首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage-treatment plant infiltration bed that overlies a well-studied u neon fined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S. Geological Survey (LJSGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.  相似文献   

2.
This article provides actual site data that confirm that turbid ground water samples collected from within the smear zone at petroleum release sites can be significantly biased high by the inclusion of a nondissolved component that is an artifact of the sampling process. Side-by-side comparisons show that reducing sample turbidity can result in significant reductions of reported concentrations for the ground water samples and that the lower turbidity results are more representative of the petroleum actually dissolved in the ground water. Depending on site-specific factors, ground water sample turbidity can be reduced by four field-based and two laboratory-based methods. These methods should be used routinely at sites where turbid samples with a nondissolved component are being collected.  相似文献   

3.
Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration–time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.  相似文献   

4.
Uncertainty in ground water hydrology originates from different sources. Neglecting uncertainty in ground water problems can lead to incorrect results and misleading output. Several approaches have been developed to cope with uncertainty in ground water problems. The most widely used methods in uncertainty analysis are Monte Carlo simulation (MCS) and Latin hypercube sampling (LHS), developed from MCS. Despite the simplicity of MCS, many runs are required to achieve a reliable result. This paper presents orthogonal array (OA) sampling as a means to cope with uncertainty in ground water problems. The method was applied to an analytical stream depletion problem. To examine the convergence rate of the OA sampling, the results were compared to MCS and LHS. This study shows that OA can be applied to ground water problems. Results reveal that the convergence rate of the OA sampling is faster than MCS and LHS, with a smaller error of estimate when applied to a stream depletion problem.  相似文献   

5.
Mehl S  Hill MC  Leake SA 《Ground water》2006,44(6):792-796
Many ground water modeling efforts use a finite-difference method to solve the ground water flow equation, and many of these models require a relatively fine-grid discretization to accurately represent the selected process in limited areas of interest. Use of a fine grid over the entire domain can be computationally prohibitive; using a variably spaced grid can lead to cells with a large aspect ratio and refinement in areas where detail is not needed. One solution is to use local-grid refinement (LGR) whereby the grid is only refined in the area of interest. This work reviews some LGR methods and identifies advantages and drawbacks in test cases using MODFLOW-2000. The first test case is two dimensional and heterogeneous; the second is three dimensional and includes interaction with a meandering river. Results include simulations using a uniform fine grid, a variably spaced grid, a traditional method of LGR without feedback, and a new shared node method with feedback. Discrepancies from the solution obtained with the uniform fine grid are investigated. For the models tested, the traditional one-way coupled approaches produced discrepancies in head up to 6.8% and discrepancies in cell-to-cell fluxes up to 7.1%, while the new method has head and cell-to-cell flux discrepancies of 0.089% and 0.14%, respectively. Additional results highlight the accuracy, flexibility, and CPU time trade-off of these methods and demonstrate how the new method can be successfully implemented to model surface water-ground water interactions.  相似文献   

6.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

7.
Loss of volatile organics during sampling is a well-recognized source of bias in ground water monitoring; sampling protocols attempt to minimize such loss. Such bias could be enhanced for ground water highly charged with dissolved gases such as methane. Such ground water was the object of this study. A positive-displacement bladder pump, a momentum-lift pump and a suction-lift, peristaltic pump were employed in sampling both methane-charged ground water for volatile aromatic hydrocarbons and a CO2-charged reservoir water for volatile chlorinated hydrocarbons. In both cases, the suction-lift pump produced samples with a significant negative bias (9 to 33 percent) relative to the other methods. Little difference between samples produced by the other pump Systems was noted at the field site, but in sampling the reservoir, the bladder pump produced samples that were 13 to 19 percent lower in halocarbon concentration than were samples from the momentum-lift pump.
These negative biases are tentatively interpreted as losses due to volatilization during sampling. Slightly greater negative biases occur for compounds of higher volatility as estimated from their Henry's law constants. Additional studies appear to be warranted in order to adequately establish the scientific basis for recommending protocols for sampling ground water in which degassing could enhance the loss of volatile organics during sampling.  相似文献   

8.
The importance of obtaining depth-specific ground water samples is now well recognized among practitioners and scientists alike. Many methods and technologies are available for level discrete or depth-specific ground water sampling in consolidated aquifers. All methods have their associated advantages and drawbacks, however. One common disadvantage is that they are expensive. A large number of point discrete ground water samples were required for a UK research project aimed at quantifying natural attenuation processes in ground water contaminated by a former coal carbonization plant. Based on experience from a previous project to develop novel level accurate sampling methodologies for use in existing boreholes, the Ground Water Protection and Restoration Research Unit (GWPRRU) produced and tested a low-cost design multiport sock sampler for ground water monitoring. The sock sampler design allowed the recovery of multiple depth-specific ground water samples from depths of 150 feel (45 m) from individual boreholes in the sandstone aquifer at the field site. Because of their use of inexpensive materials, simple design, installation and use that does not require gravel packs, packers, or grouting, sock samplers were found to be the most cost effective, convenient, and reliable method of obtaining multiple depth-specific ground water samples at the project field site.  相似文献   

