首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations including a bathymetric survey, sonic prospecting, and vibrocoring were performed to understand the horizontal and vertical distribution of 137Cs in seabed sediments in shallow seas with depths less than 30 m near the Fukushima Daiichi Nuclear Power Plant. Especially, features of 137Cs distributions in deeper sections of the seabed sediments were studied to evaluate the vertical heterogeneity of 137Cs distribution in the seabed sediments in shallow seas. The distribution area of the seabed sediments was less than half of the investigation area, and the locations of the seabed sediments were divided into flat and terrace-like seafloors based on their topographical features. The thicknesses of the seabed sediment layers were mostly <2 m. The 137Cs inventories in the seabed sediments varied from 13 ± 1 to 3,510 ± 26 kBq m?2, and continuous distributions of 137Cs at depths greater than 81 cm were observed. The 137Cs distributions were not uniform; however, the 137Cs inventories tended to be larger near the base of the steeper ascending slopes than in the terrace-like seafloors themselves. Based on the relationship between the 137Cs inventories and mean shear stress, features of the seafloor topography were inferred to be significant control factors governing the horizontal and vertical distribution of 137Cs in the seabed sediments. Rapid changes and multiple peaks in the vertical profile of the 137Cs distributions suggest that they are related to pulse input caused by heavy-rain events. Change in the 137Cs inventories with depth in this study are larger than those reported in previous studies, indicating earlier results of 137Cs inventories per unit in seabed sediments in shallow seas, especially near the river mouth, which drains a radiologically highly-contaminated basin, were underestimated.  相似文献   

2.
Temporal changes in cesium-137 (137Cs) concentrations in the surface (0–10 cm) layer of seabed sediment were quantified from continuous observation data at 71 stations within a 150-km radius of the Fukushima Daiichi Nuclear Power Plant, and the primary processes affecting temporal changes were identified. From March 2011 to the end of 2015, about 80% of the initially deposited 137Cs in the surface sediment in the coastal region (bottom depth ≤100 m) region has dissipated (radioactive decay is not included). Such a remarkable change in the 137Cs concentration was not observed in the offshore (>100 m) region. This paper focuses on the following three processes that affected the decrease in the 137Cs concentrations, and assesses their relative importance; (1) resuspension and transport of 137Cs-bound sediment, (2) desorption of 137Cs from the sediment, and (3) dilution of 137Cs by vertical mixing of sediment. Consequently, it was estimated that the first two processes together have potentially contributed to reduce the 137Cs inventory in the top 10 cm of the coastal region by at most 35%. Furthermore, by applying a pulse input sediment mixing model to the observed vertical distribution of sedimentary 137Cs, it was also estimated that more than 43% of the 137Cs in the surface sediment was transported to deeper sediment layers by vertical mixing of the sediment. This indicates that the decrease of 137Cs concentrations in coastal sediments was mainly affected by mixing of 137Cs-bound surface sediment with less contaminated sediment in the deeper layers.  相似文献   

3.
Radioactivity has been monitored in seafloor sediments off Fukushima and nearby prefectures regularly. During the initial monitoring period (May–September 2011), 137Cs concentrations in the surface sediments (0–3 cm) generally increased to 8–580 Bq/kg. Subsequently, concentrations decreased at variable rates. In the latest data, from February 2016, concentrations were still higher at 0.8–141 Bq/kg than the pre-accident level. The geometric mean concentration declined steadily from 47 Bq/kg in September 2011 to 13 Bq/kg in February 2016. The 137Cs abundance (Bq/m2) in the surface sediment at each station decreased similarly. The rate of decrease of surface abundance varied spatially by almost one order of magnitude, ranging from 1.1 × 10?4 to 1.7 × 10?3/day, equivalent to halving times of 16–1.1 years, respectively. The rate of decrease was related to the median sediment grain size at each station. In addition, bottom-water dynamics, through the redistribution of bottom sediments, may have caused spatial variability in the rate of decrease, whereas vertical profiles of 137Cs concentrations in the sediment suggest that vertical migration of 137Cs was not a major mechanism reducing the surface 137Cs concentration. From September 2011 to February 2016, the overall halving time of 137Cs in the surface sediment in the monitoring area, excluding the area inside a 30-km radius from the Fukushima Dai-ichi Nuclear Power Plant, was 2.3 years. Thus, 76% of the originally deposited 137Cs (46 × 1012 Bq) in the surface sediment was transported out of the area during that period.  相似文献   

