首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
Interannual variability(IAV) in the barrier layer thickness(BLT) and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO) and Bay of Bengal(BoB) are examined using monthly Argo data sets during 2002–2017. The BLT during November–January(NDJ) in the EEIO shows strong IAV, which is associated with the Indian Ocean dipole mode(IOD), with the IOD leading the BLT by two months. During the negative IOD phase, the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD). Moreover, the variability in the mixed layer depth(MLD) is complex. Affected by the Wyrtki jet, the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E. Therefore, the BLT shows positive anomalies except between 86°E and 92°E in the EEIO. Additionally, the IAV in the BLT during December–February(DJF) in the BoB is also investigated. In the eastern and northeastern BoB, the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO). In the western BoB, the regional surface wind forcing-related ENSO modulates the BLT variations.  相似文献   

2.
有界赤道大洋波包解及其年际年代际变率   总被引:1,自引:0,他引:1  
Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results are as follows. The wave packet is a superposition of eastward travelling Kelvin waves and westward travelling Rossby waves with the slowest speed, and satisfies the boundary conditions of eastern and western coasts, respectively.The decay coefficient of this solution to the north and south sides of the equator is inversely proportional only to the phase velocity of Kelvin waves in the upper water. The oscillation frequency of the wave packet, which is also the natural frequency of the ocean, is proportional to its mode number and the phase velocity of Kelvin waves and is inversely proportional to the length of the equatorial ocean in the east-west direction. The flow anomalies of the wave packet of Mode 1 most of the time appear as zonal flows with the same direction. They reach the maximum at the center of the equatorial ocean and decay rapidly away from the equator, manifested as equatorially trapped waves. The flow anomalies of the wave packet of Mode 2 appear as the zonal flows with the same direction most of the time in half of the ocean, and are always 0 at the center of the entire ocean which indicates stagnation, while decaying away from the equator with the same speed as that of Mode 1. The spatial structure and oscillation period of the wave packet solution of Mode 1 and Mode 2 are consistent with the changing periods of the surface spatial field and time coefficient of the first and second modes of complex empirical orthogonal function(EOF)analysis of flow anomalies in the actual equatorial ocean. This indicates that the solution does exist in the real ocean, and that El Ni?o-Southern Oscillation(ENSO) and Indian Ocean dipole(IOD) are both related to Mode 2.After considering the Indonesian throughflow, we can obtain the length of bounded equatorial ocean by taking the sum of that of the tropical Indian Ocean and the tropical Pacific Ocean, thus this wave packet can also explain the decadal variability(about 20 a) of the equatorial Pacific and Indian Oceans.  相似文献   

3.
Positive SST anomalies usually appear in remote ocean such as the China seas during an ENSO event.By analyzing the monthly data of HadISST from 1950 to 2007,it shows that the interannual component of SST anomalies peak approximately 10 months after SST anomalies peak in the eastern equatorial Pacific.As the ENSO event progresses,the positive SST anomalies spread throughout the China seas and eastward along the Kuroshio extension.Atmospheric reanalysis data demonstrate that changes in the net surface heat flux entering into the China seas are responsible for the SST variability.During El Ni o,the western north Pacific anticyclone is generated,with anomalous southwester lies prevailing along the East Asian coast.This anticyclone reduces the mean surface wind speed which decreases the surface heat flux and then increases the SST.The delays between the developing of this anticyclone and the south Indian Ocean anticyclone with approximately 3–6 months cause the 2–3 months lag of the surface heat flux between the China seas and the Indian Ocean.The northwestern Pacific anticyclone is the key process bridging the warming in the eastern equatorial Pacific and that in the China seas.  相似文献   

4.
Utilizing the 45 a European Centre for Medium-Range Weather Forecasts(ECMWF)reanalysis wave data(ERA-40),the long-term trend of the sea surface wind speed and(wind wave,swell,mixed wave)wave height in the global ocean at grid point 1.5×1.5 during the last 44 a is analyzed.It is discovered that a majority of global ocean swell wave height exhibits a significant linear increasing trend(2–8 cm/decade),the distribution of annual linear trend of the significant wave height(SWH)has good consistency with that of the swell wave height.The sea surface wind speed shows an annually linear increasing trend mainly concentrated in the most waters of Southern Hemisphere westerlies,high latitude of the North Pacific,Indian Ocean north of 30 S,the waters near the western equatorial Pacific and low latitudes of the Atlantic waters,and the annually linear decreasing mainly in central and eastern equator of the Pacific,Juan.Fernandez Archipelago,the waters near South Georgia Island in the Atlantic waters.The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed.Another find is that the swell is dominant in the mixed wave,the swell index in the central ocean is generally greater than that in the offshore,and the swell index in the eastern ocean coast is greater than that in the western ocean inshore,and in year-round hemisphere westerlies the swell index is relatively low.  相似文献   

