首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This study presents the first unequivocal identification of natural radiation-induced defects in illites. Middle Proterozoic illites related to unconformity-type uranium deposits of Canada and Australia were studied using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. The saturation behaviour of EPR spectra as a function of power demonstrates that native defects of illites are different from those known in other clays as kaolinite, dickite or smectite. Q-band spectra indicate the presence of several––at least two––native defects. The EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g  = 2.032 and g  = 1.993. The corresponding defect is named as Ai center. The study of oriented specimen confirms the strong anisotropy, and shows that the main defect has its g component perpendicular to the (ab) plane of illite. These defects in illite correspond to electron holes located on oxygen atoms of the structure and likely associated to Si, according to the lack of hyperfine structure. The Ai center in illite has similar EPR parameters to the A center in kaolinite and dickite. The isochronal annealing data suggest that illite can be used as a dosimeter in the geosphere. However, the determination of half-life and activation energy of the Ai center requires additional work.  相似文献   

2.
Electron paramagnetic resonance (EPR) study of single crystals of chromium-doped forsterite grown by the Czochralski method in two different research laboratories has revealed, apart from the known paramagnetic centers Cr3+(M1), Cr3+(M2) and Cr4+, a new center \textCr 3+ (M 1)-V\textMg 2+ (M 2) {\text{Cr}}^{ 3+ } (M 1){-}V_{{{\text{Mg}}^{ 2+ } }} (M 2) formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values and A values of the 53Cr hyperfine splitting have been determined as follows: D = 33.95(3) GHz, E = 8.64(1) GHz, g = [1.9811(2), 1.9787(2), 1.9742(2)], A = [51(3), 52(2), 44(3)] MHz. The center has been identified by comparing EPR spectra with those of the charge-uncompensated ion Cr3+(M1) and the ion pair Cr3+(M1)–Li+(M2) observed in forsterite crystals codoped with chromium and lithium. It has been found that the concentration of the new center decreases to zero, whereas that of the Cr3+(M1) and Cr3+(M1)–Li+(M2) centers increases with an increase of the Li content from 0 up to ~0.03 wt% (at the same Cr content ~0.07 wt%) in the melt. The known low-temperature luminescence data pertinent to the centers under consideration are also discussed.  相似文献   

3.
Comparison of polarized optical absorption spectra of natural Ca-rich diopsides and synthetic NaCrSi2O6 and LiCrSi2O6 clinopyroxenes, evidences as vivid similarities, as noticeable differences. The similarities reflect the fact that in all cases Cr3+ enters the small octahedral M1-site of the clinopyroxene structure. The differences are due to some iron content in the natural samples causing broad intense near infrared bands of electronic spin-allowed dd transitions of Fe2+(M1, M2) and intervalence Fe2+/Fe3+ charge-transfer transition, and by different symmetry and different local crystal fields strength of Cr3+ in the crystal structures. The positions of the spin-allowed bands of Cr3+, especially of the low energy one caused by the electronic 4 A 2g → 2 T 1g transition, are found to be in accordance with mean M1–O distances. The local relaxation parameter ε calculated for limCr 3+ → 0 from the spectra and interatomic á Cr - O ñ \left\langle {Cr - O} \right\rangle and á Mg - O ñ \left\langle {Mg - O} \right\rangle distances yields a very high value, 0.96, indicating that in the clinopyroxene structure the local lattice relaxation around the “guest” ion, Cr3+, deviates greatly from the “diffraction” value, ε = 0, than in any other known Cr3+-bearing systems studied so far. Under pressure the spin-allowed bands of Cr3+ shift to higher energies and decrease in intensity quite in accordance with the crystal field theoretical expectations, while the spin-forbidden absorption lines remain practically unshifted, but also undergo a strong weakening. There is no evident dependence of the Racah parameter B of Cr3+ reflecting the covalence of the oxygen-chromium bond under pressure: within the uncertainty of determination it may be regarded as practically constant. The values of CrO6 octahedral modulus, k\textpoly\textloc k_{\text{poly}}^{\text{loc}} , derived from high-pressure spectra of natural chromium diopside and synthetic NaCrSi2O6 kosmochlor are very close, ~203 and ~196 GPa, respectively, being, however, nearly twice higher than that of MgO6 octahedron in diopside, 105(4) GPa, obtained by Thompson and Downs (2008). Such a strong stiffening of the structural octahedron, i.e. twice higher value of k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} comparing with that of k\textMg2 + \textloc k_{{{\text{Mg}}^{2 + } }}^{\text{loc}} , may be caused by simultaneous substitution of Ca2+ by larger Na+ in the neighboring M2 sites at so-called jadeite-coupled substitution Mg2+ + Ca2+ → Cr3+ + Na+. It is also remarkable that the values of CrO6 octahedral modulus of NaCrSi2O6 kosmochlor obtained here are nearly twice larger than that of 90(16) GPa, evaluated by high-pressure X-ray structural refinement by Origlieri et al. (2003). Taking into account that the overall compressibility of the clinopyroxene structure should mainly be due to the compressibility of M1- and M2-sites, our k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} -value, ~196 GPa, looks much more consistent with the bulk modulus value, 134(1) GPa.  相似文献   

