首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄河下游漫滩高含沙洪水河床调整剧烈,多数断面洪水后形成"相对窄深河槽",洪水前后河槽宽度发生明显变化。分别以观测断面洪水前后的河槽宽度为基准,计算漫滩高含沙洪水期泥沙时空沉积分布,结果表明,漫滩高含沙洪水与非漫滩高含沙洪水相比,能将主河槽内淤积泥沙量的59.3%搬运至嫩滩或滩地,减缓主河槽淤积。在分析研究基础上,建立了洪水后漫滩河段河槽相对缩窄率与洪水前期河槽宽度的量化关系,洪水后主槽宽度缩窄率为15.5%~44.0%;分析遴选了漫滩高含沙洪水滩地淤积量与主要水力因子间关联度及物理含义,给出了漫滩高含沙洪水滩地淤积量与相应水力因子间的响应函数;初步提出漫滩洪水河道塑槽淤滩的临界水沙配置指标,临界水沙系数取值为0.025~0.040。成果对高含沙洪水调控具有一定的指导意义。  相似文献   

2.
滩地的淤积层分布记录着以往漫滩洪水的特征,即反映漫滩洪水的量级、频率和持续时间等,同时河漫滩也是预估河流泥沙、洪水灾害防治和湿地生态系统保护等的重要组成部分。根据黄河下游水文年鉴资料,分析滩地的淤积与漫滩洪水的定量关系,为未来河流泥沙预估提供依据。经分析得到大漫滩洪水在来沙系数S/Q<0.030 kg·s/m6时,主槽冲刷而滩地淤积,反之则滩槽同淤。当S/Q<0.030 kg·s/m6时,大漫滩洪水滩地的淤积量主要与漫滩系数Qmax/Qp、上滩水量W0和含沙量S有关;大漫滩洪水的主槽冲刷量则除了与洪水期水量W和沙量Ws有关外,还与滩地的淤积量有关。一般漫滩洪水,当来沙系数S/Q<0.023 kg·s/m6时,主槽冲刷而滩地淤积,反之则滩槽同淤。一般漫滩洪水主槽冲刷量与来沙系数S/Q和洪水期水量W有关,而滩地淤积量仅与含沙量S有关。黄河下游漫滩洪水滩地的淤积和主槽的冲刷主要发生在孙口以上河段,而孙口以下河段主槽冲刷和滩地淤积量均较少。  相似文献   

3.
Sediment diffusion during overbank flows   总被引:5,自引:0,他引:5  
Distinctive overbank sediments deposited since European settlement on the floodplain of the Brandywine Creek, Pennsylvania, are used to calibrate and test a diffusion model of overbank deposition. The predictions of the model can be calibrated to reproduce the topography of the post-settlement lithosome with an average error of 7%. The model also correctly predicts the decrease in mean grain size away from the channel. The model greatly underestimates the ability of floodwaters to transport sand away from the channel. Apparently, sand is transported across the floodplain by bedload transport and by advective suspended sediment transport as well as by diffusion. If flow duration data for 1912–1981 and the present rating curve for the Brandywine Creek at Chadds Ford, Pennsylvania, are assumed to apply throughout the post-settlement period, the model may be used to estimate palaeohydraulic characteristics of post-settlement floods. Calculations indicate that 212 post-settlement floods covered the floodplain to an average depth of 1.6 m, transported an average excess suspended sediment concentration of 6200 ppm, and deposited an average thickness of 1.4 cm of sediment on levees next to the channel.  相似文献   

