首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Granitoid rock samples from the assumed center of the Keurusselkä impact site were subjected to a systematic study of fluid‐inclusion compositions and densities in various microstructures of the shocked quartz. The results are consistent with the following impact‐induced model of formation. After cessation of all major regional tectonic activity and advanced erosional uplift of the Fennoscandian shield, a meteorite impact (approximately 1.1 Ga) caused the formation of planar fractures (PFs) and planar deformation features (PDFs) and the migration of shock‐liberated metamorphic fluid (CO2 ± H2O) to the glass in the PDFs. Postimpact annealing of the PDFs led to the formation of CO2 (±H2O) fluid‐inclusion decorated PDFs. The scarce fluid‐inclusion implosion textures (IPs) suggest a shock pressure of 7.6–10 GPa. The postimpact pressure release and associated heating initiated hydrothermal activity that caused re‐opening of some PFs and their partial filling by moderate‐salinity/high temperature (>200 °C) H2O (+ chlorite + quartz) and moderate‐density CO2. The youngest postimpact endogenic sub‐ and nonplanar microfractures (MFs) are characterized by low‐density CO2 and low‐salinity/low‐temperature (<200 °C) H2O.  相似文献   

3.
Abstract– Planar deformation features (PDFs) and planar fractures (PFs) have been found and confirmed by optical microscope observations and microRaman spectroscopy in quartz grains from Mt. Oikeyama (Akaishi Mountains, Central Japan), for which the semicircular topographic feature of the ridge suggests a crater formed by an impact event. According to the optical microscope observations, a low shock pressure (8–10 GPa) is estimated by the occurrence of basal or ω PDFs leading to lack of multiple sets of PDFs. In addition, a new type of planar microstructure was found in several quartz grains. The microRaman characteristics of PDFs in quartz from Mt. Oikeyama show the amorphous state indicating the presence of weak broad bands at 400 and 800 cm?1 peak positions. These characteristics are indicative of PDFs that are limited to shocked quartz. This indicates an impact origin for distinct planar microstructures in quartz from Mt. Oikeyama.  相似文献   

4.
Shocked quartz and feldspar grains commonly exhibit planar microstructures, such as planar fractures, planar deformation features, and possibly microtwins, which are considered to have formed by shock metamorphism. Their orientation and frequency are typically reported to be randomly distributed across a sample. The goal of this study is to investigate whether such microstructures are completely random within a given sample, or whether their orientation might also retain information on the direction of the local shock wave propagation. For this work, we selected samples of shatter cones, which were cut normal to the striated surface and the striation direction, from three impact structures (Keurusselkä, Finland, and Charlevoix and Manicouagan, Canada). These samples show different stages of pre‐impact tectonic deformation. Additionally, we investigated several shocked granite samples, selected at different depths along the drill core recovered during the joint IODP‐ICDP Chicxulub Expedition 364 (Mexico). In this case, thin sections were cut along two orthogonal directions, one parallel and one normal to the drill core axis. All the results refer to optical microscopy and universal‐stage analyses performed on petrographic thin sections. Our results show that such shock‐related microstructures do have a preferred orientation, but also that relating their orientation with the possible shock wave propagation is quite challenging and potentially impossible. This is largely due to the lack of dedicated experiments to provide a key to interpret the observed preferred orientation and to the lack of information on postimpact orientation modifications, especially in the case of the drill core samples.  相似文献   

5.
Abstract— The Middle Ordovician Granby structure in Sweden is generally considered the result of an asteroidal or cometary collision with Earth, although no hard evidence, i.e., shock metamorphic features or traces of the impactor, have been presented to date. In this study, drill core samples of a sedimentary breccia from the Granby structure have been investigated for microscopic shock metamorphic evidence in an attempt to verify the impact genesis of the structure. The finding of multiple sets of decorated planar deformation features (PDFs) in quartz grains in these samples provides unambiguous evidence that the structure is impact derived. Furthermore, the orientation of the PDFs, e.g., ω {101 }, π {101 } and r, z {101 }, is characteristic for impact deformation. The fact that a majority of the PDFs are decorated implies a water‐bearing target. The shocked quartz grains can be divided into two groups; rounded grains found in the breccia matrix likely originated from mature sandstone, and angular grains in fragments from crystalline target rocks. The absence of melt particles provides an estimated maximum shock pressure for the sedimentary derived quartz of 15–20 GPa and the frequency distribution of PDF orientations in the bedrock quartz implies pressures of the order of 10 GPa.  相似文献   

