首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these near- field effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.  相似文献   

2.
2008年汶川地震近断层竖向与水平向地震动特征   总被引:12,自引:0,他引:12       下载免费PDF全文
选取分布在北川-映秀中央断裂两侧断层距120 km以内的40个强震动台站的记录,对汶川地震近断层地震动竖向和水平向加速度峰值、速度峰值、竖向和水平向加速度反应谱及谱比值进行了统计分析.研究表明:(1)地震动加速度峰值有显著的上盘效应,经验衰减模型的结果表明,在距地表破裂3~60 km的范围内,龙门山发震断层上盘一侧竖向与水平向的加速度峰值要比衰减模型得到的平均值大30%~40%.上盘的加速度峰值残差大部分是正值,而断层下盘残差大部分为负;水平地震动的东西分量幅值总体要大于南北分量,东西分量衰减相对较慢.(2)地震动长周期成分较弱,加速度反应谱值随周期增大而迅速减小,在周期1.0 s 时,即使在靠近中央断裂的最大加速度反应谱值也只有0.5 g;地震动加速度反应谱谱比值(竖向/水平向)沿龙门山断层周围的分布,在较长周期(T=0.2 s, 0.5 s, 1.0 s)与短周期(T=0.05 s, 0.1 s)有明显的不同.(3)近断层竖向地震动显著,地震动加速度峰值比在(竖向/水平向)可达1.4.在龙门山发震断层的上盘,地震动加速度峰值比整体上比下盘要大,竖向地震动尤为剧烈.部分近断层记录的地震动谱比值(竖向/水平向)在短周期(< 0.1 s)甚至超过1.5,统计分析还表明谱比值在短周期段(< 0.1 s)随断层距的增大而减小.  相似文献   

3.
倾斜断层不对称分布引起的几何效应-上下盘效应.   总被引:1,自引:0,他引:1       下载免费PDF全文
王栋  谢礼立  胡进军 《地震学报》2008,30(3):271-278
首先介绍了具有加权平均意义的均方根距离Drms. 与断层距Drup和发震断层距Dseis相比, 均方根距离可以真实地反映观测点与倾斜断层的整体靠近程度. 然后利用断层距、 发震断层距和均方根距离, 通过回归分析分别对1999年集集地震加速度峰值的上下盘效应进行研究. 残差分析表明上盘的加速度峰值明显大于相同断层距或发震断层距处下盘的加速度峰值, 而相同均方根距离处的上下盘观测点的加速度峰值没有明显差异. 这说明上下盘效应是一种由于倾斜断层的不对称分布引起的几何效应, 因此进行地震动衰减分析时, 如果采用均方根距离作为观测点与断层之间的距离标准, 上下盘效应对近断层地震动的影响可以忽略.   相似文献   

4.
刘浪  李小军  彭小波 《地震学报》2011,33(6):809-816
使用70%和90%能量持时定义,计算了汶川Ms8.0大地震中获取的来自109个台站强震动加速度记录的相对持时,并以此在竖向及两个水平向上分别进行了回归统计分析,得到了地震动持时的空间变化关系,给出了适合汶川地震地震动的持时定义.对比分析了上盘和下盘2个区域持时空间变化特征,进一步计算了地震动竖向持时与两个水平向持时的比...  相似文献   

5.
台湾集集地震近场地震动的上盘效应   总被引:32,自引:12,他引:32       下载免费PDF全文
俞言祥  高孟潭 《地震学报》2001,24(6):615-621
1999年9月21日(当地时间)台湾集集7.6级地震是一个逆断层型地震.用回归分析法对台湾集集地震的加速度峰值数据进行分析,得出了这次地震的水平与垂直向的加速度峰值衰减关系.从残差分布上看,位于断层上盘和下盘上的加速度峰值与从衰减关系所得到的结果相比存在不同的系统偏差,断层上盘地表的加速度峰值较高,而下盘地表的加速度峰值较低.从这次地震的加速度峰值分布等值线图上也可以看出,加速度峰值的分布相对于断层呈现明显的不对称性,上盘衰减较慢而下盘衰减较快.在近断层强地面运动研究、地震危险性分析、设定地震研究与震害预测等工作中,应考虑可能地震的震源机制特点,以便使所用的衰减模型更能反映不同地震环境地区的地震动分布特征.   相似文献   

6.
周庆  张春山  陈献程 《地震学报》2011,33(4):492-504
在汶川Ms8.0地震中,地震灾害在灾区相对于发震断层,呈现各种非对称分布.断层高角度逆冲诱发的崩塌、滑坡的规模与数量在断层上盘区远远高于断层下盘区,在垂直断层方向,高烈度区断层上盘宽度往往大于下盘宽度,上述不对称性反映了逆断层型地震存在加速度峰值的上盘效应;而在破裂的传播方向存在的地震波多普勒效应则造成沿长轴方向东北部...  相似文献   

