首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, whole-rock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks.  相似文献   

2.
The Central Asian metallogenic domain (CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems. The Balkhash metallogenic belt in Kazakhstan, in which occur many large and super-large porphyritic Cu–Mo deposits and some quartz vein- and greisen-type W–Mo deposits, is a well-known porphyritic Cu–Mo metallogenic belt in the CAMD. In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re–Os compositional analyses and Re–Os isotopic dating. Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W–Mo deposits—East Kounrad, Akshatau and Zhanet—all have relatively high Re contents (2712–2772 μg/g for Borly and 2.267–31.50 μg/g for the other three W–Mo deposits), and lower common Os contents (0.670–2.696 ng/g for Borly and 0.0051–0.056 ng/g for the other three). The molybdenites from the Borly porphyry Cu–Mo deposit and the East Kounrad, Zhanet, and Akshatau quartz vein- and greisen-type W–Mo deposits give average model Re–Os ages of 315.9 Ma, 298.0 Ma, 295.0 Ma, and 289.3 Ma respectively. Meanwhile, molybdenites from the East Kounrad, Zhanet, and Akshatau W–Mo deposits give a Re–Os isochron age of 297.9 Ma, with an MSWD value of 0.97. Re–Os dating of the molybdenites indicates that Cu–W–Mo metallogenesis in the western Balkhash metallogenic belt occurred during Late Carboniferous to Early Permian (315.9–289.3 Ma), while the porphyry Cu–Mo deposits formed at 316 Ma, and the quartz vein-greisen W–Mo deposits formed at 298 Ma. The Re–Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercynian movement. Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China, the formation of the Cu–Mo metallogenesis in the Balkhash metallogenic belt occurred between that of the Tuwu-Yandong in East Tianshan and the Baogutu porphyry Cu deposits in West Junggar. Collectively, the large-scale Late Carboniferous porphyry Cu–Mo metallogenesis in the Central Asian metallogenic domain is related to Hercynian tectono-magmatic activities.  相似文献   

3.
The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA–ICP–MS zircon U–Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U–Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re–Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from ?10 to ?16, and ?20 to ?24, respectively, corresponding to two–stage model ages (tDM2: mainly focused on 1.86–2.0 Ga, and 2.2–2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore–forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from ?18 to ?20, ?28 to ?38, and ?42 to ?44, respectively, corresponding to two–stage model ages (tDM2: mainly focused on 1.88–3.0 Ga, and 3.2–3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two–stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.  相似文献   

4.
The Wurinitu Mo deposit is one of the newly found molybdenum deposits in the southwestern part of the late Paleozoic–Mesozoic Erenhot–Dong-Ujimqin metallogenic belt(S-EDMB),Inner Mongolia,China. In the present study,the mineralization age of the Wurinitu deposit is constrained to 137.3 ± 1.3 to 131.9 ± 1.5 Ma based on a combination of the laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) zircon U–Pb dating of the mineralization related fine-grained monzonitic granite and the post-mineralization granite porphyry. The results of zircon Lu–Hf isotopes,combined with the geochemical characteristics of the granites in the S-EDMB,suggest that the Wurinitu Mo deposit was formed in an extensional environment in relation to the subduction of the Paleo-Pacific plate in late Mesozoic. The Wurinitu deposit shares similarities with the classical Climaxtype porphyry molybdenum deposits in tectonic setting,mineral assemblages,and metal zonation.  相似文献   

5.
The Shizitou molybdenum(Mo) deposit in Yongping, Jiangxi, is an important, recently discovered deposit in the eastern section of the Qin–Hang metallogenic belt. The Mo deposit is located in the outer contact zone between the porphyritic biotite granite and the Neoproterozoic migmatite, and present in the deep central part of the intrusion. Re–Os dating and S and Pb isotopic analysis have been conducted to assess the metallogenesis of the Shizitou Mo deposit. S, Pb and Re isotopes show that the ore–forming materials were derived from the porphyritic biotite granitic magma, which originated from the mixing of mantle and crust. Re–Os dating of molybdenite from the ores gives a model age from 156.9±2.2 to 158.5±2.4 Ma, with a weighted mean age of 158±1 Ma and an isochron age of 158.0±2.5 Ma. Geological and geochemical characteristics of the ore deposit and the related granitoids indicate that the Shizitou deposit is a Climax–type Mo deposit. Based on previous studies of the Qin–Hang metallogenic belt, two metallogenic events are believed to have occurred during 172–145 Ma and 137–132 Ma. These two metallogenic periods are consistent with the timing of two metallogenic peaks during the middle to late Jurassic and the Cretaceous in South China. These events represent responses to the partial back–arc extension associated with the subduction of the Izanagi plate beneath the Eurasian continent and the rapid northeastward movement of the subducting Izanagi plate.  相似文献   