6.
A total of 184 confirmed impact structures are known on Earth to date, as registered by the Earth Impact Database . The discovery of new impact structures has progressed in recent years at a rather low rate of about two structures per year. Here, we introduce the discovery of the approximately 10 km diameter Santa Marta impact structure in Piauí State in northeastern Brazil. Santa Marta is a moderately sized complex crater structure, with a raised rim and an off‐center, approximately 3.2 km wide central elevated area interpreted to coincide with the central uplift of the impact structure. The Santa Marta structure was first recognized in remote sensing imagery and, later, by distinct gravity and magnetic anomalies. Here, we provide results obtained during the first detailed ground survey. The Bouguer anomaly map shows a transition from a positive to a negative anomaly within the structure along a NE–SW trend, which may be associated with the basement signature and in parts with the signature developed after the crater was formed. Macroscopic evidence for impact in the form of shatter cones has been found in situ at the base around the central elevated plateau, and also in the interior of fractured conglomerate boulders occurring on the floor of the surrounding annular basin. Planar deformation features (PDFs) are abundant in sandstones of the central elevated plateau and at scattered locations in the inner part of the ring syncline. Together, shatter cones and PDFs provide definitive shock evidence that confirms the impact origin of Santa Marta. Crystallographic orientations of PDFs occurring in multiple sets in quartz grains are indicative of peak shock pressures of 20–25 GPa in the rocks exposed at present in the interior of the crater. In contrast to recent studies that have used additional, and sometimes highly controversial, alleged shock recognition features, Santa Marta was identified based on well‐understood, traditional shock evidence.  相似文献   

7.
Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia.  相似文献   

8.
Shock metamorphic features at the Saarijärvi (D > 2 km) and Söderfjärden (D = 6.5 km) structures in Finland have so far only been studied tentatively, although both are considered to be proven impact structures. This work presents the first detailed universal stage study of planar deformation features (PDFs), feather feature lamellae (FFL), and planar fractures (PFs) in quartz grains from a polymict impact breccia dike from Söderfjärden, and from sedimentary crater‐fill rocks from Saarijärvi. Planar microstructures, particularly PDFs, are very rare and poorly developed or preserved in Saarijärvi, whereas in Söderfjärden they are much more common and well defined. Miller–Bravais indices of the planar microstructures in both Saarijärvi and Söderfjärden are indicative of relatively low‐shock pressure but high shear conditions, only compatible with an impact origin for these structures. Although a Proterozoic age for Saarijärvi cannot be ruled out, the observations of shock features throughout the sedimentary crater‐fill sequence and a brecciated sedimentary dike below the crater floor are more consistent with a Lower Cambrian (or younger) impact age.  相似文献   

9.
Shatter cones are diagnostic for the recognition of meteorite impact craters. They are unambiguously identifiable in the field and the only macroscopic shock deformation feature. However, the physical boundary conditions and exact formation mechanism(s) are still a subject of debate. Melt films found on shatter cone surfaces may allow the constraint of pressure–temperature conditions during or immediately after their formation. Within the framework of the MEMIN research group, we recovered 24 shatter cone fragments from the ejecta of hypervelocity impact experiments. Here, we focus on silicate melt films (now quenched to glass) found on shatter cone surfaces formed in experiments with 20–80 cm sized sandstone targets, impacted by aluminum and iron meteorite projectiles of 5 and 12 mm diameter at velocities of 7.0 and 4.6 km s−1, respectively. The recovered shatter cone fragments vary in size from 1.2 to 9.3 mm. They show slightly curved, striated surfaces, and conical geometries with apical angles of 36°–52°. The fragments were recovered from experiments with peak pressures ranging from 46 to 86 GPa, and emanated from a zone within 0.38 crater radii. Based on iSale modeling and petrographic investigations, the shatter coned material experienced low bulk shock pressures of 0.5–5 GPa, whereas deformation shows a steep increase toward the shatter cone surface leading to localized melting of the rock, resulting in both vesicular as well as polished melt textures visible under the SEM. Subjacent to the melt films are zones of fragmentation and brittle shear, indicating movement away from the shatter cone apex of the rock that surrounds the cone. Smearing and extension of the melt film indicates subsequent movement in opposite direction to the comminuted and brecciated shear zone. We believe the documented shear textures and the adjacent smooth melt films can be related to frictional melting, whereas the overlying highly vesiculated melt layer could indicate rapid pressure release. From the observation of melting and mixing of quartz, phyllosilicates, and rutile in this overlying texture, we infer high, but very localized postshock temperatures exceeding 2000 °C. The melted upper part of the shatter cone surface cross-cuts the fragmented lower section, and is accompanied by PDFs developed in quartz parallel to the {112} plane. Based on the overprinting textures and documented shock effects, we hypothesize shatter cones start to form during shock loading and remain an active fracture surface until pressure release during unloading and infer that shatter cone surfaces are mixed mode I/II fracture surfaces.  相似文献   

