首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
利用ERA-Interim再分析资料(0.5°×0.5°)、探空观测资料及中国降水月值格点数据分析了冬季青藏高原(以下简称高原)大气水汽含量平均特征、高原湿中心区域的水汽收支特征及其与中国降水的关系。结果发现:冬季高原东南部地区存在湿中心,对应着水汽含量标准差大值中心;高原湿中心区域的水汽从西、南边界输入,东、北边界输出,净水汽收支多年平均为水汽"盈余";该区域冬季净水汽收入、支出34 a总趋势是增加的,而净水汽收支是减少的,但三者均存在4~6 a左右的周期;冬季该区域净水汽收入对南疆、高原东部—四川盆地及云贵高原的降水有较好的指示性,净水汽支出对西南—华南的我国南方大部分地区降水有较好的指示性,净水汽收支则可表征高原东部及邻近地区、长江中游地区的降水;冬季该区域异常多(少)水汽支出年时,我国南方大部分地区的降水偏少(多),水汽输送场不(有)利于水汽向我国南方的输送及辐合,即其水汽支出的强弱反映了水汽输送的强弱和我国降水的分布,体现出水汽收支通过环流对降水产生重要影响。  相似文献   

2.
利用NCEP/NCAR再分析资料和CRU降水数据,分析了1948-2009年全球典型干湿变化区域水汽收支的时间变化特征,并比较了这些区域净水汽收支、可降水量与降水的变化关系。结果表明:(1)亚洲大陆东部、非洲大陆年水汽收支显著减少,而北美大陆显著增加,三个地区的净水汽收支变化与区域的干、湿变化特征相一致;(2)对于亚洲大陆东部,春、夏、秋季和年水汽收支状况较一致,即经向收支和净收支均呈显著减少趋势,纬向收支均呈增加趋势。冬季与年平均状况有所不同,三种收支都增加;(3)在北美大陆,夏、秋和冬季的水汽收支趋势与年水汽收支趋势基本一致,即经向收支增加,纬向收支减少,净收支增加;仅春季经向收支减少,纬向收支增加;(4)在非洲大陆,四个季节的纬向收支和净收支均减小,纬向水汽的变化主导着净水汽的变化;与年变化特征不同的是,春、夏季的经向收支减少;(5)近几十年来,在亚洲大陆东部和非洲大陆,伴随着各季及年降水的减少,同期净水汽收支和可降水量也随着减少,且相关显著。在北美大陆,伴随着各季及年降水的增加,同期净收支也随着增加,且相关也较显著。值得注意的是,北美大陆的可降水量与降水没有很好的相关性。  相似文献   

3.
利用2007—2016年欧洲中期天气预报中心(ECMWF)逐日再分析资料(0.5°×0.5°)和国家气象数据中心24 h累计降水资料,计算分析了成都地区空中水资源的特征,包括可降水量、水汽、实际降水量等,并比较分析了三者之间的关系。结果表明:成都地区为净输入区域,主要水汽输入、输出口分别为西、东边界;成都地区位于强辐合中心附近,四季水汽输送通量较稳定,夏季相对偏小;700 hPa以下为主要的水汽输入层,700 hPa以上为主要的水汽输出层;500 hPa以下的水汽利用率较高,尤其是夏季;水汽输送较强的区域集中在700 hPa以上秋季的西边界和四季的东边界、700 hPa以下夏季的东边界以及500 hPa以上四季的西边界;成都地区可降水量稳定丰富,年平均水汽总输入量也很大,但二者转换为实际降水的量很少。  相似文献   

4.
川渝盆地夏季旱涝变化特征及成因分析   总被引:6,自引:0,他引:6       下载免费PDF全文
利用川渝盆地18个观测站1955—2008年的月平均降水资料,分析了川渝盆地东、西部夏季降水的年代际变化特征;通过NCEP/NCAR再分析资料、NOAA OLR资料,分析了川渝盆地东、西部多雨年和少雨年的环流形势,结果表明:(1)川渝盆地东、西部夏季区域平均降水量呈负相关关系,且川渝盆地东、西部夏季降水的长期变化周期也有一定的差异。(2)在川渝盆地西部多雨年,500 hPa高度上北半球欧亚地区两脊一槽型环流发展,孟加拉湾的低气压有利于水汽从西南方向输送到我国,同时南亚高压西部增强,使得川渝盆地西部和我国河套地区降水偏多。而在川渝盆地东部多雨年,东亚高纬度地区经向环流有利于我国东部冷空气南下,配合副热带高压西伸,南亚高压东部减弱,我国中部地区和川渝盆地东部降水偏多。(3)前期春季OLR场特征对后期夏季川渝盆地夏季降水的预测有一定的指示意义。在川渝盆地西部多雨年,印度洋到孟加拉湾整个地区前期春季OLR减小,印度洋和孟加拉湾地区的对流活动增强,有利于水汽输送到川渝盆地西部地区。而川渝盆地东部多雨年,从南海向我国的水汽输送增强,盆地东部地区降水偏多。  相似文献   