6.
The Huangsha-Tieshanlong quartz-vein tungsten polymetallic ore deposit, located in the northern Pangushan-Tieshanlong tungsten ore field in eastern Ganxian-Yudu prospecting areas of the Yushan metallogenic belt, is a well-known tungsten deposit in southern Jiangxi province, China. SHRIMP-determined dating of zircons from the Tieshanlong granite yields ages of 168.1±2.1 Ma (n=11, MSWD=1.3). Rhenium and osmium isotopic dating of molybdenite from the Huangsha quartz-vein tungsten deposit determined by ICP-MS yields a weighted average ages of 153±3 Ma and model ages of 150.2±2.1 Ma – 155.4±2.3 Ma. The age of the Huangsha tungsten deposit is 10 to 15 Ma later than the Tieshanlong granite, which shows that there might have been another early Late Jurassic magmatic activity between 150 and 160 Ma, a process which is closely related with tungsten mineralization in this area. The Tieshanlong granite, the Huangsha tungsten deposit and the Pangushan-Tieshanlong ore field were all formed around 150–170 Ma, belonging to products of a Mesozoic second large-scale mineralization. According to the collected molybdenite Re-Os dating results in southern Jiangxi province, the timescale of the associated molybdenum mineralization is 2–6 Ma in the tungsten deposit and the timescale of independent molybdenum mineralization is 1–4 Ma, implying the complexity of tungsten mineralization. Times of molybdenum mineralization are mainly concentrated in the Yanshanian, which includes three stages of 133~135 Ma, 150–162 Ma, and 166–170 Ma, respectively. The 150–162 Ma-stage is in accordance with ages of large-scale W-Sn mineralization, which is mainly molybdenum mineralization characterized by associated molybdenum mineralization with development of an even greater-intensity independent molybdenum mineralization. Independent molybdenum mineralization occurred before and after large-scale W-Sn mineralization, which indicates that favorable prospecting period for molybdenum may be in Cretaceous and early late Jurassic.  相似文献   

7.
The Erlihe Pb–Zn deposit is an important mine of the Pb–Zn metallogenic zone in the South Qinling Orogen. It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs concordantly at the transitional location of an upright fold. Re and Os isotopic analyses for paragenetic pyrites with sphalerite and galena from the ore body have been used to determine the timing of mineralization and to trace the source of metallogenic materials. The Re–Os isotopic data of four pyrite samples construct an isochron, yielding a weighted average age of 226±17 Ma (mean square weighted deviation=1.7), which is considered the main mineralization age. A dioritic porphyrite vein sample, showing weaker mineralization, was also dated using the SHRIMP zircon U–Pb isotopic method to constrain the youngest metallogenic age of the ore deposit, because it distributes along a group of tensional joints cutting not only the upright fold in the deposit field, but also the main ore bodies. The dioritic porphyrite sample yields a weighted mean 206Pb/238U age of 221±3 Ma, which is slightly younger than the Re–Os isotopic isochron age of the pyrites, considered as the upper age limit of the mineralization, namely the ending age of the mineralization. The Os isotopic compositions of sulfide minerals distribute within a range between Os isotopic compositions of the crust and the mantle, indicating that the ore deposit can be derived from magma-related fluid, and the metallogenic materials are most likely derived from the mixing source of the crust and the mantle. The Erlihe Pb–Zn deposit and associated dioritic porphyrite vein, important records of Qinling tectonic–magmatism–mineralization activities, were formed during the Triassic collisional orogeny processes.  相似文献   

8.
Abstract: The Fengshan porphyry-skarn copper–molybdenum (Cu–Mo) deposit is located in the south-eastern Hubei Province in east China. Cu–Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (~140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu–Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu–Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source.  相似文献   

