首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
黄明祥  史舟  李艳  吴曙雯 《遥感学报》2004,8(4):378-384
过去 30年间 ,浙江沿海滩涂地不断地被围垦成农用地。为了科学地掌握海涂土壤的变化规律 ,讨论了地面光谱评价海涂土壤开发程度的可行性。以浙江省上虞市北部海涂围垦区作为研究区域 ,根据围垦历史时间的不同 ,将研究区划分成 4个子区域。借助GPS定位 ,样区内大致间隔 1km进行混合采样。分别在实验室内测定土壤理化性质和土壤光谱反射率。理化性质分析结果表明海涂土壤有机质含量低 ,电导率和含砂量高 ,并且随着围垦时间的增长呈现出规律性的变化。 9个吸收波段与土壤电导率、阳离子交换量和机械组成的Person相关分析表明 ,海涂土壤砂粒、粉粒含量与各波段相关性显著。依据不同围垦历史 ,对所有土样进行分组 ,并进行逐步判别分析。判别结果表明 ,处于不同围垦区并具有不同改良程度的土样 ,其光谱数据具有很好的类可分性。对原始样点数据回代到Fisher辨别函数可以获得 86 8%的判别精度 ,而对 2 8个待判土样代入判别函数可获 89 3%的判别精度。从地面光谱研究结果可见 ,相比于常规的野外耗时调查 ,星载或机载遥感探测器有可能作为大范围快速评价盐碱土开发程度的有效潜在工具  相似文献   

2.
Spectral reflectance of different soil subgroups from different soil orders were measured using a field radiometer. The results showed that, on the basis of spectral signatures, different soils can be delineated. The physico-chemical characteristics including moisture content showed a definite bearing on the spectral reflectance. The plant cover, tillage and crop residue content influenced greatly spectral reflectance as compared to bare soil. The spectral reflectance on soil aggregate size showed that reflectance decreased with increase in the aggregate size. The saline and sodic soils also recorded greater spectral reflectance in relation to normal soils.  相似文献   

3.
黄河三角洲盐碱地遥感调查研究   总被引:85,自引:1,他引:85  
土壤盐渍化是干旱、半干旱农业的主要的土地退化问题,有关盐碱地的性质、范围、面积、地理分布及盐渍程度等方面的实时、可靠的信息,对治理盐碱地防止其进一步退化和进行农业可持续发展规划至关重要,提出运用Landsat TM遥感数据来获取这些信息。基于地物光谱特征、野外调查建立的地物与影像之间的关系以及土壤和地下水监测数据的辅助,将常规监督分类法和改进的图像分类法两种方法相结合,提取了不同盐渍程度的盐碱地,即光板地14477.67hm^2,重度盐碱地52086.33hm^2,中度盐碱地86699.61hm^2,轻度盐碱地215001.7hm^2,占黄河三角洲总面积的近二分之一(47.4%),除此之外,水体,滩涂,非盐碱地等也作了区分。  相似文献   

4.
The relationship between soil salinity parameters and their influence on soil spectral characteristics were analyzed using both satellite data (Hyperion) and reflectance data of soil samples collected from parts of Ahmedabad district of Gujarat, India. The soil spectral reflectance curves were assessed using absorption feature parameters by DISPEC software to identify suitable spectral band for salinity characterization. The Hyperion data of the study area were processed and classified into different classes by spectral angle mapper algorithm using spectral library generated from soil spectra. The results showed that among all the observed soil parameters Electrical Conductivity, Exchangeable Sodium Percentage, Cation Exchange Capacity and Mg++ predictions can be made accurately based on partial least square regression models developed from selected wavelengths. Out of the total study area moderately saline-sodic, severely saline-sodic, severely saline and slightly saline soils occupy 23.5, 12.6, 10.9 and 0.04%, respectively.  相似文献   

5.
In certain agricultural fields of Khambhat Taluka in Gujarat State, the salinity has increased considerably rendering the land completely infertile. The occurrence of salinity in this area can be attributed partly to subsurface sea‐water ingress and partly to improper land and water management practices prior to implementation of irrigation. Landsat MSS or TM and IRS IA LISS II data was used to test the feasibility of delineating saline soils by both visual image interpretation and digital analysis. The study of saline soils using multi‐temporal Landsat images of the year 1977, 1983, and 1987, indicated an evident increase in saline areas in past few years. The Soil Brightness Index (SBI) generated from the IRS‐IA data by the application of MSS equivalent coefficients brought out different categories of soil degradation. The supervised classification scheme aided in generating various salinity levels. The analysis of the soil samples of the above area exhibited increasing values of Electrical Conductivity (ECe), and the soluble cations with increasing levels of salinity.  相似文献   