4.
《Applied Geochemistry》2003,18(2):195-220
Samples of fine-grained channel bed sediment and overbank floodplain deposits were collected along the main channels of the Rivers Aire (and its main tributary, the River Calder) and Swale, in Yorkshire, UK, in order to investigate downstream changes in the storage and deposition of heavy metals (Cr, Cu, Pb, Zn), total P and the sum of selected PCB congeners, and to estimate the total storage of these contaminants within the main channels and floodplains of these river systems. Downstream trends in the contaminant content of the <63 μm fraction of channel bed and floodplain sediment in the study rivers are controlled mainly by the location of the main sources of the contaminants, which varies between rivers. In the Rivers Aire and Calder, the contaminant content of the <63 μm fraction of channel bed and floodplain sediment generally increases in a downstream direction, reflecting the location of the main urban and industrialized areas in the middle and lower parts of the basin. In the River Swale, the concentrations of most of the contaminants examined are approximately constant along the length of the river, due to the relatively unpolluted nature of this river. However, the Pb and Zn content of fine channel bed sediment decreases downstream, due to the location of historic metal mines in the headwaters of this river, and the effect of downstream dilution with uncontaminated sediment. The magnitude and spatial variation of contaminant storage and deposition on channel beds and floodplains are also controlled by the amount of <63 μm sediment stored on the channel bed and deposited on the floodplain during overbank events. Consequently, contaminant deposition and storage are strongly influenced by the surface area of the floodplain and channel bed. Contaminant storage on the channel beds of the study rivers is, therefore, generally greatest in the middle and lower reaches of the rivers, since channel width increases downstream. Comparisons of the estimates of total storage of specific contaminants on the channel beds of the main channel systems of the study rivers with the annual contaminant flux at the catchment outlets indicate that channel storage represents <3% of the outlet flux and is, therefore, of limited importance in regulating that flux. Similar comparisons between the annual deposition flux of specific contaminants to the floodplains of the study rivers and the annual contaminant flux at the catchment outlet, emphasise the potential importance of floodplain deposition as a conveyance loss. In the case of the River Aire the floodplain deposition flux is equivalent to between ca. 2% (PCBs) and 36% (Pb) of the outlet flux. With the exception of PCBs, for which the value is ≌0, the equivalent values for the River Swale range between 18% (P) and 95% (Pb). The study emphasises that knowledge of the fine-grained sediment delivery system operating in a river basin is an essential prerequisite for understanding the transport and storage of sediment-associated contaminants in river systems and that conveyance losses associated with floodplain deposition exert an important control on downstream contaminant fluxes and the fate of such contaminants.  相似文献   

5.
黄河下游主槽两侧修建的生产堤通常仅能抵御中小洪水,用于保护滩区农田与村庄安全;当遭遇大洪水引发生产堤溃决时,漫滩洪水会严重威胁滩区群众的生命财产安全。当前研究溃堤洪水的传播过程与演进机理多采用数值模拟,而原型观测及模型试验成果十分有限。通过溃堤漫滩洪水的概化模型试验,模拟了生产堤溃决后主槽内的水位变化及不同程度漫滩洪水的传播过程。试验结果表明:(1)溃堤后漫滩水流以涨水波的形式向滩区迅速传播,主槽内水位具有先降低,然后维持稳定,再升高,最后趋于稳定的变化过程,且溃口上、下游水位变化速率不同;滩区水位总体表现为持续升高,最后趋于稳定的趋势。(2)漫滩洪水波的波前到达时间主要与滩区地形及距溃口的距离有关,波前首先以溃口为中心呈近似对称式椭圆形分布,而后转变为非对称分布;溃堤水流在滩区传播过程中伴有水跃发生,水跃发生的位置由距溃口较远处逐渐趋向溃口位置。(3)溃口流量与溃口内外水位差直接相关,呈先减小、然后维持稳定、再减小最后为0的变化特性。研究成果不仅可以提升对溃堤洪水在滩区演进规律的认识,丰富溃堤洪水动力学理论,还可为数学模型验证提供实测资料。  相似文献   

6.
In broad terms, fluvial systems can be considered as comprising two basic geomorphologic features, a channel and its floodplain (overbank), each of which may accumulate sediment or undergo erosion. The sedimentary relationships between channels and floodplains, the resultant sedimentary architecture and the form of the dependent landscape may all be considered in terms of the relative rates of channel and floodplain aggradation and/or erosion. Using this approach, the Herbert River in north Queensland can be divided into seven ‘fluvial fields’. By considering the likely migration directions of field boundaries in the lower floodplain we conclude that, contrary to many sequence‐stratigraphic models, lowering sea‐level would drive a general aggradation of the system on the Great Barrier Reef shelf, whereas a sea‐level rise would cause further incision of the modern coastal plain.  相似文献   