7.
利用强震数据获取汶川地震近断层地面永久位移   总被引:2,自引:2,他引:0  
利用汶川地震中得到的靠近映秀—北川主断裂的64个强震台站的三分量记录数据, 对加速度记录进行基线校正的基础上获取近断层地面运动的永久形变位移, 并将由强震记录获取到的地面位移结果与GPS观测到的同震位移进行对比分析, 研究汶川MS8.0地震的近断层地面运动的位移特征. 结果表明: ① 在靠近映秀—北川主断层的上盘和下盘, 东西相向的地面运动非常剧烈. 下盘的51SFB, 51MZQ和51JYH台东西向位移均为负(即地面运动向西), 其中51SFB台位移量最大, 达到1.49 m; 上盘的51WCW台位移向东, 位移量为1.26 m. ② 地面运动的位移分布主要表现为以龙门山断裂带的映秀—北川断裂为核心的相向运动, 东西方向上的永久位移要大于南北方向. 从断层机制上来讲, 断层的错动以逆冲运动为主(即逆冲位移要大于走滑分量的位移), 这与震源机制反演及地质考察的结果一致. ③ 大的地面永久位移集中分布在以龙门山断裂带为中心的狭长范围内, 离开发震断裂地面位移的衰减很快. 相比而言, 在发震断层的下盘一侧(即四川盆地)的地面位移的衰减比上盘一侧明显要快.   相似文献   

8.
黏滑断层隧道减错措施参数对减错效果的影响分析   总被引:2,自引:1,他引:1  
为提高黏滑断层隧道的结构安全性和稳定性,对黏滑断层隧道设置不同缝宽减错缝、不同刚度减错层的减错效果进行研究。研究结果表明:断层黏滑错动对上盘隧道的影响远大于下盘;减错缝对上盘部分隧道结构的减错效果优于下盘,其中上盘减错效果最大为24.50%,下盘减错效果最大为9.26%;减错层对下盘部分隧道结构的减错效果略优于上盘,其中下盘减错效果最大为105.32%,上盘减错效果最大为78.07%;随着减错缝宽度的增加,隧道上盘减错效果变好,下盘缝宽10—15cm减错效果最好;随着减错层弹性模量的增加,隧道上下盘减错效果降低,当减错层弹性模量增加到一定程度(约100MPa),减错效果趋于稳定。研究成果可为黏滑断层隧道的减错结构设计及施工提供参考。  相似文献   

9.
在地裂缝密集分布的西安地区,建筑"傍缝而建"的现象非常普遍,地裂缝的存在严重制约了城市建设用地的有效利用和规划。为研究地裂缝对场地动力响应的影响,分析地震动作用下地裂缝场地动力响应规律及其影响范围,以西安地裂缝为研究对象,基于室内振动台试验及FLAC~(3D)数值模拟,分析地裂缝场地动力响应中的加速度幅值动力响应特征。在此基础上,进一步分析不同地震波类型、地裂缝破裂面倾角、地震动强度、地裂缝两侧土层错距对地裂缝场地动力响应的影响。研究表明:地裂缝对场地动力响应影响明显,表现为地裂缝一定范围内峰值加速度呈"带状"分布,即地裂缝处峰值加速度最大,随着距地裂缝越来越远,峰值加速度逐渐减小后趋于稳定,带状分布范围上盘约30 m,下盘约20 m;地裂缝场地动力响应表现出明显的"上盘效应",即上盘峰值加速度略大于下盘;地震动强度对地裂缝场地动力响应影响明显,地裂缝倾角、地裂缝两侧土层错距、地震波对地裂缝场地动力响应均无明显影响  相似文献   

10.
The damping modification factor (DMF) has been extensively used in earthquake engineering to describe the variation of structural responses due to varied damping ratios. It is known that DMFs are dependent not only on structural dynamic properties but also on characteristics of ground motions. DMFs regulated in current seismic codes are generally developed based on far-fault ground motions and are inappropriately used in structural design where pulse-like near-fault ground motions are involved. In this paper, statistical investigation of the DMF is performed based on 50 carefully selected pulse-like near-fault ground motions. It is observed that DMFs for pulse-like ground motions exhibit significant dependence on the pulse period T p in a specific period range. If the period of the structure in response is close to the pulse period, the DMF attains the same level as that derived from far-fault ground motions; as the period of the structure is considerably larger or smaller than the pulse period T p , the response reduction effect by the increased damping ratio is generally small, except for large earthquakes with long pulse periods, which exhibit significant reduction of response for structures with periods smaller than T p . Based on the statistical results of DMFs, the empirical formulas for estimating DMFs for displacement, velocity and acceleration spectra are proposed, the effect of structural period, pulse period and damping ratio are considered in the formulas, and the formulas are designed to satisfy the specific reliability requirement in the period range of 0.1 < T/T p  < 1, which is of engineering interest.  相似文献   