4.
In the current study, low-background γ-spectrometry was employed to determine the 228Ra/226Ra activity ratio and 137Cs activity of 84 coastal water samples collected at six sites along the main island of Japan (Honshu Island) within the Sea of Japan, including the Tsushima Strait, and two other representative sites on Honshu Island (a Pacific shore and the Tsugaru Strait) at 1-month intervals in 2006.The 228Ra/226Ra ratio of coastal waters in the Sea of Japan exhibited similar patterns of seasonal variation, with minimum values during early summer (228Ra/226Ra = 0.6–0.8), maximum values during autumn (228Ra/226Ra = 1.5–3), and a time lag in their temporal changes ( 2.5 months and over  1300 km distance). However, the 2 other sites represented no clear periodic variation.In contrast to the positive correlation between 137Cs activity (0.6–1.7 mBq/L) and salinity (15–35), the 228Ra/226Ra ratio of coastal water samples from the Sea of Japan was not observed to correlate with salinity, and the increase in the 228Ra/226Ra ratio was not as marked (0.5–1; May–June 2004 and 2005) during the migration along Honshu Island. The input of land-derived water and/or the diffusion of radium from coastal sediments is unlikely to have affected the wide seasonal variation in the 228Ra/226Ra ratio observed in these water samples.The seasonal variation in the 228Ra/226Ra ratio recorded for the coastal waters of the Sea of Japan is considered to be mainly controlled by the remarkable changes in the mixing ratio of the 228Ra-poor Kuroshio and the 228Ra-rich continental shelf waters within the East China Sea (ECS). After passing through the Tsushima Strait, this water mass moves northeast along the coastline of the Sea of Japan as the Tsushima Coastal Branch Current (TCBC).  相似文献   

5.
A numerical experiment is carried out to reproduce distribution of concentration of 90Sr and 137Cs, estimate their total amount and verify their source in the Japan Sea. Model results are in good agreement with observational findings in the Japan Sea expeditions between 1997 and 2002 by the Japan Atomic Energy Agency. Vertical profiles of the concentration of 90Sr and 137Cs show exponential decreases with depth from the sea surface to the sea bottom. From the model and observational results, it is suggested that the concentration of 90Sr and 137Cs in the surface layer is approximately in the range of 1.0–1.5 Bq/m3 and 2.0–2.5 Bq/m3, respectively. On the other hand, it is found that the concentration in the intermediate and deep layer is higher than that observed in the northwestern Pacific Ocean, suggesting active winter convection in the Japan Sea. The total amount of 90Sr and 137Cs in the seawater is evaluated to be 1.34 × 1015 Bq and 2.02 × 1015 Bq, respectively, in the numerical experiment, which demonstrates an estimation by observational data obtained in the Japan Sea expeditions. The total amount of 90Sr and 137Cs changed during the second half of 20th century corresponding to deposition at the sea surface with the maximums of 4.86 × 1015 Bq for 90Sr and 7.33 × 1015 Bq for 137Cs, respectively, in the mid-1960s. The numerical experiment suggests that the main source of 90Sr and 137Cs has been global fallout, although there have been some potential sources in the Japan Sea.  相似文献   

6.
Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28′E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9–84.3, 43.9–48.4, 25.3–34.8, and 0.7–17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5–2.9 million tons.  相似文献   