7.
The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.  相似文献   

8.
A simulation model of alluvial stratigraphy   总被引:8,自引:0,他引:8  
The quantitative model presented simulates the development of a two-dimensional alluvial sedimentary succession beneath a floodplain traversed by a single major river. Several inter-related effects which influence the distribution of channel-belt sand and gravel bodies within overbank fines are accounted for. These are (a) laterally variable aggradation, (b) compaction of fine sediment, (c) tectonic movement at floodplain margins, and (d) channel avulsion. Selected experiments with the model show how the interconnectedness and areal density of channel-belt deposits decrease with increasing floodplain width/channel-belt size, mean avulsion period, and channel-belt aggradation rate. Separation of stream patterns based on interconnectedness and channel deposit density is difficult. Tectonic movements do not have a significant influence upon the successions unless a preferred direction of tilting is maintained (half-graben). Then channel-belt deposits showing offlap tendencies tend to cluster adjacent to the active floodplain margin, leaving dominantly fine-grained alluvium to accumulate on the inactive side. Individual channel-belt deposits thicken during aggradation, although a self-regulating limit to such thickening is likely to operate. ‘Multistorey’features resulting from aggradation may be difficult to tell apart from those arising through superposition of distinct channel-belt deposits of avulsive origin.  相似文献   

9.
《Applied Geochemistry》1995,10(1):97-109
Overbank sediment sequences in central Mexico display vertical changes in chemistry which can be related to both anthropogenic contamination and natural geological sources and processes. They also show significant lateral chemical variation, at both local and regional levels, which makes the design of a sampling strategy for regional geochemical mapping or contamination studies difficult. This variation is particularly pronounced in drainage basins which have been contaminated by mining activity and limits the use of overbank sediment as a systematic regional geochemical mapping medium. To be used with confidence, overbank sediments require detailed studies of fluvial geomorphology and history, accompanied by accurate age dating. Active drainage sediments are a more viable alternative in areas of historical mining activity, but must be examined carefully in the light of the regional background where levels of contamination are low or the contaminants are buried within the river floodplain.  相似文献   

10.
Molybdenum mining in the Knabena—Kvina drainage basin (1918–1973) left more than eight million tons of tailings in two small lakes in the headwater area of the Knabena river. The piles, that reach above the water surface, were freely eroded until a dam was built to reduce the dispersion in 1976. Sampling of tailings and fluvial sediments took place almost 20 years later. Sampling media were natural sediment sources, 1-cm-thick slices of overbank sediments of various depths, material from the tailings pond, sandbars, stream sediments, fjord sediments, and integrated samples of floodplain surfaces (0–25 cm). In total 734 samples were collected. Chemical analysis (ICP-AES after aqua regia or HNO3 extraction) showed that overbank sediments at a certain depth represent the pre-industrial trace metal concentrations within the drainage basin. The tailings and recent fluvial sediments were enriched in approximately the same element suite. The highest enrichment factors were obtained for Cu (8–53) and Mo (22–57). Fluvial processes in the tailings pond have probably selectively eroded fine-grained, low-density particles. Thus, coarse chalcopyrite may have been left behind, while molybdate associated with fine-grained particles may have been selectively entrained causing dilution of Cu and enrichment of Mo in the downstream fluvial sediments. In the sandbars, the highest Cu and Mo concentrations were found in fine-grained sediments downstream of a low-gradient reach that act as a bedload trap. On the floodplains, it is seen that the first areas to be inundated in a flood situation (proximal to the river and in depressions) have the highest metal concentrations. For regional geochemical mapping it is suggested that overbank sediment profiles along river reaches with a laterally stable or slowly migrating channel, should be sampled. In such floodplains, pre-industrial overbank sediments are usually preserved at depth. In case of laterally unstable reaches upstream of the sampling point, polluted and unpolluted sediments may be interlayered or mixed. Therefore, samples should be collected from various depths or sedimentary units in such profiles. A similar sampling strategy should probably be adopted to detect vertical migration of elements especially in areas with acid rain and low bedrock buffer capacity. To obtain high contrasts between polluted and unpolluted drainage basins, the overbank sediment profiles should be within the proximal part of the floodplain.  相似文献   

11.
In Scandinavia, most fluvial erosion takes place in the Quaternary glacial overburden at a restricted number of small source areas along individual drainage channels. As a consequence, a sample of active stream sediment is representative of only a very limited portion of the drainage area. This restriction makes stream sediment less reliable for regional exploration than generally expected. Overbank (levee or river-plain) sediment produced during large floods is an alternate more representative sampling medium. The sediment suspended during a flood has a much more widespread origin, and when the load is deposited upon the flood plain, nearly horizontal strata are formed and preserved at levels above the ordinary stream channel. A composite sample through a vertical section of such strata represents a great number of sediment sources that have been active at different times and forms an integrated sample of the entire catchment area. Because young sediments overlay older, the uppermost layers will be contaminated by pollutants in industrialized regions, but those at depth may remain pristine and will to a greater extent reflect the natural pre-industrial environment. In regional geochemical mapping, overbank sediment can be sampled at widely spaced sites, keeping costs per unit area low. Examples from Norway (1 sample station per 500 km2) show that overbank sediment produces broad geochemical patterns with high contrasts reflecting the bedrock geochemistry. Some patterns agree with known geological units and metallogenic provinces, but hitherto unknown major structures have also been indicated. A large Mo-deposit missed by a traditional stream survey is readily detected in the overbank sediment. It is concluded that overbank sediment is a promising alternate sample medium that should be tested in other physiographic regions.  相似文献   

