首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
哀牢山南段蛇绿岩中变质橄榄石单元,由方辉橄榄石和二辉橄榄岩组成,前者已强烈蚀变,后者的矿物组成有橄榄石,斜方辉石,单斜辉石及少量尖晶石等,对这些矿物进行了较详细的化学成分分析,橄榄石,斜方辉石的化学分显示,二辉橄榄石为较弱亏损的地幔岩,橄榄石,尖晶石的矿物化学反应,变质橄榄石的原始岩石具有深海橄榄石的特征,单斜辉石,尖晶石的化学特征显示,二辉橄榄石经历过程熔融作用,因此,二辉橄榄石为部分熔融较弱亏  相似文献   

2.
五相(橄榄石 斜方辉石 单斜辉石 石榴石 尖晶石)共存的地幔橄榄岩捕虏体是来自岩石圈地幔相转变带的直接样品。中国东部及西秦岭地区晚第三至第四纪碱性火山岩携带的少量五相共存的地幔橄榄岩捕虏体为探讨这些地区新生代岩石圈地幔中相转变带提供了宝贵的样品。本文根据地幔橄榄岩捕虏体中石榴石和尖晶石的产出状况,将这些橄榄岩捕虏体分为三类:第一类橄榄岩中尖晶石为粒状残核,尖晶石外缘被石榴石的反应边包围。这种橄榄岩捕虏体代表尖晶石一石榴石相转变带的上限,故称为尖晶石带橄榄岩;第二类橄榄岩中尖晶石和石榴石以单颗粒零散分布为特征,二者共存但未见明显的相转变关系。这类橄榄岩多位于相转变带中部,拟称为尖晶石-石榴石过渡带橄榄岩;第三类橄榄岩中以石榴石为主,尖晶石和辉石等微晶构成石榴石反应边。这类橄榄岩代表尖晶石-石榴石相转变带的下限,故称为石榴石带橄榄岩。因此,根据不同类型橄榄岩捕虏体中矿物的组成,结合温度压力估算即可确定岩石圈地幔中相转变带的深度和厚度。本文通过对中国东部及西秦岭地区晚第三至第四纪碱性火山岩携带的尖晶石-石榴石二辉橄榄岩捕虏体的温度压力估算来进一步厘定中国东部新生代岩石圈地幔中的相转变带深度和厚度。  相似文献   

3.
徐向珍  杨经绥  郭国林  李金阳 《岩石学报》2011,27(11):3179-3196
西藏雅鲁藏布江缝合带西段普兰蛇绿岩以出现面积约600余平方千米的特大型地幔橄榄岩体而引人注目.该地幔橄榄岩以方辉橄榄岩为主体,含有少量的二辉橄榄岩和纯橄榄岩,岩体中另有一些橄榄单斜辉石岩、辉长岩和辉绿岩等侵入体.地幔橄榄岩的主要造岩矿物橄榄石的Fo 90~93,其中呈包裹体的橄榄石的Fo略高,斜方辉石为顽火辉石(En 88~90),单斜辉石主要为顽透辉石和透辉石,以低铝(0.48%~3.96%)和高Mg#(91~96)为特征,铬尖晶石的Cr#值为18~69,其中方辉橄榄岩和二辉橄榄岩中的铬尖晶石属富铝型尖晶石,而纯橄岩中为富铬型尖晶石.橄榄单斜辉石岩的橄榄石Fo值一致较低,平均为88.4,斜方辉石En平均87,单斜辉石以透辉石为主,铬尖晶石的Cr#值为45~69.普兰地幔橄榄岩及橄榄单斜辉石岩都具有相似的稀土元素和微量元素配分模式,表现为LREE相对富集,Eu亏损不明显,微量元素中大离子亲石元素含量较低,部分样品高场强元素亏损,另一些则相对富集,显示地幔橄榄岩具有亏损地幔源区特征,但也具有俯冲带流体的交代特征,表明普兰岩体可能经历了MOR和SSZ两种构造环境,该特征与雅鲁藏布江缝合带东段的罗布莎地幔橄榄岩的特征可以对比.  相似文献   