7.
Export fluxes of particulate organic carbon (POC) were estimated from the 234Th/238U disequilibrium in the Ulleung Basin1 (UB) of the East/Japan Sea1 (EJS) over four seasons. The fluxes were calculated by multiplying the average POC/234Th ratio of sinking particles larger than 0.7 μm at 100- and 200-m water depths to 234Th fluxes by the integrated 234Th/238U disequilibrium from the surface to 100-m water depth. In spring, the 234Th profiles changed dramatically with sampling time, and hence a non-steady-state 234Th model was used to estimate the 234Th fluxes. The 234Th flux estimated from the non-steady-state model was an order of magnitude higher than that estimated from the steady-state model. The 234Th fluxes estimated using the steady-state model showed distinct seasonal variation, with high values in summer and winter and low values in autumn. In spring, the phytoplankton biomass had the highest value, and primary production was higher than in summer and autumn, but the 234Th fluxes were moderate. However, these values might have been significantly underestimated, as the 234Th fluxes were estimated using the steady-state model. The POC export fluxes estimated in autumn were about four times lower than those in other seasons when they were rather similar. The annually averaged POC flux was estimated to be 161 ± 76 mgC m−2 day−1, which was somewhat lower than that in highly productive coastal areas, and higher than that in oligotrophic regions. The export/primary production (ThE) ratios ranged from 7.0 to 56.1%, with higher values in spring and summer and lower values in autumn and winter. In summer, a high ThE ratio of 48.4 ± 7.0% was measured. This may be attributed to the mass diatom sinking event following nitrate depletion. In the UB1, the annually averaged ThE ratio was estimated to be 34.4 ± 12.9%, much higher than that in oligotrophic oceans. The high ThE ratio may have contributed to the high organic carbon accumulation in the UB1.  相似文献   

8.
The activity concentrations of dissolved137Cs have been determined in the water column and137Cs and134Cs in the sediments and the sediment porewaters of the southern Baltic Sea. The mean activity concentration of dissolved137Cs in the Gdansk Deep declined from 109 Bq m−3in June 1986 to 61 Bq m−3in 1999. In sediments, the activity concentrations of137Cs (33-231 Bq kg−1) were highest in muds and the activity concentrations of134Cs were about 6% of the total Cs activity. The Chernobyl contribution to137Cs activity was between 43% and 77%. The porewater activity concentrations of137Cs in muddy sediments were in the range 71 to 3900 Bq m−3and were higher than those in the overlying seawater. The diffusive flux of dissolved137Cs from the muddy sediments was estimated in the range 5 to 480 Bq m−2year−1. The flux of137Cs from sediment porewaters of the southern Baltic Sea was about 45% of the total, including fluxes of137Cs from wet and dry atmospheric deposition and the fluvial inputs. The results were used to elucidate the rate of recovery of the sediments and the waters of the southern Baltic from Chernobyl-derived137Cs.  相似文献   

9.
We used more than 25,000 nutrient samples to elucidate for the first time basin-scale distributions and seasonal changes of surface ammonium (NH4 +) and nitrite (NO2 ?) concentrations in the Pacific Ocean. The highest NH4 +, NO2 ?, and nitrate (NO3 ?) concentrations were observed north of 40°N, in the coastal upwelling region off the coast of Mexico, and in the Tasman Sea. NH4 + concentrations were elevated during May–October in the western subarctic North Pacific, May–December in the eastern subarctic North Pacific, and June–September in the subtropical South Pacific. NO2 ? concentrations were highest in winter in both hemispheres. The seasonal cycle of NH4 + was synchronous with NO2 ?, NO3 ?, and satellite chlorophyll a concentrations in the western subtropical South Pacific, whereas it was synchronous with chlorophyll-a but out of phase with NO2 ? and NO3 ? in the subarctic regions.  相似文献   

10.
自2011年3月日本福岛第一核电站事故发生以来,其对中国海的影响一直备受国内高度关注。基于近10年的研究成果,本文综述了福岛第一核电站事故释放的放射性核素进入中国海的海洋传输路径主要为表层环流和模态水(亚热带模态水和中央模态水),经表层环流和模态水到达中国海的时间尺度分别在10—15年和2—3年之间。对比分析福岛第一核电站事故前后可知:南海137Cs活度持平,黄海137Cs活度稍有降低,但东海137Cs活度有所升高。鉴于目前有限的监测站位和短期的观测时间,福岛第一核电站事故对中国海的影响程度大小还有待于长期监测和进一步的评估。同时针对日本政府宣布福岛第一核电站核污水排海计划,分析了其潜在的风险和指出了未来的研究方向。  相似文献   