4.
Single-crystal W-band electron paramagnetic resonance (EPR) spectra of an electron-irradiated quartz, measured at room temperature, 110 and 77 K, disclose three previously reported hole centers (#1, G and an ozonide radical). The W-band EPR spectra of these three centers clearly resolve six magnetically nonequivalent sites each, whereas previous X- and Q-band EPR studies reported Centers #1 and the ozonide radical to consist of only three symmetry-related components and interpreted them to reside on twofold symmetry axes in the quartz structure. The calculated g matrices of Center #1 and the ozonide radical show that deviations from twofold symmetry axes are <10°, which are probably attributable to distortion related to neighboring charge compensating ions. The W-band EPR spectra of Center G not only result in improved g matrices but also allow quantitative determination of the nuclear hyperfine (A) and quadrupole (P) matrices of its 27Al hyperfine structure that was incompletely resolved before. In particular, the g-maximum and g-minimum principal axes of Center G are approximately along two pairs of O–O edges of the SiO4 tetrahedron, while the unique A principal axis is approximately along a Si–Si direction. These new spin-Hamiltonian parameters suggest that Center G most likely involves trapping of a hole between two oxygen atoms related to a silicon vacancy and stabilized by an Al3+ ion in the neighboring tetrahedron (hence an O2n−–Al3+ defect, where n is either 1 or 3).  相似文献   

5.
Structural properties of natural jasper from Taroko Gorge (Taiwan) have been investigated by means of powder X-ray diffraction, electron paramagnetic resonance (EPR) and Fourier transform infrared spectroscopic techniques. The EPR spectrum at room temperature exhibits a sharp resonance signal at g = 2.007 and two more resonance signals centered at g ≈ 4.3 and 14.0. The resonance signal at g = 2.007 has been attributed to the E′ center and is related to a natural radiation-induced paramagnetic defect. Two more resonance signals centered at g ≈ 4.3 and 14.0 are characteristic of Fe3+ ions. The EPR spectra recorded at room temperature of jasper samples, heat-treated at temperatures ranging from 473 to 1,473 K exhibit marked temperature dependence. The resonance signal corresponding to E′ center disappears at elevated temperatures. A broad, intense resonance signal centered at g ≈ 2.0 appears at elevated temperatures. This resonance signal is a characteristic of Fe3+ ions, which are present as hematite in the jasper sample. The intensity of the resonance signal becomes dominant at elevated temperatures at ≥873 K, masking g ≈ 4.3 and g ≈ 14.0 resonance signals. The EPR spectra of jasper heat-treated at 673 K have been recorded at temperatures between 123 and 296 K. The population of spin levels (N) has been calculated for the broad g ≈ 2.0 resonance signal. It is found that N decreases with decreasing temperature. The linewidth (ΔH) of g ≈ 2.0 resonance signal of the heat-treated jasper is found to increase with decreasing temperature. This has been attributed to spin–spin interaction of the Fe3+ ions present in the form of hematite in the studied jasper sample.  相似文献   

