首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays   总被引:4,自引:0,他引:4  
An experimental study on the thermo-hydro-mechanical behaviour of two heavily overconsolidated clays is presented. Laboratory tests have been conducted on a Spanish bentonite (FEBEX bentonite) and a Belgian kaolinitic/illitic clay (Boom clay), statically compacted at different initial dry densities and water contents. Volume change behaviour of the soils during suction reduction paths at different temperatures and during heating-cooling cycles at constant water content or suction have been investigated through the use of suction and temperature controlled oedometer cells. In addition, the volume change response under unconfined conditions and constant water content has been measured to determine thermal expansion coefficients. The results show similarities and differences between the observed behaviour of the two types of clays that have been interpreted on the basis of their different structures and regarding their proportion of intra-aggregate water.  相似文献   

2.
Compacted bentonite blocks have been heated and hydrated in a stainless steel cell in order to simulate, in the laboratory, the conditions of the clay barrier in a high-level radioactive waste repository. Temperature distributions at different times, rate of hydration, final water content and dry density have been measured. Some chemical parameters, as electrical conductivity in an aqueous extractable amorphous silica, have also been obtained. For the periods of time considered (up to 2500 h), the hydration process is not affected by the thermal gradient, the high suction of the bentonite being the critical factor in the initial water uptake of the clay barrier. A remarkable saline environment has been detected near the heater, due to salt migration towards dried areas. This phenomenon should be taken into account in further investigations of the mechanical and geochemical behaviour of the clay barrier.  相似文献   

3.
混合型缓冲回填材料膨胀力试验研究   总被引:7,自引:1,他引:6  
张虎元  崔素丽  刘吉胜  梁健 《岩土力学》2010,31(10):3087-3095
与纯膨润土相比,混合型缓冲回填材料(膨润土与石英砂混合物)能够实现防渗阻隔能力、热传导性能、力学强度和可施工性能的最佳组合。选用高庙子钠基膨润土(GMZ001)为缓冲回填材料的主料,添加不同比例的石英砂,对掺砂比分别为0、10%、20%、30%、40%和50%的膨润土-砂混合物压实试样进行室内试验。结果表明,混合物的液限、塑限随掺砂率的增大而线性降低;膨胀力随时间呈指数增长。初始含水率较大时,最大膨胀力随初始含水率的增大略有降低。掺砂率一定时,最大膨胀力随初始干密度指数增长。提出了有效黏土密度的概念,建立了一定初始含水率条件下,任意掺砂率和初始干密度的高庙子膨润土-砂混合物最大膨胀力归一化模型,为混合型缓冲回填材料膨胀力的预测与控制提供了依据。  相似文献   

4.
刘毅 《工程地质学报》2016,24(3):451-458
膨润土具有遇水膨胀的特性,是高放核废料深地质处置库理想的缓冲回填材料。膨胀特性是其作为缓冲材料最重要的性能之一,同时受多方面因素的影响。本文以我国首选缓冲材料高庙子膨润土为研究对象,以含水率和干密度为控制变量,以恒体积法为试验方法,研究了高压实高庙子膨润土的水化膨胀特性,采用压汞试验法(MIP)对膨润土微观结构进行了研究,并以此对水化膨胀特性进行了解释。膨胀力试验结果表明,高庙子膨润土的膨胀力发展形式和最大膨胀力均受试样含水率和干密度影响,干密度较小时,水化曲线呈明显的双峰结构,干密度较大时,水化曲线形态与含水率相关,随着含水率增大,双峰结构逐渐消失。MIP试验结果表明,高庙子膨润土的孔径分布同样受含水率和干密度影响,随着含水率和干密度降低,集合体间大孔隙体积增多。膨润土的水化膨胀曲线受集合体间大孔隙影响显著。大孔隙较多时,膨润土集合体能迅速膨胀形成临时结构,当膨胀力超过临时结构的极限荷载时发生坍塌,膨胀力回落,内部结构重组后继续水化达到最大膨胀力,因此其水化膨胀曲线呈明显的双峰结构。随着大孔隙量减少,水化膨胀曲线由双峰结构演变成一条平滑曲线。  相似文献   

