首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The long-term and continuous carbon fluxes of Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical evergreen coniferous forest (QYZ), Dinghushan subtropical evergreen mixed forest (DHS) and Xishuangbana tropical rainforest (XSBN) have been measured with eddy covariance techniques. In 2003, different responses of carbon exchange to the environment appeared across the four ecosystems. At CBS, the carbon exchange was mainly determined by radiation and temperature. 0℃and 10℃were two important temperature thresholds; the former determined the length of the growing season and the latter affected the magnitude of carbon exchange. The maximum net ecosystem exchange (NEE) of CBS occurred in early summer because maximum ecosystem photosynthesis (GPP) occurred earlier than maximum ecosystem respiration (Rθ). During summer, QYZ experienced severe drought and NEE decreased significantly mainly as a result of the depression of GPP. At DHS and XSBN, NEE was higher in the drought season than the wet season, especially the conversion between carbon sink and source occurring during the transition season at XSBN. During the wet season, increased fog and humid weather resulted from the plentiful rainfall, the ecosystem GPP was dispressed. The Q10 and annual respiration of XSBN were the highest among the four ecosystems, while the average daily respiration of CBS during the growing season was the highest. Annual NEE of CBS, QYZ, DHS and XSBN were 181.5, 360.9, 536.2 and -320.0 g·C·m-2·a-1, respectively. From CBS to DHS, the temperature and precipitation increased with the decrease in latitude. The ratio of WEE/Rθincreased with latitude, while Rθ/Gpp, ecosystem light use efficiency (LUE), precipitation use efficiency and average daily GPP decreased gradually. However, XSBN usually escaped such latitude trend probably because of the influence of the south-west monsoon climate which does not affect the other ecosystems. Long-term measurement and more research were necessary to understand the adaptation of forest ecosystems to climate change and to evaluate the ecosystem carbon balance due to the complexity of structure and function of forest ecosystems.  相似文献   

2.
Grassland is the largest terrestrial ecosystem in China. It is of great significance to measure accurately the soil respiration of different grassland types for the contribution evaluation of the Chinese terrestrial ecosystem’s carbon emission to the atmospheric CO2 concentration. A three-year (2005-2007) field experiment was carried out on three steppes of Stipa L. in the Xilin River Basin, Inner Mongolia, China, using a static opaque chamber technique. The seasonal and interannual variations of soil respiration rates were analyzed, and the annual total soil respiration of the three steppes was estimated. The numerical models between soil respiration and water-heat factors were established respectively. Similar seasonal dynamic and high annual and interannual variations of soil respiration were found in all of the three steppes. In the growing season, the fluctuation of soil respiration was particularly evident. The coefficients of variation (CVs) for soil respiration in different growing seasons ranged from 54% to 93%, and the annual CVs were all above 115%. The interannual CV of soil respiration progressively decreased in the order of Stipa grandis (S. grandis) steppe Stipa baicalensis (S. baicalensis) steppe Stipa krylovii (S. krylovii) steppe. The annual total soil respiration for the S. baicalensis steppe was 223.62?299.24 gC m-2 a-1, 150.62-226.99 gC m-2 a-1 for the S. grandis steppe, and 111.31–131.55 gC m-2 a-1 for the S. krylovii steppe, which were consistent with the precipitation gradient. The variation in the best fitting temperature factor explained the 63.5%, 73.0%, and 73.2% change in soil respiration in the three steppes at an annual time scale, and the corresponding Q10 values were 2.16, 2.98, and 2.40, respectively. Moreover, the Q10 values that were calculated by soil temperature at different depths all expressed a 10 cm 5 cm surface in the three sampling sites. In the growing season, the soil respiration rates were related mostly to the surface soil moisture, and the 95.2%, 97.4%, and 93.2% variations in soil respiration in the three steppes were explained by the change in soil moisture at a depth of 0-10 cm, respectively.  相似文献   

3.
Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil litterfall, soil litterfall seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall production, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary statistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

4.
The study by the eddy covariance technique in the alpine shrub meadow of the Qing-hai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m-2 respectively, yielding an average of 253.1 gCO2·m-2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g Cm"2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m-2 in 2003 and 74.9 g C·m-2 in 2004) in the corresponding plant growing season.  相似文献   

5.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about -4.671μmol·m-2·s-1 to a maximum of 13.80μmol·m-2·s-1, mean net ecosystem exchange of CO2 flux was -2.0μmol·m-2·s-1 and 3.9μmol·m-2·s-1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (Ra:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m-2·a-1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m-2·a-1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