4.
陈瑶  王勤 《高校地质学报》2022,28(4):457-472
加拿大Slave克拉通Jericho金伯利岩筒携带的橄榄岩包体提供了研究大陆岩石圈地幔物质组成和热结构的窗口。文章总结了地幔岩矿物温压计的研究进展,测量了Jericho金伯利岩携带的9个新鲜橄榄岩包体的矿物主量元素和微量元素,并使用不同的矿物温压计估算了平衡温度和压力。结果表明Nickel 和 Green(1985)的石榴子石—斜方辉石压力计可以较好地估算含石榴子石橄榄岩形成时的压力,Taylor(1998)二辉石温度计和Nimis 和 Taylor(2000)单斜辉石温度计的计算结果一致。具有粗粒变晶结构的尖晶石—石榴子石橄榄岩和石榴子石橄榄岩样品的平衡温度为575~843℃,压力为2.4~3.6 GPa,表明Slave克拉通岩石圈地幔温度较低。而残斑结构尖晶石—石榴子石二辉橄榄岩的平衡温度1109℃,压力为5.0 GPa,来源深度为~156 km,可能被早期金伯利岩浆携带到岩石圈地幔中部冷却,然后再被侏罗纪喷发的Jericho金伯利岩筒带到地表。使用石榴子石—单斜辉石稀土元素温压计获得的平衡温度高于主量元素温度计的结果,表明Slave克拉通岩石圈地幔经历了逐渐冷却的过程。此外,Slave克拉通浅部的尖晶石橄榄岩保留了强烈亏损的早期岩石圈地幔特征,而下部的岩石圈地幔经历了金伯利岩熔体和硅酸盐熔体的交代作用。  相似文献   

5.
西藏白朗县白岗村蛇绿混杂岩中有一罕见的尖晶石石榴子石二辉橄榄岩小岩块,被松软的蛇纹岩化尖晶石二辉橄榄岩包裹其中。岩块中发育有碎基单斜辉石、斜方辉石中出溶单斜辉石、切过出溶单斜辉石的贯入单斜辉石和外来碎粒单斜辉石及钙质辉石+铬尖晶石→钙铁石榴子石相界反应。同时,在岩块和包壳岩石的橄榄石中出现针状硅镁石出溶物。计算这些矿物的温度压力表明,它们的温度压力都处于>800℃,>1.8GPa以上的地幔石榴子石域超高压环境,而且,经历过一个上升→俯冲→上升的"N"字形历程。  相似文献   

6.
云南哀牢山蛇绿岩的矿物学研究   总被引:3,自引:1,他引:2  
云南哀牢山蛇绿岩由变橄榄岩、堆晶杂岩、火山熔岩和硅质岩等四个单元组成,其主要矿物有橄榄石,斜方辉石、单斜辉石、尖晶石、斜长石、角闪石、石榴子石等,这些矿物均已不同程度地遭到蚀变、橄榄石、斜方辉石的化学成分显示蛇绿岩中的二辉橄榄岩为原始地幔岩;是石的化学特征表明蛇绿岩中的橄榄岩为深海橄榄岩;单斜辉石的成分反映二辉橄榄岩经历过熔融作用,堆晶杂央才基性熔岩具有火山弧和洋底玄武岩的特征。  相似文献   

7.
青藏东缘马关地幔岩包体的岩石学与矿物学研究   总被引:4,自引:1,他引:4  
对青藏东缘新生代马关地区高钾岩系中地幔岩包体的岩石学和矿物化学成分的研究表明:马关地幔岩包体属尖晶石相橄榄岩,岩石类型主要为尖晶石二辉橄榄岩,矿物组合为橄榄石(O l) 斜方辉石(O px) 单斜辉石(Cpx) 尖晶石(Sp l),含极少量金云母和角闪石。橄榄石以贵橄榄石为主,部分为镁橄榄石,其Fo值为89.72~90.47,M g#值为89.75~90.51;斜方辉石的En分子为88.00~89.59,M g#值为90.21~91.16,C r#值为3.31~6.23;单斜辉石主要为透辉石,少量为顽透辉石,成分上表现为高C a(wC aO=18.71%~20.78%)、高A l(wA l2O3=6.00%~7.30%)、高M g#值(89.93~91.57)和低C r#值(5.13~8.74);尖晶石为铬尖晶石,其w(C r2O3)为7.62%~12.88%。矿物化学成分指示:马关尖晶石二辉橄榄岩包体属A型包体,为低度熔融后的大陆地幔橄榄岩。温压估算表明,马关尖晶石相二辉橄榄岩包体的平衡温压分别为900℃~1 150℃和1.29 GPa~2.20 GPa(相当于地下深度45 km~71 km),其上地幔地温曲线与大洋地温曲线一致,显示马关地区岩石圈地幔具有很高的热流值,暗示青藏东缘及邻区于0~16 M a期间有热的软流圈地幔上涌,地幔上涌在构造上的响应即是青藏东缘乃至整个东亚地区区域性岩石圈的东-西向伸展。  相似文献   