5.
The asymmetry of sea surface temperature anomaly(SSTA)amplitudes between the positive and negative phases of the Indian Ocean dipole(IOD)are studied.The dynamic effects on it are analyzed using a hybrid coordinate ocean model(HYCOM).It suggests that the IOD is still asymmetric even when forced by a symmetric wind stress,and the asymmetry of the SSTA in the eastern pole is strong while that in the western pole is almost insignificant during the mature phase(September–November(SON)).Thus,the IOD asymmetry is primarily caused by the asymmetry in the IODE.A heat budget analysis is also conducted for the mixedlayer temperature in the eastern Indian Ocean(IODE),which indicates that a nonlinear ocean advection cools both the positive and negative IOD events.Therefore,the nonlinear ocean advection is responsible for the asymmetry of the IOD.  相似文献   

6.
Annual and interannual variations of sea-level anomaly (SLA) in the Bay of Bengal and the Andaman Sea are investigated using altimeter-derived SLA data from 1993 to 2003. It is found that the SLA annual variation in the study area can be divided into three phases with distinctive patterns. During the southwest monsoon (May-September), positive SLA presents in the equatorial region and extends northward along the eastern boundary of the bay, and the SLA distribution in the interior bay appears to be high in the east and low in the west with two cyclonic cells developing in the north and south of the western bay respectively, between which an anticyclonic cell exists. During the early northeast monsoon (October-December), the whole bay is dominated by a large cyclonic cell with the pattern of high SLA in the east and low in the west still retained, and the SLA distribution outside the bay is changed in response to the reversal of the Indian Monsoon Current (IMC) in November. During the late northeast monsoon (January-April), a large anticyclonic cell of SLA develops in the bay with negative SLA prevailing in the equatorial region and extending northward along the eastern boundary of bay. Therefore, the SLA distribution in the interior bay reverses to be high in the west and low in the east. It is suggested that the SLA annual variation in the bay is primarily driven by the local wind stress curl, involving Sverdrup balance while the abrupt SLA variation during the peak of northeast monsoon may be partly caused by the semiannual fluctuation of wind in the equatorial region. This fast adjustment in the interior bay is induced by the upwelling coastal Kelvin wave excited by the decay of Wyrtki jet during December through January. Besides the annual variation, in the bay, there are obvious SLA fluctuations with the periods of 2 and 3~7 a, which are driven by the interannual variability of large-scale wind field in the equatorial region. The coastal Kelvin wave also provides an important link for the SLA interannual variation between the equatorial region and the interior bay. It is found that the El Nio-Southern Oscillation (ENSO)-induced influence on the SLA interannual variation in the interior bay is stronger than the Indian Ocean dipole (IOD) with the associated pattern of low sea-level presenting along the periphery of the bay and high sea-level in the northeast of Sri Lanka.  相似文献   

7.
The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST)data during the period 1958–2010.All the first empirical orthogonal function(EOF)modes of the SST anomalies(SSTA)in different domains represent the basin-wide warming and are closely related to the Pacific El Ni o–Southern Oscillation(ENSO)phenomenon.Further examination suggests that the impact of ENSO on the tropical Indian Ocean is stronger than that on the southern Indian Ocean.The second EOF modes in different domains show different features.It shows a clear east-west SSTA dipole pattern in the tropical Indian Ocean(Indian Ocean dipole,IOD),and a southwest-northeast SSTA dipole in the southern Indian Ocean(Indian Ocean subtropical dipole,IOSD).It is further revealed that the IOSD is also the main structure of the second EOF mode on the whole basin-scale,in which the IOD pattern does not appear.A correlation analysis indicates that an IOSD event observed during the austral summer is highly correlated to the IOD event peaking about 9 months later.One of the possible physical mechanisms underlying this highly significant statistical relationship is proposed.The IOSD and the IOD can occur in sequence with the help of the Mascarene high.The SSTA in the southwestern Indian Ocean persists for several seasons after the mature phase of the IOSD event,likely due to the positive wind–evaporation–SST feedback mechanism.The Mascarene high will be weakened or intensified by this SSTA,which can affect the atmosphere in the tropical region by teleconnection.The pressure gradient between the Mascarene high and the monsoon trough in the tropical Indian Ocean increases(decreases).Hence,an anticyclone(cyclone)circulation appears over the Arabian Sea-India continent.The easterly or westerly anomalies appear in the equatorial Indian Ocean,inducing the onset stage of the IOD.This study shows that the SSTA associated with the IOSD can lead to the onset of IOD with the aid of atmosphere circulation and also explains why some IOD events in the tropical tend to be followed by IOSD in the southern Indian Ocean.  相似文献   