6.
Single-crystal electron paramagnetic resonance (EPR) spectra of a natural citrine quartz without any artificial irradiation, measured at W-band frequencies (∼94 GHz) and temperatures of 77, 110 and 298 K, allow better characterization of three previously-reported Centers (#6, #7 and B) and discovery of three new defects (B′, C′ and G′). The W-band EPR spectra reveal that Centers #6 and #7 do not reside on twofold symmetry axes, contrary to results from a previous X-band EPR study. The W-band spectra also show that the previously reported Center B is a mixture of two defects (B and B′) with similar g matrices but different-sized 27Al hyperfine structures. Center C′ has similar principal g values to the previously reported Center C but is distinct from the latter by a larger 27Al hyperfine structure with splittings from 0.10 to 0.22 mT. Also, Center G′ has a similar g matrix to the previously reported Center G but a different 27Al hyperfine structure with splittings from 0.41 to 0.53 mT. These spin-Hamiltonian parameters, together with observed thermal properties and microwave-power dependence, suggest that Centers #6 and #7 probably represent O23− type defects. Centers B and B′ are probably superoxide radicals (O2) with the unpaired spin localized on the same pair of oxygen atoms around a missing Si atom but linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Similarly, Centers G and G′ are most likely superoxide radicals with the unpaired spin localized on another pair of oxygen atoms around a missing Si atom and linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Center C′ is probably an ozonide radical associated with a missing Si atom and linked to a substitutional Al3+ ion at the neighboring tetrahedral site. This study exemplifies the value of  high-frequency EPR for discrimination of  similar defect centers and determination of  small local structural distortions that are often difficult to resolve in conventional  X- and Q-band EPR studies.  相似文献   

7.
Natural radiation-induced defects were identified in specimens of sudoite (Al–Mg di-trioctahedral chlorite) related to unconformity-type uranium deposits at the base of the Athabasca Group (Saskatchewan, Canada), using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. X-band spectra indicate the presence of a main native defect, named the As-center, whose EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g // = 2,051 and g  = 2,005, and a secondary defect with apparent component g = 2,025. The study of oriented specimens shows that the main defect has its g // component perpendicular to the (ab) plane of sudoite. The As-center corresponds to an electron hole located on oxygen atoms of the structure and is likely associated with Si, according to the lack of hyperfine structure. The As-center in sudoite has EPR parameters similar to the A-center in kaolinite and dickite, and the Ai-center in illite. The saturation behavior of EPR spectra as a function of power demonstrates that native defects of sudoite are different from those known in other clays, such as kaolinite, dickite or smectite, but are similar to those of illite. The isochronal annealing data suggest that the main defect in sudoite is stable to more than 300°C. The corresponding defects characterized in sudoite may have the potential for tracing past radionuclide migration around unconformity-type uranium deposits.  相似文献   

8.
Single-crystal and powder electron paramagnetic resonance (EPR) spectroscopic studies of natural amethyst quartz, before and after isochronal annealing between 573 and 1,173 K, have been made from 90 to 294 K. Single-crystal EPR spectra confirm the presence of two substitutional Fe3+ centers. Powder EPR spectra are characterized by two broad resonance signals at g = ~10.8 and 4.0 and a sharp signal at g = 2.002. The sharp signal is readily attributed to the well-established oxygen vacancy electron center E 1′. However, the two broad signals do not correspond to any known Fe3+ centers in the quartz lattice, but are most likely attributable to Fe3+ clusters on surfaces. The absolute numbers of spins of the Fe3+ species at g = ~10.8 have been calculated from powder EPR spectra measured at temperatures from 90 to 294 K. These results have been used to extract thermodynamic potentials, including Gibbs energy of activation ΔG, activation energy E a, entropy of activation ΔS and enthalpy of activation ΔH for the Fe3+ species in amethyst. In addition, magnetic susceptibilities (χ) have been calculated from EPR data at different temperatures. A linear relationship between magnetic susceptibility and temperature is consistent with the Curie–Weiss law. Knowledge about the stability and properties of Fe3+ species on the surfaces of quartz is important to better understanding of the reactivity, bioavailability and heath effects of iron in silica particles.  相似文献   