11.
Concentrations of dissolved methane in seawater and bottom sediments, as well as of methane emanating from gas seeps were measured at 18 stations including several small bays in the Sevastopol coastal area (Black Sea) during 2007–2008. Methane concentrations in surface waters ranged from 10 to 2,970 nmol l?1, and correlated well with values recorded for sediments. Methane concentrations in the water column were influenced by water depth, as well as by air and water temperatures. In the spring and summer of 2008, in situ CH4 saturation relative to air was in the range of 970–71,900%. Maximum saturation was in summer. CH4 fluxes to the atmosphere from the Sevastopol coastal area were estimated to vary from 190 to 1,550 μmol m?2 day?1. Gas bubbles escaping from the seepages contained about 57 vol% methane. Radiocarbon dating of the methane revealed an age not exceeding 150 years, implying a biogenic origin.  相似文献   

12.
The northern part of Okinawa Island suffers from red soil pollution—runoff of red soil into coastal seawater—which damages coastal ecosystems and scenery. To elucidate the impacts of red soil pollution on the oxidizing power of seawater, hydrogen peroxide (HOOH) and iron species including Fe(II) and total iron (Fe(tot), defined as the sum of Fe(II) and Fe(III)) were measured simultaneously in seawater from Taira Bay (red-soil-polluted sea) and Sesoko Island (unpolluted sea), off the northern part of Okinawa Island, Japan. We performed simultaneous measurements of HOOH and Fe(II) because the reaction between HOOH and Fe(II) forms hydroxyl radical (•OH), the most potent environmental oxidant. Gas-phase HOOH concentrations were also measured to better understand the sources of HOOH in seawater. Both HOOH and Fe(II) in seawater showed a clear diurnal variation, i.e. higher in the daytime and lower at night, while Fe(tot) concentrations were relatively constant throughout the sampling period. Fe(II) and Fe(tot) concentrations were approximately 58% and 19% higher in red-soil-polluted seawater than in unpolluted seawater. Gas-phase HOOH and seawater HOOH concentrations were comparable at both sampling sites, ranging from 1.4 to 5.4 ppbv in air and 30 to 160 nM in seawater. Since Fe(II) concentrations were higher in red-soil-polluted seawater while concentrations of HOOH were similar, •OH would form faster in red-soil-polluted seawater than in unpolluted seawater. Since the major scavenger of •OH, Br, is expected to have similar concentrations at both sites, red-soil-polluted seawater is expected to have higher steady-state •OH concentrations.  相似文献   

13.
The transport of Japan Basin Bottom Water (JBBW) into the Yamato Basin in the Japan Sea is an important boundary condition for the modification of the abyssal water mass in the Yamato Basin. To estimate the volume transport of JBBW, two year-long observations (October 2011–October 2012 and May 2014–May 2015) were carried out using current meters moored in the deep channel connecting the Japan Basin with the Yamato Basin. The mean transport toward the Yamato Basin from the Japan Basin was estimated to be 7.37 × 104 and 5.15 × 104 m3 s?1, consistent with previous estimates from box model analysis and lowered acoustic Doppler current profiler observations. The time series of JBBW transport showed significant variability. A cause of the variability was bottom-intensified flow fluctuations in the 3- to 15-day period band, which suggests bottom-trapped topographic Rossby waves in the deep channel. In addition, during August–October 2014, notable variation of JBBW transport accompanied significant decreases of potential temperature and dissolved oxygen concentration. Detailed examination of the episodic variations of flows, potential temperature, and dissolved oxygen concentration, together with consideration of sea surface height variations, suggested that rapid northward meandering of the surface subarctic front was another cause of the significant variation in JBBW transport.  相似文献   

14.
Radionuclide activities of 210Pb and 226Ra were measured to determine bioturbation coefficients (Db) in seven sediment cores from the Korean licensed block for polymetallic nodules in the Clarion–Clipperton Fracture Zone. Variability in Db is considered in the context of the sedimentological, geochemical, and geotechnical properties of the sediments. Db values in the studied cores were estimated using a steady-state diffusion model and varied over a wide range from 1.1 to 293 cm2/yr with corresponding mixing depths (L) of 26 to 144 cm. When excepting for spurious results obtained from cores where diffusive mixing does not apply, Db values range from 1.1 to 9.0 cm2/yr with corresponding mixing depths (L) of 26 to 63 cm. Such wide variability in Db and L values is exceptional in sites with water depths of ~5000 m and is attributed in this study to an uneven distribution of sediment layers with different shear strengths and total organic carbon (TOC) contents, caused by erosion events. The studied cores can be grouped into two categories based on lithologic associations: layers with high maximum shear strength (MSS) and low TOC content, showing a narrow range of Db values (1.1–9.0 cm2/yr); and layers with low MSS and high TOC content, yielding much higher Db values of over 30 cm2/yr. The distribution of different lithologies, and the resultant spatial variability in MSS and labile organic matter content, controls the presence and maximum burrowing depth of infauna by affecting their mobility and the availability of food. This study provides a unique case showing that shear strength, which relates to the degree of sediment consolidation, might be an important factor in controlling rates of bioturbation and sediment mixing depths.  相似文献   