5.
Engineered barriers are basic elements in the design of repositories for the isolation of high‐level radioactive waste. This paper presents the thermo‐hydro‐mechanical (THM) analysis of a clay barrier subjected to heating and hydration. The study focuses on an ongoing large‐scale heating test, at almost full scale, which is being carried out at the CIEMAT laboratory under well‐controlled boundary conditions. The test is intensely instrumented and it has provided the opportunity to study in detail the evolution of the main THM variables over a long period of time. Comprehensive laboratory tests carried out in the context of the FEBEX and NF‐PRO projects have allowed the identification of the model parameters to describe the THM behaviour of the compacted expansive clay. A conventional THM approach that assumes the swelling clay as a single porosity medium has been initially adopted to analyse the evolution of the test. The model was able to predict correctly the global THM behaviour of the clay barrier in the short term (i.e. for times shorter than three years), but some model limitations were detected concerning the prediction of the long‐term hydration rate. An additional analysis of the test has been carried out using a double structure model to describe the actual behaviour of expansive clays. The double structure model explicitly considers the two dominant pore levels that actually exist in the FEBEX bentonite and it is able to account for the evolution of the material fabric. The simulation of the experiment using this enhanced model provides a more satisfactory reproduction of the long‐term experimental results. It also contributes to a better understanding of the observed test behaviour and it provides a physically based explanation for the very slow hydration of the barrier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, water retention tests under free swelling conditions were performed to investigate the water intake (or loss) behaviour of compacted GMZ bentonite. First, the water retention characteristics were investigated, and then the microscopic pore structure was observed by environmental scanning electron microscope (ESEM). The results indicate that GMZ bentonite has a strong swelling (or a limited shrinkage ability) due to water intake (loss). The suction behaviour of GMZ bentonite is similar to MX80 bentonite and FEBEX bentonite. We also find that the confinement conditions can affect the suction behaviour of the material, especially at high relative humidity (RH). Additionally, a mathematic model can fit the mass change data very well. Microscopic tests show that the granular sensation of GMZ bentonite is obvious for a sample at low RH. With the increase in RH, the surface of GMZ bentonite becomes more smooth. The differences in the porosities calculated by the macroscopic and microscopic tests can be attributed to image resolution. The inter-laminar pores and intra-aggregate pores cannot be observed by the ESEM method. In addition, ESEM observation can provide an intuitive basis for the further research of the seepage property of GMZ bentonite.  相似文献   

7.

This paper presents a constitutive model that predicts the water retention behaviour of compacted clays with evolving bimodal pore size distributions. In line with previous research, the model differentiates between the water present inside the saturated pores of the clay aggregates (the microstructure) and the water present inside the pores between clay aggregates (the macrostructure). A new formulation is then introduced to account for the effect of the macrostructural porosity changes on the retention behaviour of the soil, which results in a consistent evolution of the air-entry value of suction with volumetric deformations. Data from wetting tests on three different active clays (i.e. MX-80 bentonite, FEBEX bentonite, and Boom clay), subjected to distinct mechanical restraints, were used to formulate, calibrate, and validate the proposed model. Results from free swelling tests were also modelled by using both the proposed double porosity model and a published single porosity model, which confirmed the improvement in the predictions of degree of saturation by the present approach. The proposed retention model might be applied, for example, to the simulation of the hydromechanical behaviour of engineered bentonite barriers in underground nuclear waste repositories, where compacted active clays are subjected to changes of both suction and porosity structure under restrained volume conditions.

  相似文献   

8.
This paper presents simulation results related to coupled thermal–hydraulic–mechanical (THM) processes in engineered barrier systems (EBS) and clay host rock, in one case considering a possible link to geochemistry. This study is part of the US DOE Office of Nuclear Energy’s used fuel disposition campaign, to investigate current modeling capabilities and to identify issues and knowledge gaps associated with coupled THMC processes and EBS–rock interactions associated with repositories hosted in clay rock. In this study, we simulated a generic repository case assuming an EBS design with waste emplacement in horizontal tunnels that are back-filled with bentonite-based swelling clay as a protective buffer and heat load, derived for one type of US reactor spent fuel. We adopted the Barcelona basic model (BBM) for modeling of the geomechanical behavior of the bentonite, using properties corresponding to the FEBEX bentonite, and we used clay host rock properties derived from the Opalinus clay at Mont Terri, Switzerland. We present results related to EBS host–rock interactions and geomechanical performance in general, as well as studies related to peak temperature, buffer resaturation and thermally induced pressurization of host rock pore water, and swelling pressure change owing to variation of chemical composition in the EBS. Our initial THM modeling results show strong THM-driven interactions between the bentonite buffer and the low-permeability host rock. The resaturation of the buffer is delayed as a result of the low rock permeability, and the fluid pressure in the host rock is strongly coupled with the temperature changes, which under certain circumstances could result in a significant increase in pore pressure. Moreover, using the BBM, the bentonite buffer was found to have a rather complex geomechanical behavior that eventually leads to a slightly nonuniform density distribution. Nevertheless, the simulation shows that the swelling of the buffer is functioning to provide an adequate increase in confining stress on the tunnel wall, leading to a stabilization of any failure that may occur during the tunnel excavation. Finally, we describe the application of a possible approach for linking THM processes with chemistry, focusing on the evolution of primary and secondary swelling, in which the secondary swelling is caused by changes in ionic concentration, which in turn is evaluated using a transport simulation model.  相似文献   