12.
A variety of methids have been used to document contemporary rates of overbank sedimentation along an 11 km reach of the floodplain of the River Culm in Devon, UK. These have included measurements of the conveyance loss of suspended sediment between upstream and downstream measuring stations, the use of sediment traps, and the application of caesium-137 measurements to estimate the rate of accumulation of fine sediment over the past 30 years. The resultant data point to sedimentation rates typically of the order of 1500 g m–2 year–1 or 1.5 mm year–1. Values in excess of 15000 g m–2 year–1 or 15 mm year–1 have been documented in closed depressions and in backwater embayments close to the channel, whereas minimal deposition and even scour may occur along those areas that function as secondary channels during floodplain inundation.  相似文献   

13.
This study examines the morphology, sedimentology and genesis of the point bars and floodplain of the Beatton River. The formation of point bars occurs in distinct stages. An initial point bar platform composed mainly of coarse sediment is formed adjacent to the convex bank of a migrating meander bend, and is the base on which develops a single scroll bar of fine traction and suspended load. With continued sedimentation, the scroll bar grows, eventually supporting vegetation and becoming a floodplain ridge. Scroll bars form with greatest size and frequency in rapidly migrating bends, and the shape of the meander bend appears to determine both the location of the initial bar deposit, and its direction of growth up or downstream. Approximately one-half of the floodplain sediment is derived from suspended load, and the initiation of a scroll bar appears to be due to excessive deposition of suspended load in a zone of flow separation over a point bar platform. The critical flow condition for the initiation of a scroll bar does not occur with the same recurrence interval on different shaped meander bends, however, the average recurrence interval within the study reach is approximately every 30 years. Sedimentation rates on point bars and on the floodplain indicate two relatively distinct stages of floodplain alluviation. The most rapid is for surfaces less than 50 years old, although sediment accumulation still persists on surfaces up to 250 years in age. Although frequently flooded, surfaces older than this accumulate very little sediment. Despite 2–3 m of overbank deposition, the amplitude of floodplain ridges is maintained by secondary currents which sweep sediment from the swales towards the ridge crests.  相似文献   

14.
The distribution and concentration of metals and metalloids in the floodplain of the Clark Fork River of western Montana, USA, are mainly controlled by post-depositional diagenetic mechanisms of metal fractionation. Due to the influx of wastes into the river's headwaters from mining processes around the turn of the century, extensive amounts of contaminated material were deposited onto the floodplain. Tailings were deposited as widespread overbank deposits and point bars adjacent to abandoned channels, and are characterized by orange and gray mottled sediment, which is devoid of vegetation and covered by a blue metal sulfate precipitate during dry periods. Examination of stratigraphic profiles of floodplain sediment indicates three periods of deposition: 1) pre-mining, represented by coarse sand and organic overbank deposits under reducing conditions; 2) syn-mining, characterized by transition sediments and tailings deposits under oxidizing conditions; and, 3) post-mining, distinguished by grass-bound topsoil.Sites were established where sediments and water throughout the stratigraphic section were collected and analyzed. Chemical analyses indicate enriched concentrations of cadmium, copper, manganese, and zinc in sediments and porewater, and arsenic in groundwater, in areas contaminated by tailings deposits. Vertical trends in concentrations of metals show that they are distributed based on apportionment of metal phases between reducing-oxidizing environments and pH fluctuations.  相似文献   