5.
黄河流域冬、夏季水汽输送及收支特征   总被引:1,自引:0,他引:1  
李进  李栋梁  张杰 《高原气象》2012,31(2):342-350
利用NCEP/NCAR再分析资料和我国实测雨量资料,对黄河流域1月和7月多年平均及旱、涝年整层积分的水汽通量、辐合(辐散)及各分区水汽收支进行了研究。结果表明,1月黄河流域无明显的水汽输送,而7月水汽沿西南、东南及西北3条路径输送,前两支气流在多年平均时主要影响黄河下游区。涝年时影响到黄河中、下游区,而上游区水汽流入较小;旱年,黄河中、上游区均无明显的水汽输送,只有下游的小范围地区受西南气流影响。各区净水汽通量分别与其地面降水的时空演变相对应,而经向净水汽通量是影响水汽收支变化及供给流域降水的主要水汽来源;涝年的水汽净收支与各边界水汽流入明显大于旱年。1月,西边界和北边界微弱的水汽输入远小于东边界和南边界的输出,各区均为水汽净辐散,不利于降水;7月,大量的水汽主要来自西边界和南边界,涝年各区均为水汽盈余,多年平均也以净辐合为主,而旱年则以水汽亏损为主。  相似文献   

6.
四川盆地夏季水汽输送特征及其对旱涝的影响   总被引:5,自引:9,他引:5  
蒋兴文  李跃清  李春  杜军 《高原气象》2007,26(3):476-484
利用1981—2000年夏季观测资料,分析了四川盆地夏季平均的水汽输送状况及四川盆地典型旱涝年的水汽输送差异特征,并在此基础上,初步分析了四川盆地旱涝异常的大气环流背景。结果表明:四川盆地的夏季水汽主要来源于青藏高原、孟加拉湾及南海地区。当西太平洋副热带高压偏北偏西时,其外侧东南风可以把南海水汽带到盆地西部,孟加拉湾及青藏高原水汽受到阻挡被迫停留在盆地西部,形成了盆地西部异常的水汽辐合,东部异常的水汽辐散,由此导致四川盆地西涝东旱。反之,当西太平洋副热带高压偏南偏东时,其西南侧的南海水汽不能到达盆地西部,只能到达盆地东南部,而孟加拉湾及青藏高原水汽则可以进入盆地东部,在盆地东部形成异常的水汽辐合,在西部形成异常的水汽辐散,造成四川盆地西旱东涝。  相似文献   

7.
利用1961—2015年四川省156个台站逐日降水资料和NCEP/NCAR再分析资料,分析了四川省盛夏极端降水事件的时空分布特征及其与高原夏季风的关系。结果表明:近55 a四川省盛夏极端降水指数的变化趋势具有明显的区域差异,降水百分率在四川大部分地区呈减少趋势,而降水总量、强降水量、降水强度及1日、连续5 d最大降水量主要在川西高原西北部和盆地西部呈减少趋势,其他区域则呈增加趋势。就全省而言,近55 a四川盛夏降水总量整体呈不显著减少趋势,未发生明显突变,而降水百分率呈显著减少趋势,且发生了1次显著突变;降水强度、强降水量整体呈显著增加趋势,且发生了1次显著突变,而1日、连续5 d最大降水量呈不显著增加趋势,且发生了3次显著突变。四川盛夏各极端降水指数均存在3~4 a和8 a左右的振荡周期。四川盆地东、西部盛夏极端降水与高原夏季风异常关系密切,高原夏季风偏强时,500 h Pa高度距平合成场上东亚中高纬地区以经向型环流为主,西太平洋副热带高压偏南,来自孟加拉湾的西南风水汽加强,有利于四川盆地东(西)部盛夏极端降水偏多(少);高原夏季风偏弱时,情况则相反。  相似文献   