8.
新疆西准噶尔达拉布特蛇绿岩地幔橄榄岩成因   总被引:2,自引:2,他引:0       下载免费PDF全文
田亚洲  杨经绥 《中国地质》2015,(5):1379-1403
达拉布特蛇绿岩中地幔橄榄岩的主体为方辉橄榄岩,含少量纯橄岩和二辉橄榄岩,岩石遭受强烈蚀变。方辉橄榄岩单斜辉石、斜方辉石、橄榄石和尖晶石的主量元素特征均显示从深海地幔橄榄岩向SSZ地幔橄榄岩过渡的特征,与斜方辉石原位LA-ICP-MS微量元素特征一致,二辉橄榄岩具有深海地幔岩的性质。采用尖晶石-橄榄石平衡氧逸度计算方法,得出方辉橄榄岩的Δlog(fo2)FMQ在-0.14至+0.96log FMQ之间,具有MOR地幔橄榄岩向SSZ地幔橄榄岩过渡的特点或弧后盆地至岛弧过渡的特征。尖晶石Ga-Ti-Fe3+#图解显示纯橄岩成因可能和地幔橄榄岩与岛弧拉斑玄武岩的反应有关,而方辉橄榄岩可能为地幔橄榄岩与MOR熔体反应以及SSZ环境中含水熔体反应后的残余。纯橄岩和方辉橄榄岩∑REE都低于球粒陨石,且具有LREE富集的U型稀土元素配分模式,暗示了岩石和流体/熔体之间的相互作用。综合以上研究表明,达拉布特蛇绿岩形成于弧后扩张脊并受俯冲流体/熔体影响。  相似文献   

9.
采自江苏省六合地区的11个尖晶石相橄榄岩包体,用电子探针和质子探针精确测定其中橄榄石和辉石的主量和微量成分,采用新近校准的适用于尖晶石相包体的橄榄石一单斜辉石地质压力计和二辉石地质温度计,计算了包体中共生矿物对的平衡温度和压力。其中BM85计算的温度比BKN90的约低50℃左右。而经Brey和Kohler修改的BM85温度计得到的结果与BKN90的几乎相同。假定压力为1.5GPa,用BKN90计算,11个包体样品的温度范围为722℃~1193℃,它大体上反映了扬子地块东段大陆岩石圈地使尖晶石相部分的温度状态。橄榄石一单斜辉石地质压力计用于本样品组计算,仅部分样品获得合理的结果。由于该压力计自身的误差较大,尚不能精确确定尖晶石相橄榄岩的压力。  相似文献   

10.
蓬湖蛇绿岩产于西藏藏北湖区的蓬湖西侧,属班公湖-怒江缝合带中段白拉拉弄-依拉山亚带。该蛇绿岩主要由地幔橄榄岩、堆晶岩和辉绿岩等组成。其中地幔橄榄岩由方辉橄榄岩和二辉橄榄岩组成。蓬湖二辉橄榄岩的橄榄石Fo值介于88.85~90.33之间、斜方辉石的Al2O3含量范围在4.26%~6.60%。与原始地幔相比,蓬湖二辉橄榄岩岩石有较高的MgO含量和较低的Al2O3、CaO和TiO2等易熔组分含量;稀土元素总量介于1.11×10-6~1.53×10-6之间,明显低于原始地幔值,配分模式为轻稀土轻微亏损。在原始地幔微量元素蛛网图中,蓬湖二辉橄榄岩显示Rb、Zr亏损,U、Ta、Sr强烈富集特征。蓬湖二辉橄榄岩的铂族元素总量介于22.9×10-9~27×10-9之间,PGEs球粒陨石标准化图解显示其为接近原始地幔的"平坦型"。以上特征与深海橄榄岩相似,指示它们可能形成于大洋中脊环境。定量模拟估算表明,蓬湖二辉橄榄岩可能来源于地幔中尖晶石相二辉橄榄岩源区,系经历了约5%~10%的部分熔融残余。蓬湖堆晶岩矿物结晶顺序为橄榄石-单斜辉石-斜长石,其中异剥橄榄岩中的单斜辉石Mg#值介于86.92~89.93之间、橄榄石Fo平均值为84.45,明显不同于MOR型蛇绿岩堆晶岩。蓬湖堆晶岩的矿物组成、岩浆结晶顺序和矿物成分均与俯冲带上SSZ型蛇绿岩形成的堆晶岩类似。以上结果表明,蓬湖二辉橄榄岩形成于大洋脊环境,为尖晶石二辉橄榄岩源区经历了不超过10%部分熔融的残余,后期由于洋内俯冲作用经历了岩石-熔体反应,形成了SSZ型堆晶岩和含较高Cr#值尖晶石的方辉橄榄岩。  相似文献   