15.
Flood‐generated sandy siltstones are under‐recognised deposits that preserve key vertebrate (actinopterygians, rhizodonts, and rarer lungfish, chondrichthyans and tetrapods), invertebrate and plant fossils. Recorded for the first time from the lower Mississippian Ballagan Formation of Scotland, more than 140 beds occur throughout a 490 m thick core succession characterised by fluvial sandstones, palaeosols, siltstones, dolostone ‘cementstones’ and gypsum from a coastal–alluvial plain setting. Sandy siltstones are described as a unique taphofacies of the Ballagan Formation (Scotland, UK); they are matrix‐supported siltstones with millimetre‐sized siltstone and very fine sandstone lithic clasts. Common bioclasts include plants and megaspores, fish, ostracods, eurypterids and bivalves. Fossils have a high degree of articulation compared with those found in other fossil‐bearing deposits, such as conglomerate lags at the base of fluvial channel sandstones. Bed thickness and distribution varies throughout the formation, with no stratigraphic trend. The matrix sediment and clasts are sourced from the reworking of floodplain sediments including desiccated surfaces and palaeosols. Secondary pedogenic modification affects 30% of the sandy siltstone beds and most (71%) overlie palaeosols or desiccation cracks. Sandy siltstones are interpreted as cohesive debris flow deposits that originated by the overbank flooding of rivers and due to localised floodplain sediment transport at times of high rainfall; their association with palaeosols and desiccation cracks indicates seasonally wet to dry cycles throughout the Tournaisian. Tetrapod and fish fossils derived from floodplain lakes and land surfaces are concentrated by local erosion and reworking, and are preserved by deposition into temporary lakes on the floodplain; their distribution indicates a local origin, with sediment transported across the floodplain in seasonal rainfall episodes. These deposits are significant new sites that can be explored for the preservation of rare non‐marine fossil material and provide unique insights into the evolution of early terrestrial ecosystems.  相似文献   

16.
Numerical, experimental and theoretical models of fluvial architecture and palaeosol development are tested with outcrops of Upper Pliocene-Lower Pleistocene sediment in the southern Rio Grande rift, New Mexico. The sediment was deposited and subsequently exhumed in the Jornada del Muerto basin, a westward-tilted half graben whose footwall corresponds to the Rincon Hills and San Diego Mountain fault blocks. The axial river, the ancestral Rio Grande, shared time between the Jornada del Muerto basin and the adjacent Corralitos basin. The ancestral Rio Grande entered the Jornada del Muerto basin via a gap between the footwall blocks, periodically flowing southward towards San Diego Mountain, or making a broad northward sweep into the northern fluvial salient towards the Rincon Hills fault block and unfaulted northern edge of the basin. Ten logged sections up to 35 m thick are correlated using the top of the formation (La Mesa surface), a 1·59 Ma pumice conglomerate, and a ground-water carbonate/opal bed. Additionally, one of the sections is dated by reversal magnetostratigraphy. Consistent with the model of Bridge & Leeder (1979 ) and Bridge & Mackey (1993a ), differential tilting of the Jornada del Muerto half graben resulted in sections directly adjacent to the faults that consist almost exclusively of multistorey channel sands/sandstones, whereas more distal sections contain a greater proportion of crevasse-splay fine sand and overbank mudstone and calcic palaeosols. Along the axis of the northern fluvial salient, a northward decrease in channel/floodplain ratio, a decrease in channel recurrence interval from 171 kyr to 685 kyr, and an increase in the maturity of calcic palaeosols are consistent with southward tilt of the unfaulted northern edge of the basin. An upsection decrease in sediment accumulation rate in the northern fluvial salient from 0·036 mm/ yr to 0·017 mm/ yr corresponds to an increase in the ratio of channel/floodplain facies and in the number of multistorey channel sands/sandstones, and is consistent with the model of Bridge & Leeder (1979 ) in which avulsion frequency is independent of sediment accumulation rate. Stage II and III calcic palaeosols indicate 103−105 year of landscape stability and soil formation between periods of floodplain deposition in response not only to basin tilting but also because the ancestral Rio Grande had multiple paths within the Jornada del Muerto basin and shared time between the Corralitos and Jornada del Muerto basins.  相似文献   