9.
The principal difficulties with determinations of volatile organic compounds (VOCs) in ground water are the reliability of sampling procedures and analytical methods. Two integrated methods have been developed for routine sampling, processing, and analysis of VOCs in ground water. These methods involve in situ collection of ground water using a modified syringe sampler from PVC piezometers or using dedicated glass syringes from stainless steel multilevel bores. The samples are processed in the syringe using purge and trap or microsolvent extraction and analyzed by GC/MSD.
The modified purge-and-trap method is time-consuming and limited to volatile organic compounds. However, it is extremely sensitive and flexible: the volume of sample used can be varied by the use of different-size glass syringes (sample volumes from 1 to 100 mL).
In cases where extremely low sensitivity (<10 mg 1−1) is not critical, the microextraction technique is a more cost-effective method, allowing twice as many samples to be analyzed in the same time as the purge-and-trap method. It enables less volatile compounds such as polynuclear aromatic hydrocarbons, phenol, and cresols to be analyzed in the same GC run. Also, the microextraction method can be used in the field to avoid delays associated with transportation of ground water samples to the laboratory.  相似文献   

10.
复杂结构的增量动力分析(IDA)对于结构的抗震设计和分析有着重要意义,但需对结构进行大量的非线性时程分析,计算量成本高。本文结合Kriging元模型和自适应顺序采样并用于结构增量动力分析以提高其计算效率和精度,其中:Kriging元模型用于预测结构的地震响应,顺序采样根据候选点的熵值补充非线性时程分析逐步增加Kriging模型的预测精度。借助本文方法,IDA曲线可通过少量的时程分析实现较高的精度。为了校验本文方法的可行性与有效性,对二层和九层钢框架结构模型应用直接IDA、hunt&fill方法和本文方法分析并比较了上述三种方法的计算误差、计算效率和IDA曲线差别。在此基础上本文将自适应顺序采样Kriging方法用于考虑结构不确定性参数的IDA分析,并和传统的蒙特卡洛方法进行比较。结果表明:该方法具有较高的计算效率,可以保证IDA曲线的精度。  相似文献   

11.
Multiple theoretical sampling designs are studied to determine whether sampling designs can be identified that will provide for characterization of ground water quality in rural regions of developing nations. Sampling design in this work includes assessing sampling frequency, analytical methods, length of sampling period, and requirements of sampling personnel. The results answer a set of questions regarding whether using innovative sampling designs can allow hydrogeologists to take advantage of a range of characterization technologies, sampling strategies, and available personnel to develop high-value, water-quality data sets. Monte Carlo studies are used to assess different sampling strategies in the estimation of three parameters related to a hypothetical chemical observed in a ground water well: mean concentration (MeanC), maximum concentration (MaxC), and total mass load (TML). Five different scenarios are simulated. These scenarios are then subsampled using multiple simulated sampling instruments, time periods (ranging from 1 to 10 years), and sampling frequencies (ranging from weekly to semiannually to parameter dependent). Results are analyzed via the statistics of the resulting estimates, including mean square error, bias, bias squared, and precision. Results suggest that developing a sampling strategy based on what may be considered lower quality instruments can represent a powerful field research approach for estimating select parameters when applied at high frequency. This result suggests the potential utility of using a combination of lower quality instrument and local populations to obtain high frequency data sets in regions where regular monitoring by technicians is not practical.  相似文献   

12.
地震发生后通常无法快速获取较准确的断层参数,这可能会对采用地震动模拟方法进行地震动强度快速评估产生影响。选取美国西部两次地震,采用两种地震动模拟方法,通过改变断层走向、滑移角、倾角和震源深度等主要断层参数进行模拟计算,分析不同参数对地震动参数和反应谱值的影响以及不同方法计算结果的准确性。结果表明:GP方法模拟的结果比EXSIM方法更接近观测值;在参数误差范围内,相比于模拟方法本身的误差,各参数对模拟结果的影响较小,地震动强度快速评估时可以利用较合理的快速反演断层参数进行地震动模拟。  相似文献   