11.
Evidence is presented that the inflected palaeogeotherm for northern Lesotho, previously highlighted by Boyd (1973), Boyd and Nixon (1973, 1975), Finnerty and Boyd (1984, 1987), is essentially an artifact of the unsatisfactory, over-simplified barometer formulation (based on MacGregor 1974) employed. The absence of an inflection in the palaeogeotherm for Udachnaya, Siberia based on P-T estimates for garnet lherzolite xenoliths calculated with the same barometer, does not prove the reality of an inflected palaeogeotherm for northern Lesotho. Rather, it reflects, at least in part, chemical differences between the equivalent deformed, high-T xenoliths in these two areas — most importantly expressed in the respective contents of Jadeite relative to ureyite in the constituent orthopyroxenes. Accurate estimation of P-T equilibration conditions for garnet lherzolite xenoliths requires both complete and precise mineral analyses and adequate consideration of the influence of minor elements, such as Cr and Na, on the element exchange reaction thermometers and barometers employed. The barometer formulation of Nickel and Green (1985) is judged to be the best currently available. As no single thermometer is entirely satisfactory and dependable throughout the P-T range of interest, equilibration temperatures are currently best assessed as a mean value obtained from application of the most accurate formulations for both the two-pyroxene solvus thermometer (Bertrand and Mercier 1985) and Fe2+-Mg2+ exchange reactions between garnet-clinopyroxene (Powell 1985), garnet-orthopyroxene (Harley 1984a) and garnet-olivine (O'Neill and Wood 1979) mineral pairs. Such best P-T estimates for xenoliths in the kimberlites of northern Lesotho indicate a somewhat elevated, non-inflected, upper mantle palaeogeotherm, compatible with a 120–145 km thick thermally conductive lithosphere above a convecting asthenosphere. The common coarse textured, chemically depleted, garnet lherzolite xenoliths appear mostly to have originated from close to the base of the lithosphere whilst the contrasting deformed, higher T, more chemically fertile xenoliths have come from the underlying asthenosphere. There is evidence for slight variations in the heat flux within the mantle beneath northern Lesotho at the time of emplacement of the Thaba Putsoa and Mothae kimberlites, only some 16 km apart, and also possibly for a regional variation in the thickness of the lithosphere.  相似文献   

12.
Mutual relationships among temperatures estimated with the most widely used geothermometers for garnet peridotites and pyroxenites demonstrate that the methods are not internally consistent and may diverge by over 200°C even in well-equilibrated mantle xenoliths. The Taylor (N Jb Min Abh 172:381–408, 1998) two-pyroxene (TA98) and the Nimis and Taylor (Contrib Mineral Petrol 139:541–554, 2000) single-clinopyroxene thermometers are shown to provide the most reliable estimates, as they reproduce the temperatures of experiments in a variety of simple and natural peridotitic systems. Discrepancies between these two thermometers are negligible in applications to a wide variety of natural samples (≤30°C). The Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer shows good agreement with TA98 in the range 1,000–1,400°C and a positive bias at lower T (up to +90°C, on average, at T TA98 = 700°C). The popular Brey and Köhler (J Petrol 31:1353–1378, 1990) two-pyroxene thermometer performs well on clinopyroxene with Na contents of ~0.05 atoms per 6-oxygen formula, but shows a systematic positive bias with increasing NaCpx (+150°C at NaCpx = 0.25). Among Fe–Mg exchange thermometers, the Harley (Contrib Mineral Petrol 86:359–373, 1984) orthopyroxene–garnet and the recent Wu and Zhao (J Metamorphic Geol 25:497–505, 2007) olivine–garnet formulations show the highest precision, but systematically diverge (up to ca. 150°C, on average) from TA98 estimates at T far from 1,100°C and at T < 1,200°C, respectively; these systematic errors are also evident by comparison with experimental data for natural peridotite systems. The older O’Neill and Wood (Contrib Mineral Petrol 70:59–70, 1979) version of the olivine–garnet Fe–Mg thermometer and all popular versions of the clinopyroxene–garnet Fe–Mg thermometer show unacceptably low precision, with discrepancies exceeding 200°C when compared to TA98 results for well-equilibrated xenoliths. Empirical correction to the Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer and recalibration of the orthopyroxene–garnet thermometer, using well-equilibrated mantle xenoliths and TA98 temperatures as calibrants, are provided in this study to ensure consistency with TA98 estimates in the range 700–1,400°C. Observed discrepancies between the new orthopyroxene–garnet thermometer and TA98 for some localities can be interpreted in the light of orthopyroxene–garnet Fe3+ partitioning systematics and suggest localized and lateral variations in mantle redox conditions, in broad agreement with existing oxybarometric data. Kinetic decoupling of Ca–Mg and Fe–Mg exchange equilibria caused by transient heating appears to be common, but not ubiquitous, near the base of the lithosphere.  相似文献   

