶川8.0级地震前最为显著的异常现象。  相似文献   

12.
为合理估计汶川8.0级特大地震后中国大陆的地震形势,本文通过对中国大陆特大地震后地震活动的统计分析,初步获得了对中国大陆特大地震调整作用的一些认识:①特大地震发生后1年内,除余震区外,中国大陆其他地区的地震活动以应力调整为主线,发生7级以上地震的可能性较小;②调整作用主要发生在西部的青藏活动地块区;③青藏地块区特大地震对华北地块区的地震调整作用较小.  相似文献   

13.
2008年汶川MS8.0地震前地震活动异常特征   总被引:1,自引:1,他引:0  
薛艳  刘杰  梅世蓉  宋治平 《地震学报》2009,31(6):606-619
分析了汶川地震前地震活动时空演化特征.结果表明:①汶川地震前38a龙门山断裂带及其附近形成5级地震背景空区,震前6.5a形成ML4.0地震孕震空区,震前1a孕震空区内部及其两端相继发生多次ML4.0—5.0地震,空区缩小;②中国大陆西部及邻区2001年以来处于大震活跃时段,而中国大陆内部地震活动水平非常低,出现非常显著的7级、6级和5级地震平静;③南北地震带7级以上地震在时间上具有准周期特征,空间上存在由南向北迁移的特点,汶川地震的发生符合这一规律;④1998年以来南北地震带中段为7级地震空段,汶川地震就发生该空段内;⑤2003年云南大姚地震后,南北地震带地震活动显著增强,且在中、南段形成4.6级以上地震环形分布,四川及其附近表现为异常平静,同时震群活动显著,且在4.6级地震平静区内形成震群空区,汶川地震就发生震群空区的边缘,震前8个月,震群频度出现高值异常;⑥汶川地震前7个月,青藏块体大范围ML≥4.0地震平静103d,2008年1月13日以后平静区逐渐解体,至汶川地震前4级地震平静区缩小到巴颜喀拉地块,汶川地震就发生在巴颜喀拉地块的东边界带上,汶川地震前3 个多月,孕震空区内部出现NW走向的3级地震条带,与龙门山断裂带斜交.   相似文献   

14.
地震震源机制解和地应力实测结果表明, 我国大陆地区存在近似于辐射状的区域应力场, 其辐射中心位于青藏地块东部. 本文首先定义我国大陆应力场近似辐射中心(35°N、 100°E)为动力源点, 在此基础上计算了1900年以来我国大陆东部地区(30°N—44°N、 104°E—125°E)所发生的34次MS≥6.0地震震中到动力源点的距离与地震发生时间的关系. 结果表明, 20世纪南北地震带中北段发生MS≥7.0地震后, 华北地块陆续发生了一系列MS≥6.0地震, 且有随时间从南北地震带附近大体向东迁移的规律. 据此说明, 华北地块的地震主要受控于印度板块作用下青藏地块向我国大陆东部挤压的影响, 在其作用下产生了华北地块MS≥6.0地震的系列东向迁移活动. 总体来看有4组明显的地震迁移活动, 每组地震“序列”的迁移视速度约为80 km/a. 华北地块首发MS≥6.0地震距南北地震带中北段最近一次MS≥7.0地震的时间间隔约为1个月至11.8年, 且60%的MS≥6.0地震发震地点在(39°N±1.5°)区域内. 据此推测, 2008年汶川MS8.0和2013年芦山MS7.0地震后, 华北地块近年存在发生MS≥6.0地震的可能, 晋冀蒙交界和环渤海及其附近地区值得重点关注.   相似文献   

15.
通过对汶川8.0级地震前后中国大陆地震活动特征的分析,探讨了汶川8.0级地震的地震活动背景.重新划分了中国大陆7级以上地震的活动周期,并根据汶川地震发生的构造背景分析了汶川地震对中国大陆活动趋势的影响和西部大三角与中国大陆强震活动趋势的关系。分析结果表明:在未来1-3年中国大陆特别是西部强震活动仍然处于活跃状态,有可能再次发生7级以上地震。  相似文献   

16.
腾冲地区潜热通量与周围地区地震活动的相关性   总被引:1,自引:0,他引:1       下载免费PDF全文
以2000年以来6.4级以上地震为例,研究了腾冲地区潜热通量(SLHF)在这些震例发生前后的变化特征。结果表明:腾冲地区的SLHF动态,不但在其附近发生强地震前常出现异常,而且对周边较远的强地震前也会发生异常反应;异常出现时间大都在震前1个半月以内,汶川地震前异常出现较早,发生在震前2个月之前,这可能与汶川地震震级高影响范围大有关;异常幅值与震级有关,震级越大,异常表现越强。 比如芦山7.0级地震、缅甸7.0级地震和汶川MS 8.0地震前,腾冲地区SLHF异常幅度很大,远远超过最大参考值,而姚安6.5级地震和宁洱6.4级地震前异常幅度就相对小一些。腾冲地区SLHF异常与周围强地震的发生有较好的相关性,一方面与腾冲地区的活动断裂发育、现今构造变形强烈有关,另一方面可能是由于腾冲地区火山活动强烈,温泉广泛发育,水热交换迅速,对周边构造活动感应灵敏所致。  相似文献   