17.
Abstract River avulsions are commonly considered to be driven by the aggradation and growth of alluvial ridges, and the associated increase in cross‐valley slope relative to either the down‐channel slope or the down‐valley slope (the latter is termed the slope ratio in the present paper). Therefore, spatial patterns of overbank aggradation rate over stratigraphically relevant time scales are critical in avulsion‐dominated models of alluvial architecture. Detailed evidence on centennial‐ to millennial‐scale floodplain deposition has, to date, been largely unavailable. New data on such long‐term overbank aggradation rates from the Rhine–Meuse and Mississippi deltas demonstrate that the rate of decrease of overbank deposition away from the channel belt is much larger than has been supposed hitherto, and can be similar to observations for single overbank floods. This leads to more rapid growth of alluvial ridges and more rapid increase in slope ratios, potentially resulting in increased avulsion frequencies. A revised input parameter for overbank aggradation rate was used in a three‐dimensional model of alluvial architecture to study its effect on avulsion frequency. Realistic patterns of avulsion and interavulsion periods (≈1000 years) were simulated with input data from the Holocene Rhine River, with avulsions occurring when the slope ratio is in the range 3–5. However, caution should be practised with respect to uncritical use of these numbers in different settings. Evidence from the two study areas suggests that the avulsion threshold cannot be represented by one single value, irrespective of whether critical slope ratios are used, as in the present study, or superelevation as has been proposed by other investigators.  相似文献   

18.
19.
The south Uralian foreland basin forms part of the giant, yet sparsely documented, PreCaspian salt tectonic province. The basin can potentially add much to the understanding of fluviolacustrine sedimentation within salt‐walled minibasins, where the literature has been highly reliant on only a few examples (such as the Paradox Basin of Utah). This paper describes the Late Permian terrestrial fill of the Kul’chumovo salt minibasin near Orenburg in the south Urals in which sediments were deposited in a range of channel, overbank and lacustrine environments. Palaeomagnetic stratigraphy shows that, during the Late Permian, the basin had a relatively slow and uniform subsidence pattern with widespread pedogenesis and calcrete development. Angular unconformities or halokinetic sequence boundaries cannot be recognized within the relatively fine‐grained fill, and stratigraphic and spatial variations in facies are therefore critical to understanding the subsidence history of the salt minibasin. Coarse‐grained channel belts show evidence for lateral relocation within the minibasin while the development of a thick stack of calcrete hardpans indicates that opposing parts of the minibasin became largely inactive for prolonged periods (possibly in the order of one million years). The regular vertical stacking of calcrete hardpans within floodplain mudstones provides further evidence that halokinetic minibasin growth is inherently episodic and cyclical.  相似文献   

20.
A geochemical survey of Belgium and Luxembourg was carried out as part of an international research project entitled ‘Regional geochemical mapping of Western Europe towards the year 2000'. The aim of this research was to map regional background geochemical patterns based on pristine or at least pre-industrial overbank samples and to deduce regional information on the degree of environmental pollution of floodplain and present-day river sediments. Over the entire study area (about 33,000 km2), 66 overbank sites have been sampled. Catchment areas range between 60 and 600 km2. At each site an overbank profile has been dug out in the immediate vicinity of the river and described in detail. A first composite sample was taken 5–25 cm below the surface. This sample is supposed to represent deposition over the last centuries. Human interferences in this interval are often inferable based on changed sedimentary characteristics and the presence of anthropogenic particles such as charcoal, slags and brick fragments. A second composite sample was taken at depth, usually >1.5 m below the surface over an interval of about 20 cm. In most sites, the profile characteristics allowed to assume pre-industrial or even pristine conditions for this lower overbank sample. In some profiles this was confirmed by 14C-dating and/or by the absence of anthropogenic particles. Finally, a present-day stream sediment was sampled on the site to infer the actual pollution status. After drying at 80°C, disaggregation and sieving, the <125 μm fractions of the three sediment samples were analysed by XRF for major elements and several trace elements. Lower overbank samples generally show a direct link with the geological substrate and allow to assess natural background concentrations. Results from the mapping exercise as well as from the statistical analyses display a clear contrast between the northern part of Belgium where Cenozoic unconsolidated sandy and silty formations dominate which are especially vulnerable for erosion, and the southern part of Belgium and Luxembourg where Paleozoic and Mesozoic sandstones, carbonates, marls and shales are the prevalent lithologies. Here the shales are the most intensively eroded lithologies. This is especially reflected in the element patterns of Al2O3, MgO, K2O, Ga, Ni, Rb, Sc and V which negatively correlate with SiO2. Despite the human related pollution, the geological contrast between north and south Belgium is still recognisable in the geochemical pattern of the upper overbank and present-day stream sediment samples for the above-mentioned elements. Furthermore there is a clear increase in heavy metal contents (Zn, Cd, Pb, Cu), As and in certain locations in Ba from the lower to the upper overbank sediment, as well as to the present-day stream sediment. The relative increase in element content allows to assess the degree of pollution and helps to define those drainage areas where more detailed research is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号