6.
Soil salinity is one of the most important problems affecting Egyptian soils. It is caused by: (1) a rising water table, or (2) the misuse of the irrigation water. Two Landsat images acquired in 1987 and 1999 were used to detect and monitor soil salinity over the Siwa Oasis, Western Desert, Egypt. DN values of these images were converted to percent reflectance. Inspection of Landsat images revealed that saline soils had an overall higher spectral reflectance in all spectral bands except the two MIR bands. The reflectance curves of saline soils show a strong relationship between the existence of salts in the soil and the difference between bands 4 and 5. A salinity index (SI) was calculated for both images. The majority of pixels in the 1987 image have salinity index values ranging between 0 and 0.2, whereas the values in the 1999 image histogram ranged between 0 and 0.4. These values indicate that soil salinity has increased twofold during the 12 years spanning the imagery. These values show a strong correlation with vegetation index images, in which the 1999 vegetation index image reveals the appearance of surface water lakes formed due to a rising water table. This study presents a model for the identification of soil salinity using remote sensing measurements in conjunction with piezometer readings taken during the time of image acquisition.  相似文献   

7.
Salt affected soils are characterized by variable distribution and dynamic nature. Based on Landsat data from 1986/1987 supported by ground truth, salt affected soil maps were prepared at 1:250,000 scale for 14 states and a union territory (UT). A map legend was evolved that described the nature, degree and extent of salt affected soils suitable for varied physiographic and agroclimatic regions of the country. Fifteen categories of salt affected soil were identified for the entire country. These were merged to two categories – saline and sodic – for management purposes. Digitized maps were developed in a geographical information system (GIS) depicting salt affected areas of the country. An area of 6.73 million ha of salt affected soils was estimated for the entire country. State-wise estimates showed that this extensive area is distributed over the Gangetic plain of Uttar Pradesh; the arid and semiarid regions of Gujarat and the peninsular plains of Maharashtra state. A significant area is also located in the coastal region covering seven states. The salt affected soils are primarily saline in deltaic (C), coastal (D) and mud flats/mangrove swamps (G) and sodic in alluvial (A), aeofluvial/aeolian/arid (B) and peninsular (F) plains. The distribution of salt affected soils in agroclimatic zones (ACZs) showed occurrence in Gujarat plain, East Coast plains, Upper-Gangetic plain, Trans-Gangetic plain, Central Plateau, Lower-Gangetic plain and Southern Plateau of the country.  相似文献   

8.
Consideration of soil moisture in terms of percentage of field capacity of the soils for the minimization of textural dependence of microwave emission of soils has been studied by several investigators using experimental data (air borne, field and laboratory experiments) and also theoretical procedures. Their conslusions seem to be not in agreement with each other, thus giving way for further investigations into the problem. To derive information on the choice of parameter through which the textural dependence of microwave emission can be minimized, three test sites have been selected with different soil textures and emission characteristics of these soils are calculated using theoretical approaches. The results of the analysis indicate that the minimal textural dependence is seen on microwave emission when the soil moisture is expressed in terms of volumetric moisture content (mv) reduced by the amount of transition moisture (Wt).  相似文献   

9.
The problem of surveying watersheds for strategic planning in the Himalayan terrain has attracted the attention of the land surveyors recently. A small watershed in Surgad Catchment has been surveyed to select various parameters that determine soil loss, which can be studied using aerial photo-interpretation technique with a view to watershed management. Soil, slope, landuse and micro climatic factors have been used to delineate different morphogenetic categories. The result shows that on steeper slopes, well developed soils are found which indicates a high tolerance limits of these soils. In Himalayan terrain soils and vegetation are therefore, better indices of sediment losses than slopes. Small scale aerial photographs can be successfully used to judge the tolerance limits of soils in Himalayan terrain.  相似文献   