9.
Variously colored gem-quality topazes from Ouro Preto, Minas Gerais, Brazil, were studied by optical absorption spectroscopy and photoluminescence methods. In the near infrared range (750–2500 nm) the absorption spectra display an identical pattern of narrow intense absorption lines caused by overtones and combination vibrations of OH groups, which do not relate to the coloration of the topazes studied. Their colors were found to be caused by combination of three sets of absorption features, (1), (2), and (3) in the visible and near-UV range, which are due to different color center. (1) denotes a pair of broad split bands with maxima 18 000 and 25 000 cm–1 caused by electronic spin-allowed dd transitions of Cr3+ ions. They cause a light rose to deep violet color and characteristic pleochroism of Cr3+-containing topazes. Photoluminescence evidences of at least three different types of Cr3+ complexes which, most probably, differ by ligand surroundings, O4F2, O4F(OH) and O4(OH) (2) Corresponds to the intense weakly polarized UV absorption edge. Two different parts, the thermally stable one, caused by ligand-to-metal charge transfer, and the thermally unstable one, caused by some defect center(s), contribute to the edge. (3) denotes a system of two broad unstructured bands with maxima around 19 000 cm–1 (X>Y Z) and 24 000 cm–1 (Y Z X). They cause the unique orange color and characteristic pleochroism of Brazilian Imperial topazes. Combinations of (1) and (3) absorption features cause various yellow-rose colors of the samples. Investigations of natural irradiated and thermally treated topazes show that the color centers (1) and (3) transform to each other at annealing and X- or gamma irradiation. The color of natural orange-red Imperial topazes is assumed to be caused by Cr4+, stabilized by other impurity ions and/or defect irradiation EPR centers. At T=300 °C Cr4+ reduces to Cr3+, the color of Imperial topazes changes to pale rose, caused by spin-allowed bands of Cr3+. In artificially irradiated crystals the (3)-center, Cr4+, may be induced according to the reaction 2Cr3+ Cr4+ + Cr2+, which involves chromium pairs in adjacent Al sites of the structure. Such artificially induced color is unstable at room temperature and in daylight. The process of the decay of (3)-centers may be described as a recombination Cr4++Cr2+ 2Cr3+ that results in vanishing of the (3)-bands accompanied by the appearance or increase in Cr3+ dd bands, the original orange color turning to a pale rose.  相似文献   

10.
The best known cause for colors in insulating minerals is due to transition metal ions as impurities. As an example, Cr3+ is responsible for the red color of ruby (α-Al2O3:Cr3+) and the green color of eskolaite (α-Cr2O3). Using X-ray absorption measurements, we connect the colors of the Cr x Al2−x O3 series with the structural and electronic local environment around Cr. UV–VIS electronic parameters, such as the crystal field and the Racah parameter B, are related to those deduced from the analysis of the isotropic and XMCD spectra at the Cr L2,3-edges in Cr0.07Al1.93O3 and eskolaite. The Cr–O bond lengths are extracted by EXAFS at the Cr K-edge in the whole Cr x Al2−x O3 (0.07≤x< 2) solid solution series. The variation of the mean Cr–O distance between Cr0.07Al1.93O3 and α-Cr2O3 is evaluated to be 0.015 Å (≈1%). The variation of the crystal field in the Cr x Al2−x O3 series is discussed in relation with the variation of the averaged Cr–O distances.  相似文献   

11.
This paper is an extension of the earlier one dealing with kyanite in which the best fitting value of the oxygen ligand distance for Cr3+ is adopted to study the spectroscopic properties of Cr3+ ions doped at the two possible Al sites in the other two polymorphs of the aluminosilicate group (Al2O3 · SiO2), namely, andalusite and sillimanite. The superposition model and the crystal field analysis package recently developed for 3d ions doped at arbitrary low symmetry sites in crystals are used to predict energy levels and statevectors within the whole 3d 3 configuration. Then the values of the ground state zerofield splitting for Cr3+ ions at each Al sites in the two crystals are obtained. The splittings of the lower excited states 2 E and 4 T 2 as well as the admixture of 4 T 2 into 2 E have also been predicted. Comparison of our results with the available experimental data enable us to correlate the optical and EPR Spectroscopic properties with the substitutional Cr3+ sites. The conclusion is that in andalusite and sillimanite only the Al sites with nearly-octahedral six-fold coordination seem to be occupied by Cr3+ ions.  相似文献   