8.
The vertical resolution of LICOM1.0 (LASG/IAP Climate System Ocean Model, version 1.0) is adjusted by increasing the level amount within the upper 150 m while keeping the total of levels. It is found that the eastern equatorial Pacific cold tongue is sensitive to the adjustment. Compared with the simulation of the original level scheme, the adjusting yields a more realistic strucature of cold tongue extending from the coast of Peru to the equator, as well as a temperature minimum at Costa Rica coast, north of the cold tongue. In the original scheme experiment, the sharp heating by net surface heat flux at the beginning of spin-up leads to a great warming in the eastern equatorial Pacific Ocean. The weak vertical advection due to a too thick mixed layer in the coarse vertical structure also accounts for the warm bias. The fact that most significant improvements of the upper 50 m temperature appear at the region of the thinnest mixed layer indicates the necessity of fine vertical resolution for the eastern equatorial Pacific Ocean. However, the westward extension of equatorial cold tongue, a defect in the original scheme, gets even more serious in the adjusting scheme due to the intensified vertical velocity and hence vertical advection in the central-eastern equatorial Pacific Ocean.  相似文献   

9.
On the basis of observational data of the eastern part of the West Pacific Ocean, a diagnostic calculation of equatorial flow for this region is performed by using the authors' model equations and computing scheme and methods. For the first cruise (January 3-March 4, 1979), the results show: (i) The primary driving force of the equatorial surface flows comes from the prevailing northeasterly wind field, with an average uniform wind speed Vw = 6.3 m/s. The steady westward wind produces divergent westward flows in the surface layers, causing an upwelling near the equator. The importance of the steady wind stress in the upper layer (120 m) decreases with depth and becomes insignificant at the level of z = 75 m or z = 100 m, (ii) The equatorial undercurrent is a strong eastward and equator-ward flow, with its eastward component of undercurrent larger than its meridional component. The core of the undercurrent is at the thermocline, and its maximum velocity is 88-90 cm/s at the level of z=200 m. The deeper f  相似文献   

10.
Temperature data at different layers of the past 45 years were studied and we found adiploe mode in the thermocline layer (DMT): anomalously cold sea temperature off the coast of Sumatra and warm sea temperature in the western Indian Ocean. First, we analyzed the temperature and the temperature anomaly (TA) along the equatorial Indian Ocean in different layers. This shows that stronger cold and warm TA signals appeared at subsurface than at the surface in the tropical Indian O-cean. This result shows that there may be a strong dipole mode pattern in the subsurface tropical Indian Ocean. Secondly we used Empirical Orthogonal Functions (EOF) to analyze the TA at thermocline layer. The first EOF pattern was a dipole mode pattern. Finally we analyzed the correlations between DMT and surface tropical dipole mode (SDM), DMT and Nino 3 SSTA, etc. and these correlations are strong.  相似文献   

11.
印度洋上层海气相互作用对印度洋和太平洋气候系统有重要影响。目前针对印度洋气候态环流特征已有较为全面的研究,但针对印度洋环流的年际变化及其季节性差异的特征分析和具体作用机制,仍缺乏深入的研究。本文利用1979—2007年Simple Ocean Data Assimilation(SODA)再分析资料研究了赤道印度洋表层辐合辐散的年际变异及其季节依赖性。结果表明,以赤道为中心,印度洋上层异常海流,在经向上形成显著的辐合(辐散)现象,究其原因主要是赤道纬向风异常形成的Ekman流所导致。进一步分析表明,热带印度洋异常纬向风的成因与太平洋-印度洋的热力强迫过程作用有关,并且不同的热力强迫过程呈现出显著的季节差异性。此热力强迫过程,具体可分为3种类型:第一类是太平洋纬向海表热力差异的遥强迫作用,主要发生在冬末春初,热带太平洋的纬向热力差异通过调节Walker环流,在印度洋激发出一个异常的次级环流,对应的大气低层形成纬向风异常;第二类是东-西印度洋海表热力差异的局地强迫作用导致的局地环流,使赤道印度洋上空形成纬向风异常,此过程在春末夏初较为显著;第三类是太平洋-印度洋热力差协同作用的结果,使赤道印度洋盛行异常的纬向风,此过程在秋季起主导作用。  相似文献   