8.
基于哈萨克斯坦5个代表站的降水资料,利用一元线性回归法、Mann-Kendall突变检验和Morlet小波的方法,分析历年降水变化特征,结果表明:东部和中部降水呈减少趋势,其余为增加趋势,东部于1962年发生突变,西部和中部分别于1970年和1984年发生突变。东部春季和夏季的降水呈减少趋势,秋季和冬季为增加趋势。西部的春季、秋季和冬季降水呈增加趋势,夏季降水呈减少趋势。北部春季和秋季降水为增加趋势,夏季和冬季降水呈减少趋势。南部的春季、夏季和秋季降水呈增加趋势,冬季降水呈减少趋势。中部春季、夏季和秋季的降水呈减少趋势,冬季降水呈增加趋势。哈萨克斯坦不同区域的降水量均存在多个尺度的周期变化,但其共同点是均存在2~3a和6a的短周期变化。  相似文献   

9.
1961—2000年塔里木盆地夏季空中水汽的变化   总被引:1,自引:0,他引:1  
利用1961--2000年塔里木盆地内36个地面气象站的降水资料以及美国NCEP/NCAR6__9月再分析资料对盆地上空的水汽变化进行了分析。结果显示,塔里木盆地全年或夏季的降水都呈现增长趋势,明显增湿的转折年份为1991年;盆地的东、西边界为水汽的主要输入、输出边界,且水汽输送量呈减少趋势,而南、北边界的水汽输送量略有增加;夏季水汽收支多年来没有发生显著变化,并与降水存在较好的相关性;在多雨和少雨的夏季,水汽输送方向恰好相反,多雨夏季,来自东方的水汽对盆地降水贡献最大;综合水汽收支、降水、冰川、径流、温度等多种因素的气候变化趋势来看,塔里木盆地增湿的两个可能重要因素为:一是盆地内部参与每次降水过程的水汽增加了,二是垂直上升运动增强了。  相似文献   

10.
青藏高原及附近水汽输送对其夏季降水影响的分析   总被引:1,自引:0,他引:1  
利用欧洲中期天气预报中心(ECMWF)提供的1979-2010年ERA-Interim再分析资料分析了青藏高原(下称高原)及附近夏季水汽输送通量分布情况,并结合基于迄今为止最全面的地面观测数据形成的高分辨率降水资料分析出4条影响夏季高原降水的水汽通道:西风带、阿拉伯海、孟加拉湾北部及南海通道。结果表明:高原夏季降水量高值年(1979、1984、1996、1998、2002、2004、2007年)、低值年(1994、2001、2006年)与孟加拉湾北部通道水汽输送强弱年有较好对应。夏季西风带通道的影响较弱,与其他3条低纬度通道的相关系数较小,是相对独立的水汽通道,主要影响高原西北部从狮泉河至塔里木盆地南侧地区;孟加拉湾北部通道影响高原中南偏东部地区;南海通道则对高原东南部以及中南部那曲、林芝、昌都、玉树等地区有影响;而阿拉伯海水汽通道与其他水汽通道都呈负相关关系,其中与孟加拉湾北部通道相关关系最显著,相关系数达到-0.65,该通道通过调节孟加拉湾北部通道和南海通道的向西水汽输送分量来影响高原中南偏西部地区的夏季降水。  相似文献   

11.
The interannual and intermonthly climatic features of the water vapor content(hereafterWVC)and its mean transfer in the atmosphere over Northwest China(hereafter NWC)arecalculated and analyzed by using the NCEP/NCAR global reanalysis grid data(2.5°×2.5°Lat/Lon)for 40 years(1958—1997).The results show that the WVC in the total air column over NWC infour seasons of the year is mainly concentrated on eastern and western NWC respectively.On theaverage,the WVC over eastern NWC decreases obviously during recent forty years except forwinter.while it decreases over western NWC in the whole year.But the WVC over NWC has beenincreasing since late 1980s in summer.The water vapor comes from the southwestern warm andwet air current along the Yarlung Zangbo River Valley and the Bay of Bengal.and from mid-western Tibetan Plateau and also from the Qinling Mountains at southern Shaanxi Province.Theyearly water vapor divergence appears over the middle of NWC to northern Xinjiang andsoutheastern Shaanxi Province.The yearly water vapor convergence appears over the Tarim Basinand the Tibetan Plateau as well as western Sichuan and southern Gansu.  相似文献   