9.
The Influence of Placement Conditions on the Swelling of Variable Clays   总被引:1,自引:1,他引:0  
The swelling of clay when it is subjected to moisture increase is a complicated process found to be influenced by several factors. The clay??s level of response is highly dependent on its mineralogical composition and structure. Practicing geotechnical engineers use the placement state and general index properties to forecast the swelling behavior of the soils. The purpose of this study was to investigate the influence of placement conditions on various clays and to demonstrate that the swelling of a particular clay type should not be predicted using information and trends obtained for other clays with different origins. Clay from Saudi Arabia was used to investigate the influence of initial moisture content and initial dry density on swelling. The prediction models created by other researchers were compared to the measured values in this study. The swelling behavior of both initially dry and wet prepared bentonite was examined, and the rate at which swelling developed in the bentonite clay was studied. The role of clay content in the volume change of sand?Cbentonite mixtures was also investigated. It was concluded that the prediction of clay-swelling parameters should not be based on the properties of other clays with different origins and mineralogical compositions. The trends published in the literature should be taken as a general guide only, and the influence of moisture content and dry density on swelling should be verified for individual sites. Because clay content significantly influences the overall volume change, it should be carefully assessed in each case.  相似文献   

10.
Two large-scale “in situ” demonstration experiments and their instrumentation are described. The first test (FEBEX Experiment) involves the hydration of a compacted bentonite barrier under the combined effect of an inner source of heat and an outer water flow from the confining saturated granite rock. In the second case, the progressive de-saturation of Opalinus clay induced by maintained ventilation of an unlined tunnel is analyzed. The paper shows the performance of different sensors (capacitive cells, psychrometers, TDR’s) and a comparison of fill behaviour with modelling results. The long term performance of some instruments could also be evaluated specially in the case of FEBEX test. Capacitive sensors provide relative humidity data during long transient periods characterised by very large variations of suction within the bentonite.  相似文献   

11.
FEBEX is a demonstration and research project, which is being carried out by an international consortium led by the Spanish agency ENRESA and simulates components of the engineering barrier system in accordance with the ENRESA's AGP (Deep Geological Disposal) Granite reference disposal concept. The project includes tests on three scales: an “in situ” test at full scale in natural conditions; a “mock-up” test at almost full scale in controlled conditions; and a series of laboratory test to complement the information from the two large-scale test.The components of the mock-up test are similar to those of the “in situ” test: two electric heaters, a clay barrier consisting of highly compacted bentonite blocks, instrumentation, automatic control of heaters, and a data acquisition system for the data generated. The heterogeneities of the natural system (granite formation) are avoided, the hydration process is controlled with unlimited amount of water at constant pressure, and the boundary conditions are better defined than in the “in situ” test.The operational phase -hydration and heating- started in February 1997. It was initially planned to last for three years, but it has been decided to extend the operational phase to get as close as possible complete saturation of the buffer.Fifty-five months after the start of the operational phase, it can be concluded that the synergy achieved from the simultaneous, integrated performance of tests at different scales, is a valuable approach to establishing the viability of the reference concept, and making progress in the understanding and evaluation of the behaviour in the near field, especially the clay barrier.  相似文献   

12.
13.
Research on the longevity of potential bentonite-based barrier materials is an important part of the Canadian Nuclear Fuel Waste Management Program. Valuable information on the longterm effectiveness of bentonitic barriers can be obtained by examining the properties of unprocessed bentonites from natural deposits. This study compares the swelling capacity (Ps) and hydraulic conductivity (K) of an unprocessed (clay that has not been ground and dried by the supplier) and a processed bentonite from south-central Saskatchewan, Canada. The clay deposit is 75 to 85 Ma old. At a given clay density, the processed bentonite exhibits a greater P3 and a lower K than the unprocessed clay. This can be at least partially attributed to the partial cementation of the unprocessed bentonite particles; this cementation is likely ruptured when the clay is ground during processing. Even though K for the unprocessed clay is higher than that of the processed clay, it is still low enough (< 1011m/s) to meet the permeability requirements of a barrier material in a nuclear fuel waste disposal vault. The unprocessed clay also has the has the ability to self seal: exposure to water, the normalized flow rate of water through some samples was as high as 10-5 m3/s, but the rate rapidly decreased to < 10-10m3/s the clay absorbed water and swelled. The data indicate that the unprocessed bentonite clay maintains anacceptably high swelling capacity and low permeability millions of years after deposition.  相似文献   