10.
To understand the nature of land degradation and factors responsible for it, investigations were carried out in Etah district with an area of 4.45 lakh hectares. For identification of soil/land degradation problems, multidate Landsat, TM spectral bands and FCC were used. It is observed that salt-affected soils are sharply depicted by light and dark gray mixed tone on band 3, while they are not clear on band 4. Flood plain and waterlogged soils are clearly observed on band 4. Band 6 (10.3 – 12.5 µm) helps in separation of broad zones of coarse and fine-textured soils, active flood plain of rivers, and eroded and gullied lands. The confusion between coarse-textured droughty soils and salt-affected areas in TM FCC (2, 3, 4) could be eliminated by use of band-6 data in combination with FCC. For delineation of problematic areas, two approaches were followed viz. (i) physiographic approach, and (ii) direct approach. In the physiographic approach landscape map associated with image characteristics was prepared. Further the image interpretation units were interpreted for land degradation hazards. With this approach physiography and soil relationship and the degradation problems vis-a-vis soil units could be established and ameliorative measures as per soil condition can be suggested. In direct approach, the problematic areas as per predetermined key were demarcated. Out of 4.45 lakh ha of the area, 1.99 lakh ha is affected by various soil degradation problems, like droughty soils, flooding hazard and salinity and alkalinity which cover 22.1%, 50.0% and 27.9%, respectively. To study the distribution of a salt-affected lands, major physiographic boundaries were superimposed over the land degradation map prepared by direct approach. It is observed that 81.5% of the salt-affected areas lie in the old alluvial plain while 18.5% is in recent flood plain.  相似文献   

11.
Secondary salinisation is the most harmful and extended phenomenon of the unfavourable effects of irrigation on the soil and environment. An attempt was made to study the impact of poor quality ground water on soils in terms of secondary salinisation and availability of soil nutrients in Faridkot district of Punjab of northern India. Based on physiographic analysis of IRS 1C LISS-III data and semi-detailed soil survey, the soil map was finalized on a 1:50,000 scale and digitized using Arc Info GIS. Georeferenced surface soil samples (0–0.15 m) from 231 sites were collected and analyzed for available phosphorus (P) and potassium (K). Interpolation by kriging produced digital spatial maps of available P and K. Ground water quality map was generated in GIS domain on the basis of EC (electrical conductivity) and RSC (residual sodium carbonate) of ground water samples collected from 374 georeferenced tube wells. Integration of soil and ground water quality maps enabled generating a map showing degree (high, moderate and low) and type (salinity, sodicity and both) of vulnerability to secondary salinization. Fine-textured soils have been found to be highly sensitive to secondary salinisation, whereas medium-textured soils as moderately sensitive to secondary salinisation. The resultant map was integrated with available P and K maps to show the combined influence of soil texture and ground water quality on available soil nutrients. The results show that available P and K in the soils of different physiographic units were found in the order of Ap1 < Ap2 < Ap3. The soils of all physiographic units had sizeable area having high content of P (>22.5 kg / ha) and medium available K (135–335 kg ha−1) in most of the test sites when irrigated with saline, sodic or poor quality water.  相似文献   

12.
Aerial photographs coupled with ground check and laboratory analysis have helped in mapping of four categories of salt affected soils located in the southeastern tract of arid Rajasthan. The categories are (1) Natural saline soils (2) Relict saline soils (3) Secondary salinized soils due to high water table and (4) Secondary salinised soils due to highly saline water use for irrigation Salinity in natural salt affected soils is mostly sodium chloride followed by sodium-calcium chloride and sodium-chloride-sulphate type. The distribution of the natural salt affected soils along the natural drainage or inconspicuous depressional areas suggest that their occurrence is due to insufficient surface drainage. Further, the pattern of distribution indicates that the origin of salt is within the catchment itself. Deep ploughing and application of organic material have reversed the upward flux of salts and improved the soils. This phenomenon also seems to explain the large occurrence of soils of relict salinity.  相似文献   

13.
郭子祺  王志刚 《遥感学报》1999,3(3):220-224
通过西秦岭金矿化带中土壤与岩石实验室光谱的相关性分析与研究。探索该区表层壤覆盖条件下应用遥感信息寻找金矿床。研究表明,土壤与岩石两者光谱之间有很高的正相关性,并且在谱形上亦有相似性,使得利用该地区土壤光谱特征从遥感信息中提取出土壤覆盖层下的岩石光谱特征成为可能,为这种遥感技术找矿方法提供依据。  相似文献   