12.
It is shown the possibility to determine the coordination of paramagnetic ions in disordered solid structures, e.g., in barium borate glasses. For this purpose the electron paramagnetic resonance (EPR) method was used to study α-and β-BaB2O4 crystals and glasses of 45·BaO × 55·B2O3 and 40·BaO × 60·B2O3 (mol%) composition activated by Ag+ and Pb2+ ions. After the samples were exposed to X-rays at 77 K, different EPR centers were observed in them. In α-and β-BaB2O4 crystals and glasses the EPR centers Ag2+, Ag0, Pb+, Pb3+, and hole centers of O type were studied. The EPR parameters of these centers and their arrangement in crystal structure were determined. It is shown that Pb3+ ions in β-BaB2O4 crystals occupy Ba2+ position in an irregular polyhedron from the eight oxygen, whereas in α-BaB2O4 crystals they occupy Bа2 position in a sixfold coordination. Pb+ ions in α-BaB2O4 crystals occupy Bа1 position in a ninefold coordination from oxygen. In barium borate glasses, Pb3+ ions were studied in coordination polyhedron from six oxygen atoms and in a polyhedron from nine to ten oxygen atoms. It is assumed that the established difference in the structural position of Pb3+ ions in glasses is due to their previous incorporation in associative cation–anion complexes (AC) and “free” structure-forming cations (FC). Computer simulations have been performed to analyze the stability of specific associative complexes and to compare their bond lengths with experimental data.  相似文献   

13.
A selected set of five different kyanite samples was analysed by electron microprobe and found to contain chromium between <0.001 and 0.055 per formula unit (pfu). Polarized electronic absorption spectroscopy on oriented single crystals, R1, R2-sharp line luminescence and spectra of excitation of λ3- and λ4-components of R1-line of Cr3+-emission had the following results: (1) The Fe2+–Ti4+ charge transfer in c-parallel chains of edge connected M(1) and M(2) octahedra shows up in the electronic absorption spectra as an almost exclusively c(||Z′)-polarized, very strong and broad band at 16000 cm−1 if <, in this case the only band in the spectrum, and at an invariably lower energy of 15400 cm−1 in crystals with  ≥ . The energy difference is explained by an expansion of the Of–Ok, and Ob–Om edges, by which the M(1) and M(2) octahedra are interconnected (Burnham 1963), when Cr3+ substitutes for Al compared to the chromium-free case. (2) The Cr3+ is proven in two greatly differing crystal fields a and b, giving rise to two sets of bands, derived from the well known dd transitions of Cr3+ 4A2g4T2g(F)(I), →4T1g(F)(II), and →4T1g(P)(III). Band energies in the two sets a and b, as obtained by absorption, A, and excitation, E, agree well: I: 17300(a, A), 17200(a, E), 16000(b, A), 16200(b, E); II: 24800(a, A), 24400(a, E); 22300(b, A), 22200(b, E); III: 28800(b,A) cm−1. Evaluation of crystal field parameters from the bands in the electronic spectra yield Dq(a)=1730 cm−1, Dq(b)=1600 cm−1, B(a)=790 cm−1, B(b)=620 cm−1 (errors ca. ±10 cm−1), again in agreement with values extracted from the λ3, λ4 excitation spectra. The CF-values of set a are close to those typical of Cr3+ substituting for Al in octahedra of other silicate minerals without constitutional OH as for sapphirine, mantle garnets or beryl, and are, therefore, interpreted as caused by Cr3+ substituting for Al in some or all of the M(1) to M(4) octaheda of the kyanite structure, which are crystallographically different but close in their mean Al–O distances, ranging from 1.896 to 1.919 A (Burnham 1963), and slight degrees of distortion. Hence, band set a originates from substitutive Cr3+ in the kyanite structural matrix. The CF-data of Cr3+ type b, expecially B, resemble those of Cr3+ in oxides, especially of corundum type solid solutions or eskolaite. This may be interpreted by the assumption that a fraction of the total chromium contents might be allocated in a precursor of a corundum type exsolution. Received: 3 January 1997 / Revised, accepted: 2 May 1997  相似文献   

14.
Summary ?Sheet silicates of the serpentine–kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc–pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behaviour. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), X-Ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that this blue emission can be related to radiation induced defect centres (RID), which occur as electron holes trapped on apical oxygens (Si–O centre) or located at the Al–O–Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. Received December 3, 2001; revised version accepted February 27, 2002  相似文献   