14.
通过室内模拟试验,采用膨润土粉末对压实膨润土砌块之间的接缝区进行二次填充,利用自主设计的刚性壁膨胀仪,以砌块干密度为基本变量,对恒体积条件下不同干密度砌块接缝以及砌块顶部的膨胀应力进行监测,分析接缝密封后砌块体系的膨胀特性。试验表明:经二次填充后的含接缝砌块体系,其膨胀应力优先向接缝区域发展,径向膨胀应力发展快于轴向,有利于砌块接缝区域的封闭。在相同接缝充填的条件下,随着砌块初始干密度的增大,砌块体系接缝区域的最终膨胀应力增大,到达最大膨胀应力时间缩短,接缝区域愈合速度加快。由于接缝的存在,砌块区膨润土吸水膨胀后首先对接缝内孔隙进行充填,轴向应力降低,产生“应力补偿”现象。砌块干密度越低,应力补偿现象越明显。根据砌块的轴向应力曲线将砌块轴向应力发展过程分为3个阶段:快速增长阶段、稳步发展阶段和应力调整阶段。其中快速发展阶段主要受砌块初始干密度的控制,而稳步增长阶段则受到水分迁移、侧壁摩擦力以及接缝愈合速率的影响更多。相较于完整样,含充填接缝的砌块体系膨胀应力分布状态趋向于等向应力分布,提高了整个屏障体系的均质化程度。  相似文献   

15.
砂-膨润土混合屏障材料渗透性影响因素研究   总被引:2,自引:0,他引:2  
膨润土因具有渗透性低、阳离子交换能力高等优点被认为是最适合高放废物深地质处置库中屏障系统的缓冲材料,工程实践发现随着水化过程的进行,纯高压实膨润土强度不断降低,并最终影响到工程屏障系统功能的发挥。针对这一问题,在膨润土中加入一定比例的石英砂,可以有效地提高工程屏障的热传导特性、压实性、力学强度和长期稳定性,降低工程造价。本文研究了影响砂-膨润土混合物渗透性的主要因素,包括膨润土含量、粒径分布、含水量和干密度、压实方法以及膨润土类型等。结果表明,砂土混合物渗透性主要受膨润土的渗透性控制,渗透系数随着膨润土含量和干密度的增加而减小,当膨润土含量超过某一界限值后,继续增加膨润土含量对降低渗透系数的作用有限;细颗粒和级配良好的混合物渗透系数小,当土体内部发生渗透侵蚀将增大渗透系数;最优含水量条件下压实得到的渗透系数最低,高于最优含水量压实得到的渗透系数比低于最优含水量压实得到的渗透系数要小。  相似文献   

16.
盐溶液饱和高庙子膨润土膨胀特性及预测   总被引:2,自引:0,他引:2  
孙德安  张龙 《岩土力学》2013,34(10):2790-2795
甘肃北山被首选为修建高放废物处置库的地区。考虑到该地区地下水中含有总溶解固体(TDS),选择NaCl-Na2SO4作为溶解固体。以高庙子钠基膨润土为试验材料,利用单向固结仪,进行不同TDS浓度盐溶液和蒸馏水饱和的膨胀试验。根据蒙脱石孔隙比的概念,统一整理了饱和高庙子膨润土在盐溶液和蒸馏水饱和下的膨胀特性。结果表明,当TDS浓度为12.3 g/L(预选处置库区的最高离子浓度)时,在双对数坐标中蒙脱石孔隙比与膨胀力关系和干密度与膨胀力关系均呈直线且平行于蒸馏水的试验结果;对于给定干密度试样,膨胀力的对数与TDS浓度呈线性关系。根据以上试验结果,给出了由高庙子钠基膨润土的设计干密度和离子浓度计算相应膨胀力和膨胀变形的表达式。  相似文献   