13.
We developed, and applied in two sites, novel methods to measure ground water-borne nitrogen loads to receiving estuaries from plumes resulting from land disposal of waste water treatment plant (WWTP) effluent. In addition, we quantified nitrogen losses from WWTP effluent during transport through watersheds. WWTP load to receiving water was estimated as the difference between total measured ground water-transported nitrogen load and modeled load from major nitrogen sources other than the WWTP. To test estimated WWTP loads, we applied two additional methods. First, we quantified total annual waste water nitrogen load from watersheds based on nitrogen stable isotopic signatures of primary producers in receiving water. Second, we used published data on ground water nitrogen concentrations in an array of wells to estimate dimensions of the plume and quantify the annual mass of nitrogen transported within the plume. Loss of nitrogen during transport through the watershed was estimated as the difference between the annual mass of nitrogen applied to watersheds as treatment plant effluent and the estimated nitrogen load reaching receiving water. In one plume, we corroborated our estimated nitrogen loss in watersheds using data from multiple-level sampling wells to calculate the loss of nitrogen relative to a conservative tracer. The results suggest that nitrogen from the plumes is discharging to the estuaries but that substantial nitrogen loss occurs during transport through the watersheds. The measured vs. modeled and stable isotopic approaches, in comparison to the plume mapping approach, may more reliably quantify ground water-transported WWTP loads to estuaries.  相似文献   

14.
The authors have recently used several innovative sampling techniques for ground water monitoring at hazardous waste sites. Two of these techniques were used for the first time on the Biscayne Aquifer Super-fund Project in Miami, Florida. This is the largest sampling program conducted so far under the U.S. Environmental Protection Agency (EPA) Superfund Program.
One sampling technique involved the use of the new ISCO Model 2600 submersible portable well sampling pump. A compressed air source forces water from the well into the pump casing and then delivers it to the surface (through a pulsating action). This pump was used in wells that could not be sampled with surface lift devices.
Another sampling technique involved the use of a Teflon manifold sampling device. The manifold is inserted into the top of the sampling bottle and a peristaltic pump creates a vacuum to draw the water sample from the well into the bottle. The major advantage of using this sampling technique for ground water monitoring at hazardous waste sites is the direct delivery of the water sample into the collection container. In this manner, the potential for contamination is reduced because, prior to delivery to the sample container, the sample contacts only the Teflon, which is well-known for its inert properties.
Quality assurance results from the Superfund project indicate that these sampling techniques are successful in reducing cross-contamination between monitoring wells. Analysis of field blanks using organic-free water in contact with these sampling devices did not show any concentration at or above the method detection limit for each priority pollutant.  相似文献   

15.
MAROS: a decision support system for optimizing monitoring plans   总被引:3,自引:0,他引:3  
The Monitoring and Remediation Optimization System (MAROS), a decision-support software, was developed to assist in formulating cost-effective ground water long-term monitoring plans. MAROS optimizes an existing ground water monitoring program using both temporal and spatial data analyses to determine the general monitoring system category and the locations and frequency of sampling for future compliance monitoring at the site. The objective of the MAROS optimization is to minimize monitoring locations in the sampling network and reduce sampling frequency without significant loss of information, ensuring adequate future characterization of the contaminant plume. The interpretive trend analysis approach recommends the general monitoring system category for a site based on plume stability and site-specific hydrogeologic information. Plume stability is characterized using primary lines of evidence (i.e., Mann-Kendall analysis and linear regression analysis) based on concentration trends, and secondary lines of evidence based on modeling results and empirical data. The sampling optimization approach, consisting of a two-dimensional spatial sampling reduction method (Delaunay method) and a temporal sampling analysis method (Modified CES method), provides detailed sampling location and frequency results. The Delaunay method is designed to identify and eliminate redundant sampling locations without causing significant information loss in characterizing the plume. The Modified CES method determines the optimal sampling frequency for a sampling location based on the direction, magnitude, and uncertainty in its concentration trend. MAROS addresses a variety of ground water contaminants (fuels, solvents, and metals), allows import of various data formats, and is designed for continual modification of long-term monitoring plans as the plume or site conditions change over time.  相似文献   

16.
In the past 30 to 40 years, floodplain areas of large rivers, such as the Missouri River, have been extensively used for large industrial and municipal landfills. Many of these sites are now causing varying degrees of ground water contamination. Rapid geophysical characterization techniques have proven useful for delineation of anomalous areas indicative of potential contaminant plumes. These methods have also resulted in a cost effective approach to the location and number of monitoring wells.
An effective technique to initially characterize ground water contamination at such landfills along the Missouri River in northwestern Missouri involved a combination of electrical resistivity and electromagnetic conductivity methods. Resistivity was used to obtain soundings of the alluvium by using a modified Wenner array and to corroborate shallow electromagnetic conductivity measurements by using short Wenner array electrode spacings.
Upon confirmation of similar measurements of the upper soils for the two methods, numerous electromagnetic conductivity traverses were made at each landfill site. The data generated from these surveys were graphed and contoured to delineate anomalous areas. Based on the geophysical study, a ground water monitoring well network was then designed for each landfill.
As a result, a minimal number of wells were required to initially characterize the ground water quality at these two sites. In general, analysis of water samples from these wells displayed good correlation with the geophysical results.  相似文献   