14.
The aim of this work was to map Red Mediterranean soils, for which no previous mapping approach exists, using optical multispectral satellite remote sensing data. This case study explores the use of SPOT XS images over the viticultural Southern Rhone Valley, France, to map exposed vineyard soils. Field spectral measurements were used to distinguish Red Mediterranean soil surfaces during Spring 1999. A supervised maximum likelihood classification was applied to sparsely vegetated and unvegetated surfaces of two spring images from 1995 and 1997, drawing on the field training set and available soil data. Similar global spatial segmentation was obtained despite different soil surface states on these dates. Classification performances were higher than 84% in both images. Mean classification accuracies of Red Mediterranean soils at seven reference surfaces were 60% in 1995 and 70% in 1997. This suggests that the direct use of optical remote sensing data at medium resolution can be useful for mapping bare Red Mediterranean soils.  相似文献   

15.
The Landsat (MSS and TM), SPOT (PLA and MLA) and IRS (LISS-I and LISS-II) images of crop free period (April, May), rainfed crop (October) and rabi irrigated crop (January, February) have been evaluated for their capabilities of mapping (1) primary salt affected soils: (slightly, moderately and severely) (2) saline water irrigated saline soils, (3) sodic water irrigated sodic soils and (4) salt affected soils due to tank seepage in the arid region of Rajasthan. The moderately and severe salt affected soils could be mapped with Landsat, (IRS LISS-I) and SPOT, images of any season. However, the summer season imagery provided maximum extent of salt affected soils. The LISS-II imagery also provided delineation of slightly salt affected soils in addition to the moderate and severely salt affected soils. The delineation of saline and sodic water irrigated areas was possible by using Landsat False Colour Composite for the January month by their characteristic reflectance, existing cropping pattern and the quality of irrigation water being used in the area. The IRS (LISS-II) and SPOT PLA images for the May month were also used for mapping of saline and sodic water irrigated soils.  相似文献   

16.
Salt affected soils occupy significant areas in western and central India manifested by the arid and semiarid climate, sandy/clayey soil texture, absence of natural drainage, and inadequate infrastructure and irrigation development. These soils are productive following reclamation and appropriate management. The National Remote Sensing Agency, Hyderabad (India) published state-wise maps of salt affected soils in India on 1:250,000 scale using a legend that includes physiography, soil characteristics, and the aerial extent of the mapping units. In the analogue form, voluminous data contained in such maps were difficult to handle by users of varied backgrounds. An attempt was made to prepare a computerized database of salt affected soils for easy access, retrieval, and manipulation of spatial and attribute data useful for management of salt affected soils. The salt affected soils maps were prepared, for Rajasthan, Gujarat, Madhya Pradesh, and Maharashtra states, overlaying digitized layers of SAS polygons and the Survey of India basemap using the ILWIS (Integrated Land and Water Information System) software. GIS was used to prepare a composite (master) database of western and central India that showed the extent and distribution of salt affected soils. A relational database was prepared combining the digitized polygons with soil characteristics such as nature and degree of salinity (presence of higher concentration of neutral salts and neutral soil reaction), sodicity (presence of higher concentration of basic salts and alkaline reaction) and ground coverage. The regional and zonal databases of salt affected soils were prepared at a suitable scale overlaying agro-climatic regions agro-climatic zones. Spatial relation of salt affected soils with physiography, climate, geology, and agro-eco-sub-regions were evaluated employing map calculations in GIS. Saline soils were prevalent in Gujarat, and Rajasthan while sodic soils were dominant in Maharashtra and Madhya Pradesh. These were distributed primarily in the arid (B) plain of Rajasthan, alluvial (A) and coastal (D) plains of Gujarat, and peninsular plain (F) of Maharashtra and Madhya Pradesh. It occupied 2,596,942 ha (78%) in the western (Rajasthan and Gujarat) and 733,608 ha (22%) in the central (Madhya Pradesh and Maharashtra) regions. The SAS occupied 3.3 million ha in the western and central region constituting 50% of the total salt affected soils in India. The saline and sodic soils occupied 2,069,285 ha (62%) and 1,261,266 ha (38%), respectively.  相似文献   