12.
印度洋赤道潜流(equatorial undercurrent,EUC)是赤道流系的重要组成部分,对印度洋物质输运和能量交换有着重要意义.基于SODA 3.4.2海洋再分析数据,对印度洋EUC的三维空间结构和年际变化特征进行分析,并揭示其年际变率与印度洋偶极子(Indian Ocean dipole,IOD)的联系.结...  相似文献   

13.
In this paper, the role of equatorial oceanic waves in affecting the evolution of the 2008 positive Indian Ocean Dipole (IOD) event was evaluated using available observations and output from a quasi-analytical linear wave model. It was found that the 2008 positive IOD was an early matured and abruptly terminated event: developed in April, matured in July, and diminished in September. During the development and the maturation of the 2008 positive IOD event, the wind-forced Rossby waves played a dominant role in generating zonal current anomalies in the western equatorial Indian Ocean, while a complex interplay between the wind-forced upwelling Kelvin waves and the eastern-boundary-generated Rossby waves accounted for most of the variability in the eastern basin. The latter induced eastward zonal current anomalies near the eastern boundary during the peak phase of the event. The 2008 positive IOD event was abruptly terminated in mid-July. We found that there were strong eastward zonal currents in mid-July, though the surface wind anomalies in the eastern basin continued to be westward (upwelling favorable). Our analysis shows that these eastward zonal currents mainly resulted from the easternboundary-generated upwelling Rossby waves, although the contribution from the wind-forced downwelling Kelvin waves was not negligible. These eastward zonal currents terminated the zonal heat advection and provided a favorable condition for surface heat flux to warm the eastern basin.  相似文献   

14.
The relative importance of tropical pelagic algal blooms in not yet fully appreciated and the way they are induced not well understood. The tropical Atlantic supports pelagic blooms together equivalent to the North Atlantic spring bloom. These blooms are driven by thermocline tilting, curl of wind stress and eddy upwelling as the ocean responds to intensified basin-scale winds in boreal summer. The dimensions of the Pacific Ocean are such that seasonal thermocline tilting does not occur, and nutrient conditions are such that tilting might not induce bloom, in any case. Divergence at the equator is a separate process that strengthens the Atlantic bloom, is more prominent in the eastern Pacific, and in the Indian Ocean induces a bloom only in the western part of the ocean. Where western jet currents are retroflected from the coast off Somalia and Brazil, eddy upwelling induces prominent blooms. In the eastward flow of the northern equatorial countercurrents, positive wind curl stress induces Ekman pumping and the induction of algal blooms aligned with the currents. Some apparent algal bloom, such as that seen frequently in CZCS images westwards from Senegal, must be due to interference from airborne dust.  相似文献   

15.
利用2002—2015年ARGO网格化的温度、盐度数据, 结合卫星资料揭示了赤道东印度洋和孟加拉湾障碍层厚度的季节内和准半年变化特征, 探讨了其变化机制。结果表明, 障碍层厚度变化的两个高值区域出现在赤道东印度洋和孟加拉湾北部。在赤道区域, 障碍层同时受到等温层和混合层变化的影响, 5—7月和11—1月受西风驱动, Wyrtki急流携带阿拉伯海的高盐水与表层的淡水形成盐度层结, 同时西风驱动的下沉Kelvin波加深了等温层, 混合层与等温层分离, 障碍层形成。在湾内, 充沛的降雨和径流带来的大量淡水产生很强的盐度层结, 混合层全年都非常浅, 障碍层季节内变化和准半年变化主要受等温层深度变化的影响。上述两个区域障碍层变化存在关联, 季节内和准半年周期的赤道纬向风驱动的波动过程是它们存在联系的根本原因。赤道东印度洋地区的西风(东风)强迫出向东传的下沉(上升)的Kelvin波, 在苏门答腊岛西岸转变为沿岸Kelvin波向北传到孟加拉湾的东边界和北边界, 并且在缅甸的伊洛瓦底江三角洲顶部(95°E, 16°N)激发出向西的Rossby波, 造成湾内等温层深度的正(负)异常, 波动传播的速度决定了湾内的变化过程滞后于赤道区域1~2个月。  相似文献   