17.
This paper presents an upscaling concept of swelling/shrinking processes of a compacted bentonite/sand mixture, which also applies to swelling of porous media in general. A constitutive approach for highly compacted bentonite/sand mixture is developed accordingly. The concept is based on the diffuse double layer theory and connects microstructural properties of the bentonite as well as chemical properties of the pore fluid with swelling potential. Main factors influencing the swelling potential of bentonite, i.e. variation of water content, dry density, chemical composition of pore fluid, as well as the microstructures and the amount of swelling minerals are taken into account. According to the proposed model, porosity is divided into interparticle and interlayer porosity. Swelling is the potential of interlayer porosity increase, which reveals itself as volume change in the case of free expansion, or turns to be swelling pressure in the case of constrained swelling. The constitutive equations for swelling/shrinking are implemented in the software GeoSys/RockFlow as a new chemo‐hydro‐mechanical model, which is able to simulate isothermal multiphase flow in bentonite. Details of the mathematical and numerical multiphase flow formulations, as well as the code implementation are described. The proposed model is verified using experimental data of tests on a highly compacted bentonite/sand mixture. Comparison of the 1D modelling results with the experimental data evidences the capability of the proposed model to satisfactorily predict free swelling of the material under investigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
梁健伟  房营光  谷任国 《岩土力学》2010,31(10):3043-3050
采用渗流固结法试验结合颗粒表面电位分析,研究极细颗粒黏土的渗流的微电场效应,在相同试验条件下完成了5种含不同百分比的人工高岭土与人工膨润土的试样的渗流特性测试。测试结果表明,微孔渗流的微电场效应对极细颗粒黏土的渗流特性有相当显著的影响,随着孔隙液离子浓度的升降或土颗粒表面电位的增减,试样的渗透系数会随之发生改变;在相同的孔隙液离子浓度下,随着膨润土相对含量的增加,试样的渗透系数随之降低。对科威特软土的渗流固结试验证实了人工土的微电场效应的产生机制与变化规律同样适用于天然软土。试验结果分析认为,在黏土-水-电解质系统的相互作用下,黏土矿物通过土颗粒表面的结合水影响试样的渗流特性,而土颗粒表面电荷的微电场作用是极细颗粒黏土渗流特性改变的内在原因之一。  相似文献   

19.
膨润土加砂混合物膨胀特征试验研究   总被引:1,自引:0,他引:1  
胡畔  杨庆 《岩土力学》2012,33(2):453-458
运用自行研制的膨胀仪对膨润土加砂混合物进行了一系列膨胀力及膨胀应变等膨胀特性的试验研究,分析了膨胀力随时间的变化规律、两向膨胀力之间的关系和膨胀应变与时间及吸水量之间的关系。试验研究表明,膨润土加砂混合物的最大膨胀力以及最大膨胀应变主要取决于混合物的最初干密度和膨润土含量,并且随着二者的增大而增大;膨润土加砂混合物的水平膨胀力与竖向膨胀力之比随着混合物干密度的增大减小,并且与干密度近似成线性关系;不同膨润土含量的膨润土加砂混合物的膨胀应变与时间成双曲线关系,与吸水量近似呈S型曲线关系,并且其最大膨胀应变与膨润土含量存在指数关系。试验结果对高放废物深处置库中的缓冲回填材料设计具有一定的参考价值。  相似文献   

20.
Clay soils, especially clay soils of high or very high swelling potential often present difficulties in construction operations. However, the engineering properties of these clay soils can be enhanced by the addition of cement, thereby producing an improved construction material. Higher strength loss of cement stabilized clay soils after soaking in water is attributed to water absorbing capacity of the clay fraction (e.g. montmorillonite). Kaolinite and illitic soils are largely inert and resist to water penetration. These clays generally develop satisfactory strengths resulting to low strength reduction [Croft, 1967]. The swelling clays such as bentonite soaked in water, due to environmental conditions, result to volume increase causing macro and micro-fracturing in engineering structures. These fractures accelerate water penetration and consequently cause greater strength loss [Sällfors and Öberg-Högsta, 2002]. The water intrusion during soaking creates swelling and disrupts the cement bonds. The development of internal and external force systems in soil mass, due to soaking conditions, establish the initiation of slaking. Internal force system of a stabilized clayey soil consists of the resultant stresses established by the bonding potential of a cementing agent and the swelling potential of a clay fraction. In an effort to study this influence of soaking conditions and final absorbed water content on the stabilization parameters (cement, compaction, curing time), both unconfined compressive strength and slaking (durability) tests were carried out on two different cement stabilized clayey mixtures consisted of active bentonite, kaolin and sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号