15.
We have studied the polarized optical absorption and the EPR spectra of Ni-doped beryls grown by hydrothermal, flux and gas-transport methods, and chrysoberyl grown by the Czochralski and flux methods. In beryls, three groups of bands belonging to three various Ni centres were distinguished by analysis of the absorption band intensities. The first group, bands with maximums at 21740 (Ec), 17240 (E || c) and 9260 (E ⊥ + || c), 7140 (E || + ⊥ c) cm−1, are due to Ni3+ in octahedral Al3+ site. The second group is bands at 25640 (Ec), 22220 (E || c) and 13520 (E || + ⊥ c), 13160 (E ⊥+ || c) cm−1 and 8930 (E ⊥ + || c), 7460 (E || c) cm−1, which are caused by Ni2+ in octahedral Al3+ site. Weak wide bands at 17540 (E c), 15500 (E || c) cm−1 and 6580 (E || + ⊥ c), 5950 (E || c) cm−1 are related to Ni2+ in tetrahedral Be2+ site. The occurrence of Ni ions in Be2+ site is proved by the EPR spectra of 1VNi+ in γ-irradiated samples. According to the spectra of optical absorption of Ni-doped chrysoberyl, two types of Ni centres have been established: Ni3+ and Ni2+ ions in octahedral Al3+ sites. From the EPR spectra of the X-ray irradiated crystals BeAl2O4: Ni, it follows that 68% of Ni+ ions occupy octahedral Al3+ sites with mirror symmetry and 32% are in Al3+ sites with inversion symmetry. In the approximation of trigonal field with regard to Trees correction, the energy levels of Ni3+ and Ni2+ have been calculated in octahedral and tetrahedral coordination. There is good agreement between the obtained experimental and calculated data. The polarization dependence of the optical absorption bands is well explained in terms of the spin–orbit interaction.  相似文献   

16.
Synthetic Co-doped quartz was grown hydrothermally in steel autoclaves at the Technological Center of Minas Gerais (CETEC), Brazil. The quartz samples, originally yellow in the as-grown state acquired blue coloration after prolonged heat treatment times at 500°C near the alpha–beta transition temperature. UV–VIS–NIR absorption spectroscopy shows the characteristic spectra of Co3+ before heat treatment. After heat treatment, the optical absorption spectrum is dominated by two split-triplet bands the first in the near infrared region centered at about 6,700 cm−1 (1,490 nm) and the second in the visible spectral range at about 16,900 cm−1 (590 nm). Both split-triplet bands are typical for Co2+ ions in tetrahedral coordination environments. From the absence of electron paramagnetic resonance (EPR) spectra, we conclude that the Co2+ found in the optical absorption spectra of the blue quartz is not due to an isolated structural site in the quartz lattice. Instead, the blue color is associated with electronic transitions of Co2+ in small inclusions in which the Co site has tetrahedral symmetry. The non-observation of polarization-depend optical absorption spectra is also in agreement with this model. The results for Co2+ in quartz are different from Co-bearing spinel and staurolite and other silicates like orthopyroxene, olivine, and beryls. The formation process of the color center is discussed.  相似文献   

17.
 The UV edge in the electronic absorption spectra of minerals, in many cases influencing their colour, is generally interpreted as the low-energy wing of very strong UV bands caused by ligand–metal charge transfer (CT) transitions (e.g. Burns 1993). However, Mie scattering theory shows that the presence of randomly distributed submicroscopic inclusions with narrow size distribution and a refractive index n i in a matrix with different refractive index n m may give rise to a λ-dependent, band-like scattering (e.g. Kortüm 1969). Such scattering bands have so far not been considered as contributing to the UV edge. Single-crystal electronic absorption spectra of eight natural almandine-rich garnets (Alm60–Alm88), two synthetic almandine samples (Alm100), all of different colours, and synthetic spessartine were studied by means of a Zeiss microscope-spectrometer in the range 40 000–20 000 cm−1. Special techniques of spectral measurements with crossed analyzer and polarizer, which enable the registration of the scattering effect directly, were used as well. Four of the above garnets were also investigated using transmission electron microscopy. Different types of inclusions, from 10 to several 100 nm in size, were observed in the garnet matrices. They are abundant in cores of synthetic garnets, but very rare in most natural almandines studied. Electronic absorption spectra of the natural almandine garnets show largely varying UV edge position and, hence, intensity at a given wavenumber which correlates with the intensities of spin-forbidden dd bands of Fe3+ ions at 27 000 and 28 000 cm−1, superimposed on the long energy slope of the UV absorption. There are also positive correlations between Ti4+ and Fe3+ content, the latter recalculated on the basis of garnet stoichiometry, and UV edge intensity. Thus, the presence of Ti4+ and Fe3+ ions in octahedra, even in very low concentrations (0.0n at. pfu), leads to CT phenomena, that probably involve Fe2+ ions in edge-shared dodecahedral position and intensifies ligand- to-metal CT. The different colours of natural almandine garnets with similar Fe2+ contents studied here are caused by this effect. Consistent with the absence of inclusions in most natural garnets studied, λ-dependent scattering plays no role in their UV absorption. In contrast, in synthetic almandine and spessartine crystals, a different intensity of UV absorption was observed in inclusion-free rims and inclusion-enriched cores. Some of the latter demonstrate typical scattering patterns when measured at crossed polarizers. Received: 10 April 2001 / Accepted: 27 September 2001  相似文献   