6.
As one component of ChinaFLUX, the measurement of CO2 flux using eddy covariance over subtropical planted coniferous ecosystem in Qianyanzhou was conducted for a long term. This paper discusses the seasonal dynamics of net ecosystem exchange (NEE), ecosystem respiration (RE) and gross ecosystem exchange (GEE) between the coniferous ecosystem and atmosphere along 2003 and 2004. The variations of NEE, RE and GEE show obvious seasonal variabilities and correlate to each other, i.e. lower in winter and drought season, but higher in summer; light, temperature and soil water content are the main factors determining NEE; air temperature and water vapor pressure deficit (VPD) influence NEE with stronger influence from VPD. Under the proper light condition, drought stress could decrease the temperature range for carbon capture in planted coniferous, air temperature and precipitation controlled RE; The NEE, RE, and GEE for planted coniferous in Qianyanzhou are -387.2 gC·m-2 a-1,1223.3 g C·m-2 a-1, -1610.4 g C·m-2 a-1 in 2003 and -423.8 g C·m-2 a-1, 1442.0 g C·m-2 a-1, -1865.8 g C·m-2 a-1 in 2004, respectively, which suggest the intensive ability of plantation coniferous forest on carbon absorbing in Qianyanzhou.  相似文献   

7.
Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (Re), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.  相似文献   

8.
Through combining the soil respiration with the main environmental factors under the planting shelterbelt (Populus woodland) and the natural desert vegetation (Tamarix ramosissima Phragmites communis community and Haloxylon ammodendron community) in the western Junngar Basin, the difference in soil respiration under different land use/land cover types and the responses of soil respiration to temperature and soil moisture were analyzed. Results showed that the rate of soil respiration increased with temperature. During the daytime, the maximum soil respiration rate occurred at 18:00 for the Populus woodland, 12:00 for T. ramosissima Ph. communis community, and 14:00 for H. ammodendron community, while the minimum rate all occurred at 8:00. The soil respiration, with the maximum rate in June and July and then declining from August, exhibited a similar trend to the near-surface temperature from May to October. During the growing season, the mean soil respiration rates and seasonal variation differed among the land use/land cover types, and followed the order of Populus woodland >T. ramosissima Ph. communis community > H. ammodendron community. The difference in the soil respiration rate among different land use/land cover types was significant. The soil respiration of Pouplus woodland was significantly correlated with the near-surface temperature and soil temperature at 10 cm depth (P < 0.01) in an exponential manner. The soil respiration of T. ramosissima Ph. communis and H. ammodendron communities were all linearly correlated with the near-surface temperature and soil surface temperature (P < 0.01). Based on the near-surface tempera-ture, the calculated Q10 of Populus woodland, T. ramosissima Ph. communis community and H. ammodendron community were 1.48, 1.59 and 1.63, respectively. The integrated soil respiration of the three land use/land cover types showed a significant correlation with the soil moisture at 0―5 cm, 5― 15 cm and 0―15 cm depths (P < 0.01). The quadratic model could best describe the relationship between soil respiration and soil moisture at 0―5 cm depth (P < 0.01).  相似文献   

9.
CO2 flux was measured continuously in a wheat and maize rotation system of North China Plain using the eddy covariance technique to study the characteristic of CO2 exchange and its response to key environmental factors. The results show that nighttime net ecosystem exchange (NEE) varied exponentially with soil temperature. The temperature sensitivities of the ecosystem (Q10) were 2.94 and 2.49 in years 2002-2003 and 2003-2004, respectively. The response of gross primary productivity (GPP) to photosynthetically active radiation (PAR) in the crop field can be expressed by a rectangular hyperbolic function. Average Amax andαfor maize were more than those for wheat. The values ofαincreased positively with leaf area index (LAI) of wheat. Diurnal variations of NEE were significant from March to May and from July to September, but not remarkable in other months. NEE, GPP and ecosystem respiration (Rec) showed significantly seasonal variations in the crop field. The highest mean daily CO2 uptake rate was -10.20 and -12.50 gC·m-2·d-1 in 2003 and 2004, for the maize field, respectively, and -8.19 and -9.50 gC·m-2·d-1 in 2003 and 2004 for the wheat field, respectively. The maximal CO2 uptake appeared in April or May for wheat and mid-August for maize. During the main growing seasons of winter wheat and summer maize, NEE was controlled by GPP which was chiefly influenced by PAR and LAI. Rec reached its annual maximum in July when Rec and GPP contributed to NEE equally. NEE was dominated by Rec in other months and temperature became a key factor controlling NEE. Total NEE for the wheat field was -77.6 and -152.2 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively, and -120.1 and -165.6 gC·m-2·a-1 in 2003 and 2004 for the maize field, respectively. The cropland of North China Plain was a carbon sink, with annual -197.6 and -317.9 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively. After considering the carbon in grains, the cropland became a carbon source, which was 340.5 and 107.5 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively. Affected by climate and filed managements, inter-annual carbon exchange varied largely in the wheat and maize rotation system of North China Plain.  相似文献   