10.
The fundamental approach for the confirmation of any terrestrial meteorite impact structure is the identification of diagnostic shock metamorphic features, together with the physical and chemical characterization of impactites and target lithologies. However, for many of the approximately 200 confirmed impact structures known on Earth to date, multiple scale‐independent tell‐tale impact signatures have not been recorded. Especially some of the pre‐Paleozoic impact structures reported so far have yielded limited shock diagnostic evidence. The rocks of the Dhala structure in India, a deeply eroded Paleoproterozoic impact structure, exhibit a range of diagnostic shock features, and there is even evidence for traces of the impactor. This study provides a detailed look at shocked samples from the Dhala structure, and the shock metamorphic evidence recorded within them. It also includes a first report of shatter cones that form in the shock pressure range from ~2 to 30 GPa, data on feather features (FFs), crystallographic indexing of planar deformation features, first‐ever electron backscatter diffraction data for ballen quartz, and further analysis of shocked zircon. The discovery of FFs in quartz from a sample of the MCB‐10 drill core (497.50 m depth) provides a comparatively lower estimate of shock pressure (~7–10 GPa), whereas melting of a basement granitoid infers at least 50–60 GPa shock pressure. Thus, the Dhala impactites register a strongly heterogeneous shock pressure distribution between <2 and >60 GPa. The present comprehensive review of impact effects should lay to rest the nonimpact genesis of the Dhala structure proposed by some earlier workers from India.  相似文献   

11.
Abstract– The Vista Alegre structure, centered at 25°57′S and 52°41′W, has been recently proposed as a meteorite impact structure. The 9.5 km‐diameter structure is located in the Paraná state of southern Brazil, within the Paraná Basin, which contains one of the largest and most extensive flood basalt provinces on Earth. The Paraná flood basalts belong to the Serra Geral Formation and are temporally related to the opening of the South Atlantic Ocean, having been dated at about 133–132 Ma. Tholeiitic basalts dominate the western portion of Paraná state, with some minor rhyodacites. Morphologically, Vista Alegre has a prominent circular outline, in the form of an incomplete ring of escarpments, and an inner depression. The presence of a central uplift is not obvious, but it is inferred by the occurrence of deformed sandstone blocks near the center of the structure. These sandstones are possibly related to the Triassic Pirambóia Formation and/or to the Cretaceous Botucatu Formation. These units are normally at stratigraphic depths of about 700–800 m below the present surface in this portion of the Paraná Basin. The structure appears to be in an advanced erosion stage and its interior is occupied by a soil cover several meters thick, extensively used for agriculture. As a result there are limited outcrops in the interior of the structure, all of polymict breccias, some of them melt‐bearing. We report the extensive occurrence of shatter cones, in the form of fine‐grained rock clasts within the polymict breccias. The shatter cone‐bearing breccias occur at different locations within the structure, separated by several kilometers. The nested shatter cones range in size from about 0.5 to 20 cm for individual cones, and up to half a meter for complete assemblages. The shatter cones formed in fine‐grained Parana flood basalt and might be the first examples of shatter cones in such a rock type. In addition, planar deformation features (PDFs) were found in quartz grains within sedimentary rock clasts of the polymict breccia. These findings confirm the impact origin of the Vista Alegre structure.  相似文献   