15.
The Arctic Ocean is connected to the Pacific by the Bering Sea and the Bering Strait. During the 4th Chinese National Arctic Research Expedition, measurements of carbon tetrachloride (CCl4) were used to estimate ventilation time-scales and anthropogenic CO2 (Cant) concentrations in the Arctic Ocean and Bering Sea based on the transit time distribution method. The profile distribution showed that there was a high-CCl4 tongue entering through the Canada Basin in the intermediate layer (27.6?<?σθ?<?28), at latitudes between 78 and 85°N, which may be related to the inflow of Atlantic water. Between stations B09 and B10, upwelling appeared to occur near the continental slope in the Bering Sea. The ventilation time scales (mean ages) for deep and bottom water in the Arctic Ocean (~?230–380 years) were shorter than in the Bering Sea (~?430–970 years). Higher mean ages show that ventilation processes are weaker in the intermediate water of the Bering Sea than in the Arctic Ocean. The mean Cant column inventory in the upper 4000 m was higher (60–82 mol m?2) in the Arctic Ocean compared to the Bering Sea (35–48 mol m?2).  相似文献   

16.
Using the outputs of projections under the highest emission scenario of the representative concentration pathways performed by Earth system models (ESMs), we evaluate the ocean acidification rates of subsurface layers of the western North Pacific, where the strongest sink of atmospheric CO2 is found in the mid-latitudes. The low potential vorticity water mass called the North Pacific Subtropical Mode Water (STMW) shows large dissolved inorganic carbon (DIC) concentration increase, and is advected southwestward, so that, in the sea to the south of Japan, DIC concentration increases and ocean acidification occurs faster than in adjacent regions. In the STMW of the Izu-Ogasawara region, the ocean acidification occurs with a pH decrease of ~0.004 year?1 , a much higher rate than the previously estimated global average (0.0023 year?1), so that the pH decreases by 0.3–0.4 during the twenty-first century and the saturation state of calcite (ΩCa) decreases from ~4.8 down to ~2.4. We find that the ESMs with a deeper mixed layer in the Kuroshio Extension region show a larger increase in DIC concentration within the Izu-Ogasawara region and within the Ryukyu Islands region. Comparing model results with the mixed layer depth obtained from the Argo dataset, we estimate that DIC concentration at a depth of ~200 m increases by 1.4–1.6 μmol kg?1 year?1 in the Izu-Ogasawara region and by 1.1–1.4 μmol kg?1 year?1 in the Ryukyu Islands region toward the end of this century.  相似文献   

17.
The East China Sea (ECS) around Jeju Island lies in a transitional region between the temperate and subtropical zones and is influenced by the Kuroshio Current. Hence, this area has been considered an important monitoring site for oceanic ecosystem changes. Herein, we assessed the community structure and diversity of the phytoplankton in the ECS around Jeju Island using small subunit ribosomal RNA pyrosequencing. We analyzed eight samples collected from the surface and at 30 m- and/or 50-m depths from two neritic and oceanic stations each from 24–30 April 2011. Comparisons of 15,498 pyrosequences identified 172 phylotypes of phytoplankton, excluding cyanobacteria, from the four surface stations. These pyrosequences were represented by dinoflagellates (29 %), stramenopiles (31 %), and chlorophytes (>39 %), with minor contributions from cryptophytes, haptophytes, and Telonemia. Phylotypes retrieved at 30- and 50-m depths were very similar to the surface samples. However, phylotype diversity and community structure varied considerably with the stations. Dominant phylotypes included Karlodinium veneficum, Ostreococcus tauri, Skeletonema marinoi, and Thalassiosira curviseriata, and many of the detected phylotypes include new records for the present study area. This study provides a valuable phylotype reference for future phytoplankton community structure and diversity studies with regard to marine environmental changes.  相似文献   