13.
Numerous ultramafic xenoliths occur within the A??n–Temouchent volcanic complex (Northwestern Oranie, Algeria). Most of them are type I mantle tectonites (lherzolites and harzburgites) and composite xenoliths (harzburgite/clinopyroxenite) are rare. Only a few samples of spinel lherzolites display relatively fertile compositions when the major part of type I xenoliths have refractory major element compositions but enriched LREE contents showing that they have been affected by mantle metasomatism. The composite xenoliths are witnesses of reactions of alkaline magmas with the upper mantle. An asthenospheric rising, in relation with the large strike slip fault affecting the North African plate margin at Trias time is proposed as a possible geodynamical setting. To cite this article: M. Zerka et al., C. R. Geoscience 334 (2002) 387–394.  相似文献   

14.
The Gibeon Kimberlite Province of southern Namibia comprises more than 75 group 1 kimberlite pipes and dykes. From the Gibeon Townsland 1 pipe, 38 upper mantle xenoliths (23 garnet lherzolites and 15 garnet harzburgites) were collected and minerals were analysed by electron microprobe for major elements. Pressures and temperatures of crystallisation for xenoliths with either coarse equant, porphyroclastic and mosaic-porphyroclastic textures were estimated by a number of combinations of geothermometers and geobarometers judged to be reliable and accurate for peridotites by Brey and Köhler (1990): The P-T estimates for equilibrated xenoliths agree within the errors of the methods and plot within the stability field of graphite. The P-T values for coarse equant xenoliths fall close to a geothermal gradient of about 44?mW/m2 within a very restricted pressure range. The porphyroclastic xenoliths yield similar and higher temperatures at similar depths. In these xenoliths Ca in orthopyroxene and Ca in olivine increase towards the rims and are high in the neoblasts indicating a stage of transient heating at depth. The mosaic-porphyroclastic xenolith minerals yield the highest temperatures, are unzoned and indicate internal mineral equilibrium. The depth of origin for the xenoliths from Gibeon Townsland 1 ranges from 100 to 140 km. The “cold”, coarse equant peridotites are relatively enriched garnet lherzolites with comparatively (to the “hot” peridotites) low modal orthopyroxene contents, whereas the “hot”, mosaic-porphyroclastic peridotites are depleted garnet harzburgites with high modal amounts of orthopyroxene. This is opposite to the findings for peridotites from the Kaapvaal craton where the cold peridotites are depleted harzburgites with high modal orthopyroxene and many of the hot peridotites are fertile lherzolites with low modal abundance of orthopyroxene. We present a model in which the high temperature, depleted garnet harzburgites are equated to the cold, coarse equant peridotites from the Kaapvaal craton. It is envisaged that this material was detached and transported laterally by an upwelling, deflected plume.  相似文献   