9.
<正>The Central Asian metallogenic domain(CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems.The Balkhash metallogenic belt in Kazakhstan,in which occur many large and super-large porphyritic Cu—Mo deposits and some quartz vein- and greisen-type W—Mo deposits,is a well-known porphyritic Cu—Mo metallogenic belt in the CAMD.In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re—Os compositional analyses and Re—Os isotopic dating.Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W—Mo deposits—East Kounrad.Akshatau and Zhanet—all have relatively high Re contents(2712—2772μg/g for Borly and 2.267—31.50μg/g for the other three W—Mo deposits),and lower common Os contents(0.670—2.696 ng/g for Borly and 0.0051—0.056 ng/g for the other three).The molybdenites from the Borly porphyry Cu—Mo deposit and the East Kounrad,Zhanet,and Akshatau quartz vein- and greisen-type W—Mo deposits give average model Re—Os ages of 315.9 Ma,298.0 Ma,295.0 Ma,and 289.3 Ma respectively.Meanwhile,molybdenites from the East Kounrad,Zhanet,and Akshatau W—Mo deposits give a Re—Os isochron age of 297.9 Ma,with an MSWD value of 0.97.Re-Os dating of the molybdenites indicates that Cu—W—Mo metallogenesis in the western Balkhash metallogenic belt occurred during Late Carboniferous to Early Permian(315.9—289.3 Ma),while the porphyry Cu—Mo deposits formed at—316 Ma,and the quartz vein-greisen W—Mo deposits formed at ~298 Ma.The Re—Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercynian movement.Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China,the formation of the Cu—Mo metallogenesis in the Balkhash metallogenic belt occurred between that of the Tuwu-Yandong in East Tianshan and the Baogutu porphyry Cu deposits in West Junggar. Collectively,the large-scale Late Carboniferous porphyry Cu—Mo metallogenesis in the Central Asian metallogenic domain is related to Hercynian tectono-magmatic activities.  相似文献   

10.
The Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit(20000 t Sn at 0.27%,236 t Ag at 122.89 g/t,15000 t Pb at 0.84%,and 38000 t Zn at 1.43%)is located in the Wandashan Terrane of the easternmost segment of the Central Asian Orogenic Belt.The timing of Sn-Pb-Zn-Ag polymetallic mineralization remains unclear due to a lack of precise isotope dating directly conducted on ore minerals.The authors herein report that the LA-ICP-MS U-Pb ages of cassiterite and zircon from the granite porphyry in the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit are 101.4±7.9 Ma and 115.4±1.0 Ma,respectively,indicating that Sn mineralization and magmatism occurred during the Early Cretaceous.The granite porphyry belongs to the subalkaline series peraluminous I-type granites that are depleted in Nb,Ta,and Ti and enriched in Rb,Th,U,and Pb.TheεHf(t)values of the granite porphyry range from 0.9 to 7.4,with an average of about 5.6 and two-stage model ages(TDM2)of 705–1116 Ma,with an average age of 819 Ma.The εNd(t)values of the apatites are–1.60–0.45,with an average of–0.9,and two-stage model ages(TDM2)of 872–1040 Ma,with an average age of 983 Ma.The Nd-Hf isotope data indicate that the magma may have been derived from the partial melting of juvenile crustal material.  相似文献   