10.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003-2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (FGEP) and ecosystem respiration (Reco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting FGEP and Reco in 2003, whereas soil moisture imposed a significant influence on both Reco and FGEP in 2004. Under wet conditions, Reco showed an exponentially increasing trend with temperature (Q10 = 2.0), but an apparent reduction in the value of Reco and its temperature sensitivity were observed during the periods of water stress (Q10=1.6). Both heat and water stress can cause decrease in FGEP. The sea-sonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m-2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   

11.
12.
13.
《国际泥沙研究》2014,(4):F0003-F0003
  相似文献   

14.
《国际泥沙研究》2014,(2):F0003-F0003
  相似文献   

15.
《国际泥沙研究》2014,(3):F0003-F0003
  相似文献   

16.
17.
The partitioning of rain water into throughfall, stemflow and interception loss when passing through plant canopies depends on properties of the respective plant species, such as leaf area and branch angles. In heterogeneous vegetation, such as tropical forest or polycultural systems, the presence of different plant species may consequently result in a mosaic of situations with respect to quantity and quality of water inputs into the soil. As these processes influence not only the water availability for the plants, but also water infiltration and nutrient leaching, the understanding of plant effects on the repartitioning of rain water may help in the optimization of land use systems and management practices. We measured throughfall and stemflow in a perennial polyculture (multi‐strata agroforestry), monocultures of peach palm (Bactris gasipaes) for fruit and for palmito, a monoculture of cupuaçu (Theobroma grandiflorum), spontaneous fallow and primary forest during one year in central Amazonia, Brazil. The effect on rain water partitioning was measured separately for four useful tree species in the polyculture and for two tree species in the primary forest. Throughfall at two stem distances, and stemflow, differed significantly between tree species, resulting in pronounced spatial patterns of water input into the soil in the polyculture system. For two tree species, peach palm for fruit (Bactris gasipaes) and Brazil nut trees (Bertholletia excelsa), the water input into the soil near the stem was significantly higher than the open‐area rainfall. This could lead to increased nutrient leaching when fertilizer is applied close to the stem of these trees. In the primary forest, such spatial patterns could also be detected, with significantly higher water input near a palm (Oenocarpus bacaba) than near a dicotyledonous tree species (Eschweilera sp.). Interception losses were 6·4% in the polyculture, 13·9 and 12·3% in the peach palm monocultures for fruit and for palmito, respectively, 0·5% in the cupuaçu monoculture and 3·1% in the fallow. With more than 20% of the open‐area rainfall, the highest stemflow contributions to the water input into the soil were measured in the palm monocultures and in the fallow. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
A procedure for short-term rainfall forecasting in real-time is developed and a study of the role of sampling on forecast ability is conducted. Ground level rainfall fields are forecasted using a stochastic space-time rainfall model in state-space form. Updating of the rainfall field in real-time is accomplished using a distributed parameter Kalman filter to optimally combine measurement information and forecast model estimates. The influence of sampling density on forecast accuracy is evaluated using a series of a simulated rainfall events generated with the same stochastic rainfall model. Sampling was conducted at five different network spatial densities. The results quantify the influence of sampling network density on real-time rainfall field forecasting. Statistical analyses of the rainfall field residuals illustrate improvement in one hour lead time forecasts at higher measurement densities.  相似文献   

19.
Red tide, a recurrent phenomenon has become conspicuous in several Kashmir lake ecosystems since 1991. The responsible organism (Euglena pedunculata), a rare flagellate rediscovered in the Kashmir Himalaya (Khan 1993) caused first and unprecedented red tide outbreak, constituting a maximum of 96% of resident numerical phytoplankton density in Dal Lake. At present, conflicting hypotheses exist on the generation of causal assemblage(s) imparting redness to waters: Jeeji Bai (1991) linked its origin to acid precipitation – a fallout of burning oil‐fields during the Gulf War – whilst Khan (1993) holds local factor(s) responsible. Field/experimental studies support the latter contention that the influx of untreated sewage, in unison with warm temperatures, high levels of PhAR, iron and interruption to hydrological flow‐pattern together with absence/or reduction in grazing activity created conducive environmental milieu for red tide outbreak. Dal Lake “red tide” drifted the bloom‐inoculum to other waters, including Lake Wular, where additional ecological niches were carved out, threatening the aesthetic value and biological diversity of Kashmir lakes. Ecological monitoring indicates frequent seasonal red tide occurrence in Dal Lake (including summer‐autumn event of 1998) which testifies its unabated eutrophication status. Further studies are needed on ecological adaptability and biogeographic distribution of this rare and unique red tide‐causing flagellate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号