17.
Lateritic soils of Mathamangalam, Kannur District, located in midlands of Kerala, were morphologically studied, characterized, classified and mapped at 1:50,000 scale using remote sensing techniques. The terrain of the study area being hilly and covered with perennial vegetation, soil-landscape model was applied. For this purpose physiographic information was inferred from SRTM DEM, Resourcesat-1 LISS-III satellite image and topographical maps. The interpreted units were validated in the field and characterized through soil-site examination, soil profile study and soil analysis. The study indicated that the lateritic soils of midlands of Kerala vary in physical, chemical and morphological properties in relation to micro-relief. Soils developed on moderately steeply sloping side slopes (15–30% slope) are deep, moderately well drained with gravelly clay textured, where as the soils developed on moderately slopping side slope (10–15% slope) are very deep and well drained. The soils of valleys are very deep, moderately well drained with fine texture. Very gently sloping (1–3%) laterite plateau tops have extremely shallow soils associated with rock outcrops. These soils mainly belong to Order Ultisols followed by Inceptisols and Entisols. These were further grouped up to Family and Series level by tentatively establishing seven soil series. This study helps in understanding the behaviour of lateritic soils of midlands of Kerala, which can be useful in generation of interpretative maps and in optimizing the land use.  相似文献   

18.
Landsat MSS data in the form of BW imagery were used to generate Soil Map of Punjab convering an area of about 5 million ha. MSS bands 2 and 4 (L4) were interpreted singly and combined to form a compostie interpretetion map with which field check, was translated in terms of soils. The abstraction level attained was Great Groups of Soil Taxonomy. The distribution of soils of Punjab, with Aridisols in the SW through Inceptisols in the Central zone, to Alfisols in the NE sectors suggested a strong geographic bias in their evolution. The major soils of the aridic zone (SW sectors of the state) are: Camborthids, Calciorthids, Torripsamments and Torrifluvents and of the Ustic zone (Central Punjab) are Ustochrepts and Haplustalfs (the most productive soils of the State), Ustipsamments and Ustifluvents. The salt affected soils are found interspersed with these soils. In the udic zone (NE fringe), Hapludalfs, Eutrochrepts, Udifluvents, Udorthents and Hapludolls are the major soil formations. The soil map reveals that about one-third of the total area of the state suffers from various soil problems, such as soil salinity and sodicity, water logging, and soil erosion. For increasing agricultural production, these soils need to be brought under the plough. The study leads to conclude that for quick and precise macro level land use planning, the use of Landsat imagery is imperative.  相似文献   

19.
Remotely sensed multispectral imagery, soils and graminoid samples from an abandoned cattle feedlot and adjacent wetlands were used to characterize plant vigour and soil nutrient distribution and evaluate the relationship between soil properties and vegetation reflectance. The feedlot lies on a sandy beach ridge, which likely mitigates the mobility of soil phosphorus. Soil phosphorus remains concentrated directly beneath the feedlot pens, where vegetation indices are low. In contrast, nitrate is transported through preferential pathways into the wetlands, where vegetation indices and plant vigour are high. Although spectral vegetation indices did not show any significant relationship with plant tissue nutrient concentration, the indices showed statistically significant relationships to some soil properties. Results of this study indicate that the abundance of nutrients in the soil does not necessarily enhance plant growth. This can limit the extent that remotely sensed vegetation indices can be used to evaluate soil nutrients concentrations.  相似文献   

20.
利用SNR观测值进行GPS土壤湿度监测   总被引:5,自引:0,他引:5  
利用GPS信噪比(SNR)观测值监测土壤湿度变化可克服传统手段破坏观测对象、数据难以同化、时空分辨率受限等缺点,但同时也存在测量区域不明确、卫星与波段选择缺少相应依据、多径延迟相位与土壤湿度之间相关性的定量数值描述函数与模型亟待建立等问题。本文通过引入菲涅尔反射区域,结合仿真和实测土壤湿度数据、GPS观测值开展对比实验对上述问题进行研究。实验过程及结果表明,采用SNR观测值能有效跟踪土壤湿度的变化趋势,最大有效测量范围约45m,利用指数函数能较好地描述SNR多径延迟相位与土壤湿度之间的关系。同时,选择高级卫星和记录L2C观测值,有利于获得更准确的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号