12.
This paper attempts to reveal a long-distance-relayed water vapor transport(LRWVT) east of Tibetan Plateau and its impacts. The results show that from August to October, east of Tibetan Plateau, there exists a unique LRWVT,and the water vapor from the South China Sea and the western Pacific can affect the Sichuan Basin, Northwest China and other Chinese regions far from the tropical sea through this way. From August to October, the precipitation of the region east of the Plateau is closely linked both in the intra-annual and inter-annual variations, and the LRWVT from the South China Sea and the western Pacific is an important connection mechanism. The large-scale circulation background of the LRWVT impacting the precipitation of the region east of the Plateau is as follows: At high levels,the South Asian High is generally stronger than normal and significantly enhances with its northward advance and eastward extension over the region east of the Plateau. At mid-level, a broad low pressure trough is over Lake Balkhash and its surroundings, and the Western Pacific Subtropical High(WPSH) is northward and westward located, and the western part of Sichuan Basin and the eastern part of Northwest China are located in the west and northwest edge of WPSH.  相似文献   

13.
陈红专  叶成志  陈静静  罗植荣 《气象》2019,45(9):1213-1226
利用NCEP/NCAR再分析资料,首先分析了2017年6月下旬至7月初湖南持续性暴雨天气过程的环流背景和大尺度水汽输送特征,然后引入NOAA的轨迹模式HYSPLIT,分阶段定量分析了暴雨的水汽输送特征以及区域水汽收支情况。结果表明:天气系统的有效配置和稳定维持是强降雨持续的主要原因,持续性暴雨与全球范围的水汽输送和水汽辐合相联系,低空急流的演变和进退与暴雨落区和强度的演变关系密切。影响此次强降水过程的水汽通道主要有三支,第一支由索马里越赤道急流经孟加拉湾和我国西南地区输入暴雨区,第二支由印度洋中东部越赤道气流经孟加拉湾南部和南海北部输入暴雨区,第三支由来自南半球的越赤道气流自南海南部一路北上输入暴雨区,第三阶段还有一支水汽由赤道西太平洋穿越菲律宾进入南海后再北上输入暴雨区。过程第一、二阶段的水汽输送主要来自孟加拉湾,其次是南海,第三阶段来自孟加拉湾和南海(包括西太平洋)的水汽输送各占一半。受地形影响,孟加拉湾通道的水汽主要输送至暴雨区700 hPa,其他来自低纬洋面的通道水汽主要输送到850 hPa及以下各层。暴雨区水汽输入主要来自南边界和西边界,且主要由低层输入暴雨区,以水平水汽通量辐合的形式在暴雨区上空低层大量汇聚,经由强烈的垂直上升运动输送至对流层中高层积累和凝结,从而导致降水的产生,降水的强弱与边界水汽输入和区域水汽辐合的强弱变化一致。  相似文献   

14.
利用基于拉格朗日方法的气流轨迹模式(HYSPLIT_V4.9),结合轨迹聚类法和气块追踪法,探讨1998年6月12日—8月27日期间长江流域强降雨的水汽输送轨迹、主要水汽源地及其水汽贡献,发现此次强降水过程的水汽源地主要为印度洋、孟加拉湾—南海和太平洋;不同降水阶段水汽输送轨迹、水汽源地存在差异。降水第一阶段水汽主要来自孟加拉湾—南海,水汽输送贡献为35%。降水第二阶段水汽主要由印度洋、孟加拉湾—南海和太平洋三个区域共同提供,水汽输送贡献分别为32%、28%和31%。降水第三阶段则是来自印度洋和孟加拉湾—南海的水汽输送占主导地位,它们对降水的水汽输送贡献分别为33%和41%。降水第四阶段水汽主要来源于孟加拉湾—南海,贡献为40%。强降水过程中大气环流的调整,导致了不同阶段水汽源地的变化及各源地水汽贡献的差异。  相似文献   