12.
Plagioclase feldspar is one of the most common rock‐forming minerals on the surfaces of the Earth and other terrestrial planetary bodies, where it has been exposed to the ubiquitous process of hypervelocity impact. However, the response of plagioclase to shock metamorphism remains poorly understood. In particular, constraining the initiation and progression of shock‐induced amorphization in plagioclase (i.e., conversion to diaplectic glass) would improve our knowledge of how shock progressively deforms plagioclase. In turn, this information would enable plagioclase to be used to evaluate the shock stage of meteorites and terrestrial impactites, whenever they lack traditionally used shock indicator minerals, such as olivine and quartz. Here, we report on an electron backscatter diffraction (EBSD) study of shocked plagioclase grains in a metagranite shatter cone from the central uplift of the Manicouagan impact structure, Canada. Our study suggests that, in plagioclase, shock amorphization is initially localized either within pre‐existing twins or along lamellae, with similar characteristics to planar deformation features (PDFs) but that resemble twins in their periodicity. These lamellae likely represent specific crystallographic planes that undergo preferential structural failure under shock conditions. The orientation of preexisting twin sets that are preferentially amorphized and that of amorphous lamellae is likely favorable with respect to scattering of the local shock wave and corresponds to the “weakest” orientation for a specific shock pressure value. This observation supports a universal formation mechanism for PDFs in silicate minerals.  相似文献   

13.
Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz‐rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high‐pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s?1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.  相似文献   

14.
Field investigations in the eroded central uplift of the ≤30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone‐bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding ~8–10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. 40Ar/39Ar dating of dark and clast‐poor whole‐rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 ± 10 Ma [± 11 Ma] (2σ; MSWD = 0.11; = 0.98), considered here as the statistically most robust age for the rock. The new 40Ar/39Ar age is incompatible with ~1.88 Ga Svecofennian tectonism and magmatism in south‐central Finland and probably reflects the Keurusselkä impact, followed by impact‐induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic 40Ar/39Ar age of ~1150 Ma should be treated as a minimum age for the impact. The new 40Ar/39Ar results are consistent with paleomagnetic results that suggested a similar age for Keurusselkä, which is shown to be one of the oldest impact structures currently known in Europe and worldwide.  相似文献   

15.
Abstract– Planar deformation features (PDFs) in quartz are essential proof for the correct identification of meteorite impact structures and related ejecta layers, but can be confused with tectonic deformation lamellae. The only completely reliable method to demonstrate the shock origin of suspected (sub‐) planar microstructures, transmission electron microscope (TEM) observations, is costly and time consuming. We have used a cathodoluminescence (CL) detector attached to a scanning electron microscope (SEM) to image both PDFs and tectonic deformation lamellae in quartz to demonstrate the potential of a simple method to identify PDFs and define characteristics that allow their distinction from tectonic deformation lamellae. In both limited wavelength grayscale and composite color SEM‐CL images, PDFs are easily identified. They are straight, narrow, well‐defined features, whereas tectonic deformation lamellae are thicker, slightly curved, and there is often no clear boundary between lamella and host quartz. Composite color images reveal two types of CL behavior in PDFs: either they emit a red to infrared CL signal or they are nonluminescent. The color of the CL signal emitted by tectonic deformation lamellae ranges from blue to red. For comparison, we also imaged several shocked quartz grains at cryogenic temperature. In most cases, the PDF characteristics in cryo‐CL images do not differ significantly from those in images recorded at room temperature. We conclude that SEM‐CL imaging, especially when color composites are used, provides a promising, practical, low cost, and nondestructive method to distinguish between PDFs and tectonic lamellae, even when the simplest CL techniques available are used.  相似文献   

16.
Abstract– The Siljan impact structure in Sweden is the largest confirmed impact structure in Western Europe. Despite this, the structure has been poorly studied in the past, and detailed studies of shock metamorphic features in the target lithologies are missing. Here, we present the results of a detailed systematic search for shock metamorphic features in quartz grains from 73 sampled localities at Siljan. At 21 localities from an area approximately 20 km in diameter located centrally in the structure, the orientations of 2851 planar deformation feature sets in 1179 quartz grains were measured. Observations of shatter cones outside of the zone with shocked quartz extend the total shocked area to approximately 30 km in diameter. The most strongly shocked samples, recording pressures of up to 20 GPa, occur at the very central part of the structure, and locally in these samples, higher pressures causing melting conditions in the affected rocks were reached. Pressures recorded in the studied samples decrease outwards from the center of the structure, forming roughly circular envelopes around the proposed shock center. Based on the distribution pattern of shocked quartz at Siljan, the original transient cavity can be estimated at approximately 32–38 km in diameter. After correcting for erosion, we conclude that the original rim to rim diameter of the Siljan crater was somewhere in the size range 50–90 km.  相似文献   