16.
The accurate surface wind in the equatorial Indian Ocean is crucial for modeling ocean circulation over this region. In this study, the surface wind analysis generated at the European Center for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) are compared with NASA QuikSCAT satellite derived Level2B (swath level) and Level3 (gridded) surface winds for the year 2005. It is observed that the ECMWF winds exhibit speed bias of 1.5 m/s with respect to QuikSCAT Level3 in the southern equatorial Indian Ocean. The NCEP winds are found to exhibit speed bias (1.0–1.5 m/s) in the southern equatorial Indian Ocean specifically during January–February 2005. The biases are also observed in the analysis when compared with Level2B product as well; however, it is less in comparison to Level3 products. The amplitude of daily variations of both ECMWF and NCEP wind speed in Bay of Bengal and parts of the Arabian Sea is about 80% of that in QuikSCAT, while in the equatorial Indian Ocean it is about 60% of that of QuikSCAT.  相似文献   

17.
赤道印度洋海温偶极子的气候影响及数值模拟研究   总被引:5,自引:0,他引:5  
在分析研究印度洋海温变化的基本特征,尤其是在分析赤道印度洋海温偶极子及其影响的基础上,利用IAP9L大气环流模式模拟研究了赤道印度洋海温偶极子异常对亚洲季风区气候变化的影响.其结果表明,印度洋、亚洲南部和东部地区的流场和降水都对印度洋海温异常的强迫作用比较敏感.正位相印度洋偶极子的作用使得赤道东印度洋-印度次大陆南部-阿拉伯海一带出现距平东风,孟加拉湾-中南半岛出现异常反气旋性环流,从而对减少印度南部和中南半岛南部、印度尼西亚地区的夏季降水,以及增加中国南部和东非的夏季降水有十分重要的作用.与此相反,负位相印度洋偶极子的作用将使赤道东印度洋附近出现西风异常,孟加拉湾-中南半岛存在异常气旋性环流,从而使印度次大陆和中南半岛南部、印度尼西亚地区的降水增加,使中国西部和孟加拉湾的降水减少.数值模拟结果与资料分析相互映证,切实地揭示了印度洋海温偶极子对亚洲季风区的气候变化有重要影响.  相似文献   

18.
The combined and individual responses of the first and second baroclinic mode dynamics of the tropical Indian Ocean to the well-known Indian Ocean Dipole mode (IOD) wind anomalies are investigated. The IOD forced first baroclinic Rossby waves arrive at the western boundary in three months, while the reflected component from the eastern boundary with opposite phase arrives in five to six months, both carry input energy to the west. The inclusion of the second baroclinic mode slows down the wave propagation by mode coupling and stretches the energy spectrum to a relatively longer time scale. The total energy exists in the equatorial wave guide for at least five months from the forcing, as much as 10% of that of the atmospheric input, which mainly dissipates at the western boundary. The individual responses of the ocean to IOD interannual wind anomaly show that the significant modes of oceanic anomalies are confined to a wave guide of 10° on either side of the equator.  相似文献   

19.
通过对1958-2001年的SODA海温资料进行经验正交函数分解,得到了太平洋-印度洋海温异常综合模态,该模态在海表及次表层的时空演变特征的分析表明,在赤道西印度洋、中东太平洋的海温偏高(低)时,赤道西太平洋、东印度洋的海温偏低(高)。该综合模态既有年际变化特征,还有年代际变化特征,在20世纪70年代中后期由以负指数为主转变为以正指数为主。对1958-2001年强正、负指数事件合成分析结果得知,综合模也存在着显著的年变化特征,在2-4月份偏弱,最强出现在10月份。西太平洋暖池次表层与赤道东太平洋次表层、赤道东印度洋次表层与西印度洋次表层有一种反位相的变化。次表层海温异常在东太平洋、西印度洋分别沿着南北纬10°左右向西太平洋、东印度洋传播并向赤道扩展,西太平洋、东印度洋的次表层海温异常则分别沿赤道向东太平洋、西印度洋传播汇聚。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号