11.
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.  相似文献   

12.
Based on the results of an extensive parametric study of elastic and inelastic response of SDOF systems, in which the most important structural parameters were varied and ground motions of very different characteristics were taken into account, simple formulae for determining the seismic demand in SDOF systems with natural periods in the medium- and long-period range are proposed. Seismic demand is expressed in terms of the mean values of maximum relative displacements and maximum input energy. These results can be used to provide rough estimates of structural behaviour when different damage models are applied. As well as this, the proposed formulae can be used to construct design spectra of the Newmark-Hall type.  相似文献   

13.
地裂缝环境下马蹄形地铁隧道与土体相互作用的研究   总被引:1,自引:0,他引:1  
以穿越地裂缝带的西安地铁2号线为研究背景,通过数值模拟对地裂缝作用下马蹄形地铁隧道与土体相互作用的机理进行了研究。研究结果表明:随着上、下盘位错量的增加,地裂缝处受影响的土体范围逐渐增大,土体的竖向位移也逐渐变大;上盘下降过程中,下盘隧道顶部沉降变形最大,上盘隧道顶部沉降变形最小;隧道的变形区域出现在预设地裂缝两侧,并且随着竖向位错的增大而增大,当错距d=100mm时,地裂缝处的隧道结构发生破坏。隧道的最大主应力位于结构出现裂缝和受剪切破坏的区域,随着位错量的增加,隧道的最大主应力变化剧烈。地裂缝处,隧道结构上部靠下盘区域受拉,靠上盘区域受压,隧道结构下部靠下盘区域受压,靠上盘区域受拉。在实际工程中,地铁隧道穿越地裂缝时,宜采用分段式隧道结构。  相似文献   

14.
Dynamic damaging potential of ground motions must be evaluated by the response behaviour of structures, and it is necessary to indicate what properties of ground motions are most appropriate for evaluation. For that purpose, the behaviour of energy input process and hysteretic energy dissipation are investigated in this study. It is found that the momentary input energy that is an index for the intensity of input energy is related to the characteristics of earthquakes such as cyclic or impulsive, and to the response displacement of structures immediately. On the basis of these results, a procedure is proposed to predict inelastic response displacement of structures by corresponding earthquake input energy to structural dissipated damping and hysteretic energy. In this procedure the earthquake response of structures is recognized as an input and dissipation process of energy, and therefore structural properties and damaging properties of ground motions can be taken into account more generally. Lastly, the studies of the pseudodynamic loading test of reinforced concrete structure specimens subjected to ground motions with different time duration are shown. The purpose of this test is to estimate the damaging properties of ground motions and the accuracy of the proposed prediction procedure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
— We quantify the effects of complex fault geometry on low-frequency (<1 Hz) strong ground motion using numerical modeling of dynamic rupture. Our tests include the computation of synthetic seismograms for several simple rupture scenarios with planar and curved fault approximations of the 1994 Northridge earthquake. We use the boundary integral equation method (BIEM) to compute the dynamic rupture process, which includes the normal stress effects along the curved fault geometries. The wave propagation and computation of synthetic seismograms are modeled using a fourth-order finite-difference method (FDM). The near-field ground motion is significantly affected by the acceleration, deceleration and arrest of rupture due to the curvature of the faults, as well as the variation in directivity of the rupture. For example, a 6-km-long hanging-wall or footwall splay with a maximum offset of 1 km can change 1-Hz peak velocities by up to a factor of 2-3 near the fault. Our tests suggest that the differences in waveform are larger on the hanging wall compared to those on the footwall, although the differences in amplitude are larger in the forward rupture direction (footwall). The results imply that kinematic ground motion estimates may be biased by the omission of dynamic rupture effects and even relatively gentle variation in fault geometry, and even for long-period waves.  相似文献   