17.
The reliability of ground water monitoring information can be assured by careful selection of sample handling and analytical procedures. Sampling mechanism selection has been studied far less than analytical methodologies (Scalf et al. 1981, Nacht 1983). This study has as its primary goal the identification of reliable sampling mechanisms for purgeable organic compounds and gas-sensitive chemical parameters in ground water. Carefully controlled sampling experiments were run to investigate the error contributed to chemical results due to sampling mechanism alone. Fourteen commercial sampling devices in five mechanistic categories were evaluated for their performance in sample collection for solution parameters, dissolved gases and purgeable organic compounds. Systematic errors related to sampling mechanism can reduce the accuracy of monitoring data by factors of two to three times that involved in analytical procedures.  相似文献   

18.
Water samples collected from 26 sites at an abandoned oil refinery in south-central Kansas were analyzed for total organic carbon (TOC) and specific volatile and semivolatile organic compounds by gas-chromatography/mass-spectrometric methods. Results from a Spearman-rho correlation analysis between TOC concentration and the number of compounds (correlation coefficient = 0.71) and TOC concentration and total concentration of compounds identified (correlation coefficient = 0.83) indicate correlations significant at the 0.01 level.
Although TOC data alone would not be sufficient to evaluate hazards posed by oil-refinery wastes, results of the correlation analysis performed using data collected from the site in Kansas indicate that TOC data can be used effectively to delineate petroleum-related ground water contamination and to help identify sources of ground water contaminants. TOC data collected from a large number of temporary sampling points during the initial phases of an investigation will provide an estimate of the extent of hydrocarbon contamination and allow placement of monitoring wells and more detailed sampling in appropriate areas.  相似文献   

19.
Four state-of-the-art ground water sampling systems were analyzed to determine their reliability in providing representative samples of the volatile chlorinated hydrocarbons trichloroethylene (TCE), perchloroethylene (PCE), and 1,1,1-trichloroethane (TCA) from a simulated monitoring well. The sampling systems studied represent four commonly used devices, including a stainless steel and Teflon® piston pump, a Teflon bailer, a Teflon bladder pump, and a PVC air-lift pump.
Controlled laboratory sampling experiments were conducted in a tank and well test chamber designed to approximate field conditions. A well purging and sampling procedure was used in the test apparatus to determine the accuracy and precision of each device for detecting low concentrations of the compounds in ground water. The compounds selected are some of the most ubiquitous hazardous contaminants found in shallow aquifers near hazardous waste sites throughout the United States.
No significant statistical difference was found among the four sampling systems in detecting the compounds.  相似文献   

20.
The behavior of the herbicides isoproturon (IPU) and chlortoluron (CTU) in ground water and shallow unsaturated zone sediments were evaluated at a site situated on the Chalk in southern England. Concentrations of IPU in ground water samples varied from < 0.05 to 0.23 microgram/L over a five-year period of monitoring, and were found to correlate with application of the pesticide. Concentrations of pesticides in ground water samples collected during periods of rising water table were significantly higher than pumped samples and suggest that rapidly infiltrating recharge water contains higher herbicide concentrations than the native ground water. Significant variations in herbicide concentrations were observed over a three-month period in ground water samples collected by an automated system, with concentrations of IPU ranging from 0.1 to 0.5 microgram/L, and concentrations of a recent application of CTU ranging from 0.2 to 0.8 microgram/L. Different extraction methods were used to assess pore water concentrations of herbicides in the unsaturated zone, and samples were analyzed by standard HPLC analysis and immunoassay (ELISA) methods. These data indicated highly variable concentrations of herbicide ranging from 4 to 200 g/ha for HPLC and 0.01 to 0.04 g/ha for ELISA, but indicate a general pattern of decreasing concentrations with depth. The results of this study indicate that transport of IPU and CTU through the unsaturated zone to shallow ground water occurs and that this transport increases immediately following herbicide application. Measured concentrations of herbicides are generally lower than specified by the European Union Drinking Water Directive, but are observed to spike above this limit. These results imply that, while delivery of pesticides to ground water can occur as a result of normal agricultural practices, the impact on potable supplies is likely to be negligible due to the potential for degradation during the relatively long travel time through the unsaturated zone and high degree of dilution that occurs within the aquifer. As a result of the wide variation in concentrations detected by different techniques, it is suggested that for future site investigations more than one sampling strategy be employed to characterize the occurrence of pesticide residues and elucidate the transport mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号