11.
The recently discovered Baizhangyan skarn‐porphyry type W–Mo deposit in southern Anhui Province in SE China occurs near the Middle–Lower Yangtze Valley polymetallic metallogenic belt. The deposit is closely temporally‐spatially associated with the Mesozoic Qingyang granitic complex composed of g ranodiorite, monzonitic g ranite, and alkaline g ranite. Orebodies of the deposit occur as horizons, veins, and lenses within the limestones of Sinian Lantian Formation contacting with buried fine‐grained granite, and diorite dykes. There are two types of W mineralization: major skarn W–Mo mineralization and minor granite‐hosted disseminated Mo mineralization. Among skarn mineralization, mineral assemblages and cross‐cutting relationships within both skarn ores and intrusions reveal two distinct periods of mineralization, i.e. the first W–Au period related to the intrusion of diorite dykes, and the subsequent W–Mo period related to the intrusion of the fine‐grained granite. In this paper, we report new zircon U–Pb and molybdenite Re–Os ages with the aim of constraining the relationships among the monzonitic granite, fine‐grained granite, diorite dykes, and W mineralization. Zircons of the monzonitic granite, the fine‐grained granite, and diorite dykes yield weighted mean U–Pb ages of 129.0 ± 1.2 Ma, 135.34 ± 0.92 Ma and 145.3 ± 1.7 Ma, respectively. Ten molybdenite Re–Os age determinations yield an isochron age of 136.9 ± 4.5 Ma and a weighted mean age of 135.0 ± 1.2 Ma. The molybdenites have δ34S values of 3.6‰–6.6‰ and their Re contents ranging from 7.23 ppm to 15.23 ppm. A second group of two molybdenite samples yield ages of 143.8 ± 2.1 and 146.3 ± 2.0 Ma, containing Re concentrations of 50.5–50.9 ppm, and with δ34S values of 1.6‰–4.8‰. The molybdenites from these two distinct groups of samples contain moderate concentrations of Re (7.23–50.48 ppm), suggesting that metals within the deposit have a mixed crust–mantle provenance. Field observation and new age and isotope data obtained in this study indicate that the first diorite dyke‐related skarn W–Au mineralization took place in the Early Cretaceous peaking at 143.0–146.3 Ma, and was associated with a mixed crust–mantle system. The second fine‐grained granite‐related skarn W–Mo mineralization took place a little later at 135.0–136.9 Ma, and was crust‐dominated. The fine‐grained granite was not formed by fractionation of the Qingyang monzonitic granite. This finding suggests that the first period of skarn W–Au mineralization in the Baizhangyan deposit resulted from interaction between basaltic magmas derived from the upper lithospheric mantle and crustal material at 143.0–146.3 and the subsequent period of W–Mo mineralization derived from the crust at 135.0–136.9 Ma.  相似文献   

12.
The Xiaoxinancha Au–Cu deposit is located at the eastern segment of the Tianshan–Xingmeng orogenic belt in northeast China. The deposit includes porphyry Au–Cu orebodies, veined Au–Cu orebodies and veined Mo mineralizations. All of them occur within the diorite intrusion. The Late Permian diorite, Late Triassic granodiorite, Early Cretaceous granite and granite porphyry are developed in the ore area. The studies on geological features show that the porphyry Au–Cu mineralization is related to the Late Permian diorite intrusion. New geochronologic data for the Xiaoxinancha porphyry Au–Cu deposit yield Permian crystallization zircon U–Pb age of 257 ± 3 Ma for the diorite that hosts the Au–Cu mineralization. Six molybdenite samples from quartz + molybdenite veins imposed on the porphyry Au–Cu orebodies yield an isochron age of 110.3 ± 1.5 Ma. The ages of the molybdenites coeval to zircon ages of the granite within the errors suggest that the Mo mineralization was genetically related to the Early Cretaceous granite intrusion. The formation of the diorite and the related Au–Cu mineralization were caused by the partial melting of the subduction slab during the Late Palaeozoic palaeo‐Asia Ocean tectonic stage. The Re contents and Re–Os isotopic data indicate that the crustal resource is dominated for the Mo mineralization during the Cretaceous extensional setting caused by the roll‐back of the palaeo‐Pacific plate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Jilin Province in NE China lies on the eastern edge of the Xing–Meng Orogenic Belt. Mineral exploration in this area has resulted in the discovery of numerous large, medium, and small sized Cu, Mo, Au, and Co deposits. To better understand the formation and distribution of both the porphyry and skarn types Cu deposits of the region, we examined the geological characteristics of the deposits and applied zircon U–Pb and molybdenite Re–Os isotope dating to constrain the age of the mineralization. The Binghugou Cu deposit yields a zircon U–Pb age for quartz diorite of 128.1 ± 1.6 Ma; the Chang'anpu Cu deposit yields a zircon U–Pb age for granite porphyry of 117.0 ± 1.4 Ma; the Ermi Cu deposit yields a zircon U–Pb age for granite porphyry of 96.8 ± 1.1 Ma; the Tongshan Cu deposit yields molybdenite Re–Os model ages of 128.7 to 130.2 Ma, an isochron age of 129.0 ± 1.6 Ma, and a weighted mean model age of 129.2 ± 0.7 Ma; and the Tianhexing Cu deposit yields molybdenite Re–Os model ages of 113.9 to 115.2 Ma, an isochron age of 114.7 ± 1.2 Ma, and a weighted mean model age of 114.7 ± 0.7 Ma. The new ages, combined with existing geochronology data, show that intense porphyry and skarn types Cu mineralization was coeval with Cretaceous magmatism. The geotectonic processes responsible for the genesis of the Cu mineralization were probably related to lithospheric thinning. By analyzing the accumulated molybdenite Re–Os, zircon U–Pb, and Ar–Ar ages for NE China, it is concluded that the Cu deposits formed during multiple events coinciding with periods of magmatic activity. We have identified five phases of mineralization: early Paleozoic (~476 Ma), late Paleozoic (286.5–273.6 Ma), early Mesozoic (~228.7 Ma), Jurassic (194.8–137.1 Ma), and Cretaceous (131.2–96.8 Ma). Although Cu deposits formed during each phase, most of the Cu mineralization occurred during the Cretaceous.  相似文献   