16.
This paper focuses on the effects of long‐period pulse of near‐fault ground motions on the structural damage potential. Two sets of near‐fault ground motion records from Chi‐Chi, Taiwan earthquake and Northridge earthquake with and without distinct pulse are selected as the input, and the correlation analysis between 30 non‐structure‐specific intensity measure parameters and maximum inelastic displacements and energy responses (input energy and hysteretic energy) of bilinear single degree of freedom systems are conducted. Based on the frequency characteristic of near‐fault ground motions with remarkable long‐period components, two intensity indices are proposed, namely, the improved effective peak acceleration (IEPA) and improved effective peak velocity (IEPV). In addition a new characteristic period of these ground motions is defined based on IEPA and IEPV. Numerical results illustrate that the intensity measure parameters related to ground acceleration present the best correlation with the seismic responses for rigid systems; the velocity‐related and displacement‐related parameters are better for medium‐frequency systems and flexible systems, respectively. The correlation curves of near‐fault ground motions with velocity pulse differ from those of ground motions without pulse. Moreover, the improved parameters IEPA and IEPV of near‐fault impulsive ground motions enhance the performance of intensity measure of corresponding conventional parameters, i.e. EPA and EPV. The new characteristic period based on IEPA and IEPV can better reflect the frequency content of near‐fault ground motions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The hanging wall effect is an important factor that impacts the characteristics of strong ground motions in near-fault areas. Based on a residual analysis of ground motion parameters characterizing the hanging wall effect and in recognition of the nature of the effect, many models have been developed. In this study, after a comprehensive analysis of two existing models, a new model is proposed and used to model the hanging wall effect in horizontal peak ground acceleration (PGAH) and spectral acceleration (SAH) at a period of 0.1s in the Wenchuan earthquake. Finally, comparisons between the modeling results of the hanging wall effect in the Wenchuan earthquake and the results predicted by using Abrahamson and Silva’s NGA model (AS NGA) indicate that the AS NGA model predicts a much higher hanging wall effect than the model developed in this paper. Furthermore, the AS NGA model predicts a large hanging wall effect even at great distances, while the proposed model more accurately captures the trend of the effect.  相似文献   

18.
为研究近断层地震动对曲线连续梁桥地震响应及碰撞效应的影响,采用非线性时程分析法,分别研究脉冲效应、上盘效应及方向性效应对某三跨曲线连续梁桥支座位移、桥墩内力及邻梁间碰撞力的影响;通过支座隔震率的对比分析,探究不同类型近断层地震动下地震响应产生差异的原因。研究结果表明:脉冲效应、上盘效应和方向性效应均会增大曲线连续梁桥地震响应,脉冲效应的影响尤为显著;脉冲效应和方向性效应削弱了高阻尼橡胶支座的隔震特性,而上盘效应对桥梁响应的影响仅与上盘地震动自身特性有关;综合来看,脉冲效应对曲线梁碰撞响应影响最明显,上盘效应影响不大。  相似文献   

19.
选取了1999年9月21日台湾集集7.6级地震主震中68组断层距在20km以内的近断层台站记录和46组断层距在40~70km的东部台站记录,按台站的上下盘位置、场地条件和断层距分组,对其竖向和水平加速度反应谱比值V/H进行了统计分析。研究表明:1)断层的滑动方向和断层破裂的传播方向对断层距在3km以内的台站上的地面运动谱比值V/H有一定影响,且主要体现在中短周期范围内,例如平行断层方向的谱比值要比垂直断层方向的谱比值大。在下盘断层距3~20km的范围内,场地条件对V/H基本没有影响。2)在集集地震中长周期(>3s)部分的谱比值通常>32,且有一个较高的峰值,表明其竖向运动加速度中的长周期分量大于其它地震。3)对于下盘的台站,地面运动在短周期(<0.2s)段的谱比值不随断层距的增加而减少。与中远(>40km)距离的台站相比较,近断层台站的V/H在工程界关心的周期范围内普遍较大。4)场地条件对谱比值V/H的影响在近断层处不显著。在远离断层的东部台站上,硬土场地谱比值V/H在长周期段大于软土场地  相似文献   

20.
集集地震近断层地震动频谱特性   总被引:5,自引:2,他引:3       下载免费PDF全文
徐龙军  谢礼立 《地震学报》2005,27(6):656-665
利用5个反映地震动频谱特征的周期(反应谱卓越周期Tp, 平滑化反应谱卓越周期To, 傅氏幅值谱平均周期Tm, 等效速度脉冲周期Tv和拟速度反应谱卓越周期Tpv), 对集集地震的近断层三分量地震动进行研究. 结果表明, 上盘地震动的频谱周期小于下盘地震动; Tp小于To和Tm, 且Tp反映的三分量之间的关系与To和Tm不同; 在地表断裂带的北端,Tv和Tpv所反映的近断层地震动长周期分量的频谱特征, 与走滑断层中方向性效应作用的规律相类似. 得出的定性或定量结论可以为近场抗震设计谱的建立与地震危险性区划研究提供参考.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号