17.
Abstract— Impact‐metamorphosed CaCO3‐bearing sandstones at the Haughton structure have been divided into 6 classes, based to a large extent on a previous classification developed for sandstones at Meteor Crater. Class 1a sandstones (<3 GPa) display crude shatter cones, but no other petrographic indications of shock. At pressures of 3 to 5.5 GPa (class 1b), porosity is destroyed and well‐developed shatter cones occur. Class 2 rocks display planar deformation features (PDFs) and are characterized by a “jigsaw” texture produced by rotation and shear at quartz grain boundaries. Calcite shows an increase in the density of mechanical twins and undergoes micro‐brecciation in class 1 and 2 sandstones. Class 3 samples display multiple sets of PDFs and widespread development of diaplectic glass, toasted quartz, and symplectic intergrowths of quartz, diaplectic glass, and coesite. Textural evidence, such as the intermingling of silicate glasses and calcite and the presence of flow textures, indicates that calcite in class 3 sandstones has undergone melting. This constrains the onset of melting of calcite in the Haughton sandstones to > 10 < 20 GPa. At higher pressures, the original texture of the sandstone is lost, which is associated with major development of vesicular SiO2 glass or lechatelierite. Class 5 rocks (>30 GPa) consist almost entirely of lechatelierite. A new class of shocked sandstones (class 6) consists of SiO2‐rich melt that recrystallized to microcrystalline quartz. Calcite within class 4 to 6 sandstones also underwent melting and is preserved as globules and euhedral crystals within SiO2 phases, demonstrating the importance of impact melting, and not decomposition, in these CaCO3‐bearing sandstones.  相似文献   

18.
The Målingen structure in Sweden has for a long time been suspected to be the result of an impact; however, no hard evidence, i.e., shock metamorphic features or traces of the impactor, has so far been presented. Here we show that quartz grains displaying planar deformation features (PDFs) oriented along crystallographic planes typical for shock metamorphism are present in drill core samples from the structure. The shocked material was recovered from basement breccias, below the sediment infill, and the distribution of the orientation of the shock‐produced PDFs indicates that the studied material experienced low shock pressures. Based on our findings, we can exclude that the material is transported from the nearby Lockne impact structure, which means that the Målingen structure is a separate impact structure, the seventh confirmed impact structure in Sweden. Furthermore, sedimentological and biostratigraphic aspects of the deposits that fill the depression at Målingen are very similar to features at the Lockne impact structure. This implies a coeval formation age and thus also the confirmation of the first known marine target doublet impact craters on Earth (i.e., the Lockne–Målingen pair).  相似文献   

19.
Abstract— The large, complex Woodleigh structure in the Carnarvon basin of Western Australia has recently been added to the terrestrial impact crater record. Many aspects of this structure are, however, still uncertain. This work provides a detailed petrographic assessment of a suite of representative drill core samples from the borehole Woodleigh 1 that penetrated uplifted basement rocks of the central part of this structure. Fundamental rock and mineral deformation data and high‐precision chemical data, including results of PGE and oxygen isotopic analysis, are presented. The sampled interval displays likely impact‐produced macrodeformation in the form of fracturing and breccia veining at the microscopic scale. Contrary to earlier reports that these breccias represent pseudotachylite (friction melt) or even shock/shear‐produced pseudotachylitic melt breccia cannot be confirmed due to pervasive post‐impact alteration. Abundant planar deformation features (PDFs) in quartz, in addition to diaplectic glass and partial isotropization, are the main shock deformation effects observed, confirming that Woodleigh is of impact origin. Over the investigated depth interval, the statistics of quartz grains with a variable number of sets of PDFs does not change significantly, and the patterns of crystallographic orientations of PDFs in randomly selected quartz grains does not indicate a change in absolute shock pressure with depth either. The value of oxygen isotopes for the recognition of meteoritic contamination, as proposed by earlier Woodleigh workers, is critically assessed. Neither INA nor PGE analyses of our samples support the presence of a meteoritic component within this basement section, as had been claimed in earlier work.  相似文献   

20.
The Tenoumer impact structure is a small, well‐preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north‐central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact‐melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass‐rich breccia. Impact‐related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt‐breccia deposits, where they co‐occur with quartz PDFs, and also within melt‐free crystalline ejecta, in the absence of co‐occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号