14.
The Taolaituo porphyry‐type molybdenum deposit is located in the eastern Inner Mongolia Autonomous Region in China. The mineralization occurs mainly as veins, lenses and layers within the host porphyry. To better understand the link between the mineralization and the host igneous rocks, we studied samples from the underground workings and report new SHRIMP II zircon U–Pb and Re–Os molybdenite ages, and geochemical data from both the molybdenites and the porphyry granites. Five molybdenite samples yield a Re–Os isochron weighted mean age of 133.0 ± 0.82 Ma, whereas the porphyry granitoids samples yield crystallization ages of 133 ± 1 Ma and 130.4 ± 1.3 Ma. The U–Pb and Re–Os ages are similar, suggesting that the mineralization is genetically related to the Early Cretaceous porphyry emplacement. Re contents of the molybdenites range from 21.74 to 42.45 ppm, with an average of 32.69 ppm, whereas δ34S values vary between 3.7‰ and 4.2‰, which is typical of mantle sulphur. The 206Pb/204Pb, 207Pb/ 204Pb and 208Pb/204Pb vary in the ranges of 18.276–18.385, 15.566–15.580 and 38.321–38.382, respectively. The Taolaituo Early Cretaceous granitoids are A‐type granites. These observations indicate that the molybdenites and the porphyry granites were derived from a mixed source involving young accretionary materials and enriched subcontinental lithospheric mantle. A synthesis of geochronological and geological data reveals that porphyry emplacement and Mo mineralization in the Taolaituo deposit occurred contemporaneously with the Early Cretaceous tectonothermal events associated with lithospheric thinning, which was caused by delamination and subsequent upwelling of the asthenosphere associated with intra‐continental extension in northeast China. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The Karamay porphyry Mo–Cu deposit, discovered in 2010, is located in the West Junggar region of Xinjiang of northwest China. The deposit is hosted within the Karamay granodiorite porphyry that intruded into Early Carboniferous sedimentary strata and its exo‐contact zone. The LA‐ICPMS U–Pb method was used to date the zircons from the granodiorite samples of the porphyry. Analyses of 12 spots of zircons from the granodiorite samples yield a U–Pb weighted mean age of 300.8 ± 2.1 Ma (2σ). Re–Os dating for five molybdenite samples obtained from two prospecting trenches and three outcrops in the deposit yield a Re–Os isochron age of 294.6 ± 4.6 Ma (2σ), with an initial 187Os/188Os of 0.0 ± 1.1. The isochron age is within the error of the Re–Os model ages, demonstrating that the age result is reliable. The Re–Os isochron age of the molybdenite is consistent with the U–Pb age of the granodiorite porphyry, which indicates that the deposit is genetically related with an Early Permian porphyry system. The ages of the Karamay Mo–Cu deposit and the ore‐bearing porphyry are similar to the ages of intermediate‐acid intrusions and Cu–Mo–Au polymetallic deposits in the West Junggar region. This consistency suggests the same geodynamic process to the magmatism and related mineralization.  相似文献   

16.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

17.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

18.
The Middle–Lower Yangtze Region (MLYR) is one of the most important metallogenic belts in China that hosts numerous Cu–Fe–Au–S deposits. The Hucunnan deposit in the central part of MLYR is a newly discovered porphyry–skarn‐type copper–molybdenum deposit during recent drilling exploration. Laser ablation ICP–MS analysis carried out in this study yields U–Pb isotopic ages of 137.5 ± 1.2 Ma for the Cu–Mo bearing granodiorite rock and 125.0 ± 1.5 Ma for the Cu‐bearing quartz diorites. The Re–Os isotopic dating of seven molybdenite samples gave an isochron age of 139.5 ± 1.1 Ma, suggesting a syn‐magma mineralization of molybdenite in the Hucunnan deposit. Since porphyry‐type molybdenum deposits are rare in central MLYR, the discovery of the Hucunnan deposit suggests possible molybdenite mineralizations in the deep places of the Cu–Mo bearing granitoids. In addition, the U–Pb isotopic age of 125 Ma for the Cu‐bearing quartz diorites implies a new Cu mineralization period for the MLYR that was rarely reported by previous studies.  相似文献   