15.
Jurassic basanite necks occurring at the junction of two major fault zones in Scania contain ultramafic (peridotites, pyroxenites) and mafic xenoliths, which together indicate a diversity of upper mantle and lower crustal assemblages beneath this region. The peridotites can be subdivided into lherzolites, dunites and harzburgites. Most lherzolites are porphyroclastic, containing orthopyroxene and olivine porphyroclasts. They consist of Mg-rich silicates (Mg# = Mg/(Mg + Fetot) × 100; 88–94) and vermicular spinel. Calculated equilibration temperatures are lower in porphyroclastic lherzolites (975–1,007°C) than in equigranular lherzolite (1,079°C), indicating an origin from different parts of the upper mantle. According to the spinel composition the lherzolites represent residues of 8–13% fractional melting. They are similar in texture, mineralogy and major element composition to mantle xenoliths from Cenozoic Central European volcanic fields. Dunitic and harzburgitic peridotites are equigranular and only slightly deformed. Silicate minerals have lower to similar Mg# (83–92) as lherzolites and lack primary spinel. Resorbed patches in dunite and harzburgite xenoliths might be the remnants of metasomatic processes that changed the upper mantle composition. Pyroxenites are coarse, undeformed and have silicate minerals with partly lower Mg# than peridotites (70–91). Pyroxenitic oxides are pleonaste spinels. According to two-pyroxene thermometry pyroxenites show a large range of equilibration temperatures (919–1,280°C). In contrast, mafic xenoliths, which are mostly layered gabbronorites with pyroxene- and plagioclase-rich layers, have a narrow range of equilibration temperatures (828–890°C). These temperature ranges, together with geochemical evidence, indicate that pyroxenites and gabbroic xenoliths represent mafic intrusions within the Fennoscandian crust.  相似文献   

16.
泥质变质岩系主要的矿物温度计与压力计   总被引:6,自引:0,他引:6  
简要介绍泥质变质岩中常用的温度计和压力计,对其可适用性、适用范围、质量优劣等进行了评述。经过对这些温度计和压力计的比较研究,我们发现石榴石-黑云母温度计、石榴石-白云母温度计、石榴石-蓝晶石(夕线石、红柱石)-斜长石-石英(GASP)压力计、石榴石-黑云母-斜长石-石英(GBPQ)压力计、石榴石-白云母-斜长石-石英(GMPQ)压力计、石榴石-黑云母-白云母-蓝晶石(夕线石、红柱石)-石英(GBMAQ)压力计、石榴石-金红石-钛铁矿-斜长石-石英(GRIPS)压力计的准确度较高,可以为地质工作者所采用。二云母温度计、白云母-斜长石温度计准确度还有待大幅度改进。石榴石-金红石-蓝晶石(夕线石、红柱石)-钛铁矿-石英(GRAIL)压力计、石榴石-堇青石温度计和石榴石-堇青石-蓝晶石(夕线石、红柱石)-石英(GCAQ)压力计等温压计的准确度及其可适用性,还有待于进一步研究。  相似文献   

17.
The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902oC to 1064oC based on the two-pyroxene thermometer of Brey and K?hler (1990), and using the oxybarometry of Nell and Wood (1991), the oxidation state was estimated from FMQ-1.32 to -0.38 with an average value of FMQ-0.81 (n?=?8), which is comparable to that of abyssal peridotites and the asthenospheric mantle. The fO2 values of peridotites, together with their bulk rock compositions (e.g., Mg#, Al2O3, CaO, Ni, Co, Cr) and mineral compositions (e.g., Mg# of olivine and pyroxene, Cr# [=Cr/[Cr+Al]] and Mg# [=Mg/[Mg+Fe2+] of spinel), suggest that the present-day subcontinental lithospheric mantle (SCLM) beneath the Changbaishan Volcano most likely formed from an upwelling asthenosphere at some time after the late Mesozoic and has undergone a low degree of partial melting. The studied lherzolite xenoliths show low concentrations of S, Cu, and platinum group elements (PGE), which plot a flat pattern on primitive-mantle normalized diagram. Very low concentrations in our samples suggest that PGEs occur as alloys or hosted by silicate and oxide minerals. The compositions of the studied samples are similar to those of peridotite xenoliths in the Longgang volcanic field (LVF) in their mineralogy and bulk rock compositions including the abundance of chalcophile and siderophile elements. However, they are distinctly different from those of peridotite xenoliths in other areas of the North China Craton (NCC) in terms of Cu, S and PGE. Our data suggest that the SCLM underlying the northeastern part of the NCC may represent a distinct unit of the newly formed lithospheric mantle.  相似文献   