18.
Natural specimens of green gemological euclase (chemical formula BeAlSiO4(OH)) from Brazil were investigated by electron paramagnetic resonance (EPR) and optical absorption. In addition to iron-related EPR spectra, analyzed recently in blue and colorless euclase, chromium and vanadium-related EPR spectra were also detected in green euclase. Their role as color causing centers is discussed. The results indicate that Cr3+ ions substitute for Al3+ ions in the euclase structure. The EPR rotation patterns of Cr3+ with electron spin S = 3/2 were analyzed with monoclinic spin Hamiltonian leading to the parameters of g xx , g yy and g zz equal to 2.018, 2.001 and 1.956 and electronic fine structure parameters of D = −8.27 GHz and E = 1.11 GHz, respectively, with high asymmetry ratio E/D = 0.13. For the vanadium-related EPR spectra the situation is different. It is concluded that vanadium is incorporated as the vanadyl radical VO2+ with electron spin S = 1/2 with nearly axial spin Hamiltonian parameters gzz = 1.9447, g xx  = 1.9740 g yy  = 1.9669 and axial hyperfine interactions due to the nuclear spin I = 7/2 of the 51V isotope leading to A zz  = 502 MHz, A xx  = 150 MHz and A yy  = 163 MHz. The green color of euclase is caused by two strong broad absorption bands centered at 17,185 and 24,345 cm−1 which are attributed to the 4A2g4T2g, 4T1g transitions of Cr3+, respectively. Vanadyl radicals may introduce some absorption bands centered in the near infrared with tail extending into the visible spectral range.  相似文献   

19.
The dependence of water concentration in synthetic (Mg, Fe2+)-cordierite on the composition of the solid solution was examined in experiments that lasted for 10 days at = 200–230 MPa, t = 600–700°C, and oxygen fugacity corresponding to the Fe-FeO buffer. Mass spectrometric data indicate that the dependence of water concentration in cordierite on its Fe mole fraction Fe2+/(Fe2+ + Mg) has maxima at compositions with F = 0.2–0.3. IR diffuse reflectance spectroscopic data and data on the structural setting of H2O molecules in the structural channels of alkali-free (Mg, Fe2+)-cordierite indicate that the H-H vector of some H2O molecules (H2O-II) is perpendicular to [001] of the crystal. The dependence of the magnetic properties of synthetic (Mg, Fe2+)-cordierite was studied by static magnetization technique at 5–300 K in an external magnetic field up to 20 kOe in strength.  相似文献   

20.
Based on the results of more than 600 electron microprobe analyses of 25 minerals the distribution pattern of the Cr6+ impurity in vanadates, phosphates, and arsenates collected in oxidation zones of six ore deposits of the Urals was studied. Among them are Pb minerals of the brackebuschite, apatite, adelite, and tsumcorite groups and alunite supergroup, as well as carminite, cornwallite, and bayidonite. Vanadates and arsenates with brackebuschite-type structures show a high affinity to Cr6+. The maximum content of the Cr6+ impurity is characteristic of minerals with specified Fe3+ trivalent cations (ferribushmakinite, arsenbrackebuschite, and gartrellite) or Al3+ (plumbogummite and bushmakinite). The prevailing scheme of isomorphous substitution, according to which chromium enters into the compositions of these minerals, is heterovalent: Cr6+ + M 2+Т 5+ + M 3+ (where Т = V, As, P; M 3+ = Fe, Al; M 2+ = Сu, Zn), whereas the role of isovalent substitutions Cr6+ → S6+ and Cr6+ → Mo6+ in oxosalts that formed in mineral occurrences of the Urals is insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号