15.
利用中国气象数据网提供的中国地面气候资料日值数据集(V3.0)中的降水数据以及ERA-Interim逐月再分析资料对全球变暖趋缓背景下(1998年后)辽宁夏季降水变化特征及水汽输送对其的影响进行研究。结果表明:全球增暖减缓背景下,辽宁夏季降水量存在一定的增加趋势,但趋势较弱,其中辽宁南部降水的增加趋势较其他地区显著,对辽宁整体降水变化的贡献程度相对较高。辽宁南北边界的夏季水汽通量与降水量呈现高度的正相关性。其中,南边界的相关性程度最显著。辽宁上空纬向水汽净输入量对降水的贡献较小,经向水汽通量对于降水的贡献较纬向高且其高值区主要位于辽宁东部及南部地区的对流层低层,对当地降水存在影响。辽宁南部对流层整层的经向水汽通量与辽宁降水量存在显著正相关,通过分析大气环流背景场的变化对辽宁经向水汽输送的影响分析,西太平洋副热带高压脊线的逐渐北移是造成辽宁经向水汽通量增加的重要因素,从而直接影响辽宁降水量的变化趋势,导致辽宁夏季降水在全球变暖减缓背景下存在一定的增加趋势。  相似文献   

16.
朱玮  刘芸芸  何金海 《气象科学》2007,27(2):155-161
利用NCEP/NCAR1957-2001年45a逐日的再分析资料,从地面开始积分计算整层的水汽输送通量,减去平均场的水汽的输送量,从而得到扰动水汽输送量,初步讨论了我国江淮地区水汽输送场的季节变化特征,并分析了我国江淮梅雨期旱、涝年平均场水汽输送与扰动场水汽输送的差异。分析发现:扰动场水汽输送与平均场水汽输送差别较大,源自孟加拉湾的平均水汽输送对我国东部地区的降水影响较大,但该地区的扰动水汽输送却主要是影响印度北部地区。而影响我国江淮地区的扰动场水汽输送主要来自于南海地区。源自西太平洋和我国北方的偏强的水汽输送是造成江淮梅雨期降水偏多的主要因子,扰动场水汽输送在我国江淮地区梅雨期降水异常时期与平均场水汽输送基本呈反方向输送,其差值散度场与平均场水汽输送差值散度则为反位相分布,因此说扰动场的水汽输送对平均场的水汽输送起削弱作用。  相似文献   

17.
利用常规资料、NCEP FNL分析资料和HYSPLIT模式,对2008—2017年川西高原持续性暴雨过程的时空分布、环流分型、水汽源地和输送路径进行分析。结果表明:①2008—2017年川西高原单站持续性暴雨的总频次为337次,在21次区域持续性暴雨中,位于高原与盆地过渡区的泸定、康定、汶川出现持续性暴雨次数最多;②7月发生频率最高,持续时间多为3~4天;③将影响川西高原暴雨的环流分型为两槽一脊型、一脊一槽型、西风槽型和偏西气流型,其中孟加拉湾气旋影响有16例,6—7月个例都有孟加拉湾气旋的存在;④川西高原上空气团主要通过4条路径进入,源自北大西洋、地中海和伊朗中北部的西北路径占比29%,源自里海到咸海之间地区的东北路径占比17%,源自热带印度洋洋面的西南和东南路径各占比43%和11%,偏北路径的空气质点起始高度比偏南路径的高,相应的温度和水汽含量也偏低;⑤将水汽输送分为"S"型、偏西气流型和偏南气流型3个类型。  相似文献   