17.
More than 80 percent of strong earthquakes(M≥7.0)occur in active-tectonic block boundaries in mainland China, and 95 percent of strong earthquake disasters also occur in these boundaries. In recent years, all strong earthquakes(M≥7.0)happened in active-tectonic block boundaries. For instance, 8 strong earthquakes(M≥7.0)occurred on the eastern, western, southern and northern boundaries of the Bayan Har block since 1997. In order to carry out the earthquake prediction research better, especially for the long-term earthquake prediction, the active-tectonic block boundaries have gradually become the key research objects of seismo-geology, geophysics, geodesy and other disciplines. This paper reviews the research results related to seismic activities in mainland China, as well as the main existing recognitions and problems as follows: 1)Most studies on seismic activities in active-tectonic block boundaries still remain at the statistical analysis level at present. However, the analysis of their working foundations or actual working conditions can help investigate deeply the seismic activities in the active-tectonic block boundaries; 2)Seismic strain release rates are determined by tectonic movement rates in active-tectonic block boundaries. Analysis of relations between seismic strain release rates and tectonic movement rates in mainland China shows that the tectonic movement rates in active-tectonic block boundaries of the eastern region are relatively slow, and the seismic strain release rates are with the smaller values too; the tectonic movement rates in active-tectonic block boundaries of the western region reveal higher values, and their seismic strain rates are larger than that of the eastern region. Earthquake recurrence periods of all 26 active-tectonic block boundaries are presented, and the reciprocals of recurrence periods represent high and low frequency of seismic activities. The research results point out that the tectonic movement rates and the reciprocals of recurrence periods for most faults in active-tectonic block boundaries exhibit linear relations. But due to the complexities of fault systems in active tectonic block boundaries, several faults obviously deviate from the linear relationship, and the relations between average earthquake recurrence periods and tectonic movement rates show larger uncertainties. The major reason is attributed to the differences existing in the results of the current earthquake recurrence studies. Furthermore, faults in active-tectonic boundaries exhibit complexities in many aspects, including different movement rates among various segments of the same fault and a certain active-tectonic block boundary contains some parallel faults with the same earthquake magnitude level. Consequently, complexities of these fault systems need to be further explored; 3)seismic activity processes in active-tectonic block boundaries present obvious regional characteristics. Active-tectonic block boundaries of the eastern mainland China except the western edge of Ordos block possess clustering features which indicate that due to the relatively low rate of crustal deformation in these areas, a long-time span is needed for fault stress-strain accumulation to show earthquake cluster activities. In addition, active-tectonic block boundaries in specific areas with low fault stress-strain accumulation rates also show seismic clustering properties, such as the clustering characteristics of strong seismic activities in Longmenshan fault zone, where a series of strong earthquakes have occurred successively, including the 2008 M8.0 Wenchuan, the 2013 M7.0 Lushan and the 2017 M7.0 Jiuzhaigou earthquakes. The north central regions of Qinghai-Tibet Plateau, regarded as the second-grade active-tectonic block boundaries, are the concentration areas of large-scale strike-slip faults in mainland China, and most of seismicity sequences show quasi-period features. Besides, most regions around the first-grade active-tectonic block boundary of Qinghai-Tibet Plateau display Poisson seismic processes. On one hand, it is still necessary to investigate the physical mechanisms and dynamics of regional structures, on the other hand, most of the active-tectonic block boundaries can be considered as fault systems. However, seismic activities involved in fault systems have the characteristic of in situ recurrence of strong earthquakes in main fault segments, the possibilities of cascading rupturing for adjacent fault segments, and space-time evolution characteristics of strong earthquakes in fault systems. 4)The dynamic environment of strong earthquakes in mainland China is characterized by “layering vertically and blocking horizontally”. With the progresses in the studies of geophysics, geochemistry, geodesy, seismology and geology, the physical models of different time/space scales have guiding significance for the interpretations of preparation and occurrence of continental strong earthquakes under the active-tectonic block frame. However, since the movement and deformation of the active-tectonic blocks contain not only the rigid motion and the horizontal differences of physical properties of crust-mantle medium are universal, there is still need for improving the understanding of the dynamic processes of continental strong earthquakes. So it is necessary to conduct in-depth studies on the physical mechanism of strong earthquake preparation process under the framework of active-tectonic block theory and establish various foundation models which are similar to seismic source physical models in California of the United States, and then provide technological scientific support for earthquake prevention and disaster mitigation. Through all kinds of studies of the physical mechanisms for space-time evolution of continental strong earthquakes, it can not only promote the transition of the study of seismic activities from statistics to physics, but also persistently push the development of active-tectonic block theory.  相似文献   

18.
This paper studies the relations between the great Wenchuan earthquake and the active-quiet periodic characteristics of strong earthquakes, the rhythmic feature of great earthquakes, and the grouped spatial distribution of MS8.0 earthquakes in Chinese mainland. We also studied the relation between the Wenchuan earthquake and the stepwise migration characteristics of MS?≥7.0 earthquakes on the North-South seismic belt, the features of the energy releasing acceleration in the active crustal blocks related to the Wenchuan earthquake and the relation between the Wenchuan earthquake and the so called second-arc fault zone. The results can be summarized as follows: ① the occurrence of the Wenchuan earthquake was consistent with the activequiet periodic characteristics of strong earthquakes; ② its occurrence is consistent with the features of grouped occurrence of MS8.0 earthquakes and follows the 25 years rhythm (each circulation experiences the same time) of great earthquakes; ③ the Wenchuan MS8.0 earthquake follows the well known stepwise migration feature of strong earthquakes on the North-South seismic belt; ④ the location where the Wenchuan MS8.0 earthquake took place has an obvious consistency with the temporal and spatial characteristic of grouped activity of MS≥?7.0 strong earthquakes on the second-arc fault zone; ⑤ the second-arc fault zone is not only the lower boundary for earthquakes with more than 30 km focal depth, but also looks like a lower boundary for deep substance movement; and ⑥ there are obvious seismic accelerations nearby the Qaidam and Qiangtang active crustal blocks (the northern and southern neighbors of the Bayan Har active block, respectively), which agrees with the GPS observation data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号