18.
We have measured helium isotopic ratios of thirty-seven Pacific water samples from various depths collected in adjacent regions of Honshu, Japan. The 3He/4He ratios vary significantly from 0.989 R atm to 1.208 R atm where R atm is the atmospheric ratio of 1.39 × 10−6. The mid-depth (750–1500 m) profile of 3He/4He ratios at ST-1 located Northwestern Pacific Ocean east of Japan (Off Joban; 37°00′ N, 142°40′ E) is significantly different from that at ST-2 of the Northern Philippine Sea south of Japan (Nankai Trough; 33°07′ N, 139°59′ E), suggesting that these waters were separated by a topographic barrier, the Izu-Ogasawara Ridge. Taking 3He/4He data of the Geosecs expeditions in the western North Pacific, an extensive plume of 15% excess 3He relative to the air may be traced at ST-1 over 12,000 kilometers to the northwest of the East Pacific Rise where the mantle helium may originate. The 20% excess found at ST-2 may be attributable to the additional source of the subduction-type mantle helium in the Okinawa Trough. A 15% excess of 3He has also been discovered at a depth of about 1000∼1500 m at ST-3 adjacent to Miyakejima Island (33°57′ N, 139°22′ E) and ST-4 of Sagami Bay (35°00′ N, 139°22′ E). It is confirmed that mid-depth all over the western North Pacific water is affected by the mantle helium with a high 3He/4He ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The purpose of this study was to determine if seasonal anoxia affects the community composition and abundance of benthic diatoms in an estuarine basin. Subtidal benthic diatoms were collected monthly at 1-m water depth intervals from 2 to 7 m in an estuarine basin of Pettaquamscutt River, Rhode Island, during 1981. Water samples were collected at the same depths to measure temperature, salinity, oxygen and sulfide levels. The basin became stratified above 7 m in June and the interface between oxic and anoxic waters remained at 5 or 5·5 m until December when it rose to above 4 m. Motile, biraphid diatoms dominated on the muddy sediments and live cell counts of these were insignificant below 5·5 m. At shallower depths, abundance was seasonally bimodal. In the spring, a peak began in April at 3 m (later in the season with increasing depth) and a smaller fall peak began in October at 4 and 5 m (later at shallower depths). Highest standing crop in August was at 5·5 m when 1% PAR (Photosynthetically Active Radiation) was at 4 m.The position of the interface between oxic and anoxic waters after stratification of the water column affected both abundance and species composition of benthic diatoms within 1·5 m above it. Navicula gregaria Donkin and N. ammophila Grunow dominated the spring and summer assemblages at all depths, but after September N. gregaria vanished from the basin below 3 m. In fall and winter, distinctly different populations were present at 4–5·5 m and at 2 m. The assemblage at 4 m and below consisted of sulfide-tolerant species of Navicula. Healthy populations of Navicula ammophila Grunow, N. pseudocrassirostris Hustedt, and N. peregrina (Ehrenberg) Kützing together reached 138 × 103 cells cm?2 at less than 1% light levels and up to 88 μM sulfide.  相似文献   

20.
The annual distribution and dispersal of early‐stage phyllosoma of the Japanese spiny lobster Panulirus japonicus were examined in the East China Sea and the Sea of Japan off western Japan. Early‐stage larvae were sampled mainly in summer and relatively near the coast off western Kyusyu Island. Few larvae were found in the other three seasons in the East China Sea and the Sea of Japan. This finding suggests that P. japonicus larvae are retained in coastal areas for a few months after hatching until stage V and are transported offshore until autumn, before they grow to stage VI. Examination of archival drifter data off western Kyusyu Island during the spawning season of P. japonicus supported the relatively rapid dispersal of the larvae from the East China Sea near Japan to the Pacific Ocean or the Sea of Japan. Larval transport from the East China Sea to the Pacific Ocean, which is considered to be a main distribution area of middle‐ and late‐stage larvae, would occur in the south at approximately 32–33°N in the East China Sea near western Kyusyu Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号