19.
The Lakange porphyry Cu–Mo deposit within the Gangdese metallogenic belt of Tibet is located in the southern–central part of the eastern Lhasa block, in the Tibetan Tethyan tectonic domain. This deposit is one of the largest identified by a joint Qinghai–Tibetan Plateau geological survey project undertaken in recent years. Here, we present the results of the systematic logging of drillholes and provide new petrological, zircon U–Pb age, and molybdenite Re–Os age data for the deposit. The ore‐bearing porphyritic granodiorite contains elevated concentrations of silica and alkali elements but low concentrations of MgO and CaO. It is metaluminous to weakly peraluminous and has A/CNK values of 0.90–1.01. The samples contain low total REE concentrations and show light REE/heavy REE (LREE/HREE) ratios of 17.51–19.77 and (La/Yb)N values of 29.65–41.05. The intrusion is enriched in the large‐ion lithophile elements (LILE) and depleted in the HREE and high field‐strength elements (HFSE). The ore‐bearing porphyritic granodiorite yielded a Miocene zircon U–Pb crystallization age of 13.58 ± 0.42 Ma, whereas the mineralization within the Lakange deposit yielded Miocene molybdenite Re–Os ages of 13.20 ± 0.20 and 13.64 ± 0.21, with a weighted mean of 13.38 ± 0.15 Ma and an isochron age of 13.12 ± 0.44 Ma. This indicates that the crystallization and mineralization of the Lakange porphyry were contemporaneous. The ore‐bearing porphyritic granodiorite yielded zircon εHf(t) values between ?3.99 and 4.49 (mean, ?0.14) and two‐stage model ages between 1349 and 808 Myr (mean, 1103 Myr). The molybdenite within the deposit contains 343.6–835.7 ppm Re (mean, 557.8 ppm). These data indicate that the mineralized porphyritic granodiorite within the Lakange deposit is adakitic and formed from parental magmas derived mainly from juvenile crustal material that partly mixed with older continental crust during the evolution of the magmas. The Lakange porphyry Cu–Mo deposit and numerous associated porphyry–skarn deposits in the eastern Gangdese porphyry copper belt (17–13 Ma) formed in an extensional tectonic setting during the India–Asia continental collision.  相似文献   

20.
《International Geology Review》2012,54(11):1357-1376
The Jiazishan porphyry-type molybdenum deposit is located in the eastern Inner Mongolia Autonomous Region in China. Mineralization occurs mainly as veins, lenses, and layers within the host porphyry. To better understand the link between mineralization and host igneous rocks, we studied samples from underground workings and report new SHRIMP II zircon U–Pb and Re–Os molybdenite ages, and geochemical data from both the molybdenites and the porphyry granites. Seven molybdenite samples yield a Re–Os isochron weighted mean age of 135.4 ± 2.1 Ma, whereas the porphyry granite samples yield crystallization ages of 139 ± 1.5 Ma (Jiazishan deposit) and 133 ± 1 Ma (Taolaituo deposit). The U–Pb and Re–Os ages are similar, suggesting that the mineralization is genetically related to Early Cretaceous porphyry emplacement. Re contents of the molybdenite range from 21.74 ppm to 52.08 ppm, with an average of 35.92 ppm, whereas δ34 S values of the sulphide vary from 1.3‰ to 4.2‰. The ores have 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.178–18.385, 15.503–15.613, and 37.979–38.382, respectively. We also obtained a weighted mean U–Pb zircon age of 294.2 ± 2.1 Ma for the oldest granite in Jiazishan area. All granites are A-type granites. These observations indicate that the molybdenites and the porphyry granites were derived from a mixed source involving young accretionary materials and enriched subcontinental lithospheric mantle. A synthesis of geochronological and geological data reveals that porphyry emplacement and Mo mineralization in the Jiazishan deposit occurred contemporaneously with Early Cretaceous tectonothermal events associated with lithospheric thinning, which was caused by delamination and subsequent upwelling of the asthenosphere associated with intra-continental extension in Northeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号