18.
Using the NCAR/NCEP (National Center for Atmospheric Research/National Centers for Environmental Prediction) reanalysis and the NOAA Climate Prediction Center's merged analysis of precipitation (CMAP)during 1981-2000, we investigated the seasonal evolution of the southwesterly wind and associated precipitation over the eastern China-subtropical western North Pacific area and its relationship with the tropical monsoon and rainfall, and analyzed the reasons responsible for the onset and development of the wind. It was found that the persistent southwesterly wind appears over southern China and the subtropical western Pacific the earliest in early spring, and then expands southwards to the tropics and advances northward to the midlatitudes. From winter to summer, the seasonal variation of surface heating over western China and the subtropical western Pacific may result in an earlier reversal of the westward tropospheric temperature gradient over the subtropics relative to the tropics, which may contribute to the earliest beginning of the subtropical southwesterly wind. Additionally, the strengthening and eastward expanding of the trough near the eastern Tibetan Plateau as well as the strengthening and westward moving of the western Pacific subtropical high also exert positive influences on the beginning and development of the subtropical southwesterly wind.In early summer,the northward expansion of the southwesterly wind over southern China is associated with a northward shift of the subtropical high, while the southward stretch of the southwesterly wind is associated with a southward stretch of the trough in the eastern side of the plateau. With the beginning and northward expansion of the subtropical southwesterly wind (namely southwest monsoon), convergences of the low-level air and water vapor and associated upward motion in front of the strongest southwesterly wind core also strengthen and move northward, leading to an increase in rainfall intensity and a northward shift of the rain belt. Accordingly, the subtropical rainy season occurs the earliest over southern China in spring, moves northward to the Yangtze-Huaihe River valley in early summer, and arrives in North China in mid summer.Compared with the subtropical rainy season, the tropical rainy season begins later and stays mainly over the tropics, not pronouncedly moving into the subtropics. Clearly, the Meiyu rainfall over the Yangtze-Huaihe River valley in early summer results from a northward shift of the spring rain belt over southern China,instead of a northward shift of the tropical monsoon rain belt. Before the onset of the tropical monsoon,water vapor over the subtropical monsoon region comes mainly from the coasts of the northern Indo-China Peninsula and southern China. After the onset, one branch of the water vapor flow comes from the Bay of Bengal, entering into eastern China and the subtropical western Pacific via southwestern China and the South China Sea, and another branch comes from the tropical western North Pacific, moving northwestward along the west edge of the western Pacific subtropical high and entering into the subtropics.  相似文献   

19.
近50a江淮地区梅雨期水汽输送特征研究   总被引:5,自引:5,他引:0       下载免费PDF全文
利用1958—2007年ERA再分析风场及气压场资料和APHRO高分辨率逐日降水资料,对近50 a来梅雨期水汽输送的时空特征及其与江淮地区降水的关系进行了研究,发现各条水汽通道对江淮地区梅雨期降水强度及范围的影响程度均不同。梅雨期影响我国降水的水汽输送有显著的年际变化,并且水汽输送强弱年对应江淮地区降水强度也有明显差异。相关分析及合成差值的结果显示,西太平洋水汽输送贡献更大,且西太平洋水汽输送(东南通道)增强时,江淮地区降水增多。印度洋水汽输送的加强会减弱太平洋的水汽输送从而使得江淮少雨。在全球变暖的背景下,西太平洋的水汽输送对降水的增强作用有所减弱而印度洋输送所导致降水强度减弱的范围则明显扩大。自1980年起,江淮降水出现缓慢增多的趋势与全球变暖所导致的东亚环流异常进而影响水汽输送异常相关。  相似文献   

20.
利用1979~2015年NCEP/NCAR发布的月平均全球再分析资料,分析了热带印度洋-西太平洋水汽输送异常对中国东部夏季降水的影响及其形成机理。研究结果表明:热带印度洋-西太平洋地区(10°S~30°N,60°~140°E)夏季异常水汽输送主要包括两个模态,他们可以解释总的水汽输送异常34%的方差。其中,第一模态(EOF1)表现为异常水汽沿反气旋从热带西太平洋经过南海及孟加拉湾输送到中国东部上空,对应南海、孟加拉湾水汽路径输送均偏多,此时西太平洋副热带高压显著偏强,异常水汽在长江中下游地区辐合并伴随显著上升运动,有利于长江中下游降水偏多;第二模态(EOF2)表现为异常水汽从热带印度洋沿阿拉伯海、印度半岛、中南半岛等呈反气旋式输送,华南上空相应出现气旋式水汽输送异常,并对应异常水汽辐合和上升运动,有利于华南降水偏多。就可能的外部成因而言,EOF1与ENSO关系密切,表现为前冬热带中东太平洋显著偏暖,夏季同期热带北印度洋、南海上空显著偏暖,造成西太平洋副热带高压显著偏强,异常水汽主要来源于热带西太平洋和南海;EOF2与同期热带印度洋偶极子(TIOD)异常有关,TIOD为正位相时热带印度洋上空出现异常东风,华南上空出现异常气旋并伴随水汽异常辐合,异常水汽主要来源于热带南印度洋。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号