18.
The oxygen fugacities of 48 mantle xenoliths from 5 localities in southern Siberia (USSR) and Mongolia have been determined. Ferric iron contents of spinels were measured by 57Fe Mössbauer spectroscopy and oxygen fugacities calculated from spinel-olivineorthopyroxene equilibrium. The samples studied represent the major types of upper mantle lithologies including spinel and garnet peridotites and pyroxenites, fertile and depleted peridotites and anhydrous and metasomatized samples which come from diverse tectonic settings. Extensive geochemical and isotope data are also available for these samples. Oxygen fugacity values for most central Asian xenoliths fall within the range observed in peridotite xenoliths from other continental regions at or slightly below the FMQ buffer. However, xenoliths from the Baikal rift zone are the most reduced among xenoliths for which Mössbauer data on spinels are available. They yield fO2 values similar to those in oceanic peridotites and MORBs, while xenoliths in other occurrences have higher fO2s. In general, the continental lithosperic mantle is more oxidized than MORB-like oceanic mantle. This difference seems to be due to incorporation of oxidized material into some parts of the subcontinental mantle as a result of subduction of oceanic crust. Garnet- and garnet-spinel lherzolites from the Baikal rift area have slightly higher oxygen fugacities than shallower spinel lherzolites. Oxygen fugacity does not appear to be correlated with the degree of depletion of peridotites, and its values in peridotites and pyroxenites are very much alike, suggesting that partial melting (at least at moderate degrees) takes place at essentially the same fO2s that are now recorded by the residual material. Modally (amphibole- and phlogopitebearing) and cryptically metasomatized xenoliths from the Baikal rift zone give the same fO2 values as depleted anhydrous peridotites, suggesting that solid-melt-fluid reactions in the continental rift mantle also take place without substantial change in redox state. This is in contrast to other tectonic environments where metasomatism appears to be associated with oxidation.  相似文献   

19.
Mantle xenoliths in alkali basalt at three locations in South Korea—Boun, the Gansung area, and Baegryung Island—are spinel lherzolites composed of olivine, orthopyroxene, clinopyroxene, and spinel. The xenoliths generally display triple junctions between grains, kink-banding in olivine and pyroxenes, and protogranular and equigranular textures, with no preferred crystal orientation. Anhedral brown spinels occur interstitially. Minerals in lherzolites from each of the three localities are compositionally homogeneous. Olivine compositions have Fo89.0 to Fo90.2, low CaO (.03 to 0.12 wt%), and NiO of 0.34 to 0.40 wt%; the orthopyroxene is enstatite with En89.0 to En90.0 Al2O3 of 4 to 5 wt%; the clinopyroxene is diopside with En47.2 to En49.1 and Al2O3 of 7.42 to 7.64 wt% from Boun and 4.70 to 4.91 wt% from Baegryung. Spinel chemistry shows a distinct negative trend, with increasing Al corresponding with decreasing Cr, and Mg# and Cr# of 75.1 to 81.9 and 8.5 to 12.6, respectively.

Temperatures and pressures of equilibration for these mantle xenoliths were estimated using various pyroxene geothermometers (Wood and Banno, 1973; Wells, 1977; Mercier, 1980; Sachtleben and Seck, 1981; Bertrand and Mercier, 1985; Brey and Köhler, 1990) and the Al-solubility geobarometer (Mercier, 1980; Lane and Ganguly, 1980). Temperature estimates from the recipes of Mercier (1980) and Sachtleben and Seck (1981) are compatible. The equilibrium temperatures of these xenoliths, taken as the average obtained from these two methods, lie between 970 and 1020° C, and equilibrium pressures derived from Mercier (1980) fall within the range of 12 to 19 kbar (i.e., 42 to 63 km). These temperatures and pressures are reinforced by considerations of the Al-isopleths in the MAS system (Lane and Ganguly, 1980), as adjusted for the Fe effect on Al solubility in orthopyroxene (Lee and Ganguly, 1988).

The equilibrium temperatures and pressures of xenoliths, as considered in P/T space, belong to the oceanic geotherm, based upon the various mantle geotherms presented by Mercier (1980). This geotherm is completely different from continental geotherms, e.g., from South Africa (Lesotho) and southern India. Mineral compositions of spinel-lherzolites in South Korea and eastern China are primitive; paleogeotherms of both are quite similar, but degrees of depletion of the upper mantle could vary locally. This is demonstrated by eastern China, which has various depleted xenoliths caused by different degrees of partial melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号