首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper presents gas compositions and H-, O-isotope compositions of sulfide- and quartz-hosted fluid inclusions, and S-, Pb-isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210 of the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Fluid inclusions trapped in quartz and sphalerite are dominantly primary. H-and O-isotopic compositions of pyrite-hosted fluid inclusions indicate two major contributions to the ore-forming fluid that include the degassed magma and the meteoric-derived but rock 18O-buffered groundwater. However, H- and O-isotopic compositions of quartz-hosted fluid inclusions essentially suggest the presence of groundwater. Sulfide-hosted fluid inclusions show considerably higher abundances of gaseous species CO2, N2, H2S, etc. than quartz-hosted ones. The linear trends among inclusion gaseous species reflect the mixing tendency between the gas-rich magmatic fluid and the groundwater. The relative enrichment of gaseous species in sulfide-hosted fluid inclusions, coupled with the banded ore structure indicating alternate precipitation of quartz with sulfide minerals, suggests that the magmatic fluid has been inputted to the ore-forming fluid in pulsation. Sulfur and lead isotope compositions of pyrite and galena separates indicate an essential magma derivation for sulfur but the multiple sources for metallic materials from the mantle to the bulk crust.  相似文献   

2.

This paper presents gas compositions and H-, O-isotope compositions of sulfide- and quartz-hosted fluid inclusions, and S-, Pb-isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210 of the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Fluid inclusions trapped in quartz and sphalerite are dominantly primary. H-and O-isotopic compositions of pyrite-hosted fluid inclusions indicate two major contributions to the ore-forming fluid that include the degassed magma and the meteoric-derived but rock 18O-buffered groundwater. However, H- and O-isotopic compositions of quartz-hosted fluid inclusions essentially suggest the presence of groundwater. Sulfide-hosted fluid inclusions show considerably higher abundances of gaseous species CO2, N2, H2S, etc. than quartz-hosted ones. The linear trends among inclusion gaseous species reflect the mixing tendency between the gas-rich magmatic fluid and the groundwater. The relative enrichment of gaseous species in sulfide-hosted fluid inclusions, coupled with the banded ore structure indicating alternate precipitation of quartz with sulfide minerals, suggests that the magmatic fluid has been inputted to the ore-forming fluid in pulsation. Sulfur and lead isotope compositions of pyrite and galena separates indicate an essential magma derivation for sulfur but the multiple sources for metallic materials from the mantle to the bulk crust.

  相似文献   

3.
Since the 1990s, interest in the magmatic fluids and their relation to mineralization has been re-aroused[1—6]. Studies on stable isotopes of low-sulfidation deposits commonly show the predominance of meteoric water[7]. Paradoxically, the evidence for me…  相似文献   

4.
Dajing Cu-Sn-Ag-Pb-Zn ore deposit, in the Inner Mongolia Autonomous Region of China, is a fissure-filling hydrothermal ore deposit. The δD values of quartz-hosted inclusion water are centered at −100%.– −130%.. The δ34S values of sulfide ore minerals and δ13 C values of carbonate gangue minerals vary from −0.3%. to 2.6%. and from −2.9%. to −7.0%., respectively. Integrated isotopic data point to two major contributions to the mineralizing fluid that include a dominant meteoric-derived groundwater, and sulfur and carbon species from hypogene magma. Linear trends are exhibited on the gaseous H2O versus CO2 plot, and plots of CO, N2, CH4, and C2H6. It is shown by quantitative simulation that magma degassing cannot explain the linear trends. Hence, these linear trends are interpreted in terms of mixing of CO2-rich magmatic fluid with meteoric-derived groundwater. The groundwater circulated in Paleozoic sedimentary rocks and absorbed CO, N2, CH4, C2H6 and radiogenic Ar from organic matter. Cooling effects resulting from mixing have caused the precipitation of ore minerals.  相似文献   

5.
Zheng  Yuanchuan  Wang  Lu  Xue  Chuandong  Xu  Bo  Ghaffar  Abdul  Yang  Zhusen  Lu  Yongjun  Zhou  Limin  Griffin  William L.  Hou  Zengqian 《中国科学:地球科学(英文版)》2020,63(11):1807-1816

Saindak is one of the typical porphyry Cu deposits (PCDs) in the Chagai magmatic arc in Pakistan. Ore-forming porphyries at Saindak PCD are mainly composed of tonalite. Here, we use geochemistry of apatite enclosed in plagioclase phenocrysts from the ore-forming tonalite to constrain the releasing and recharging processes of S and Cl in the underlying parental magma chamber during PCD mineralization. Although apatite inclusions have homogeneous intra-grain S and Cl compositions, there is significant inter-grain S and Cl variations in apatite inclusions located from core to rim in the hosting plagioclase. Such inter-grain S and Cl variation in apatites are coupled with the core-to-rim trends of An, FeO and Mg contents of the hosting plagioclase phenocryst. It indicates that the Saindak PCD likely formed by episodic injection of primitive magmas during the growth of an underlying magma chamber, rather than by one major injection or by addition of mafic melt derived from different source region. Each primitive melt injection introduced essential ore-forming materials such as S and Cl, which were rapidly and effectively released to the coexisting fluids, causing mineralization. Once primitive melt injection stops, signaling the end of growth of underlying magma chamber, mineralization will cease quickly although the hydrothermal system can still survive for a long time. However, the later released fluids are relatively depleted in ore-forming materials, and thus have lower capability to generate mineralization. Accordingly, predominant porphyry-type mineralizations occurred during the growth rather than waning stage of a magmatic system.

  相似文献   

6.
The Shuiyindong gold deposit is one of the most famous and largest Carlin-type gold deposits in China and is located in southwest Guizhou, in the eastern part of the Huijiabao anticline. The Shuiyindong's gold mineralization occurred in bioclastic limestone of the Permian Longtan Formation. Sulfur, carbon, hydrogen, oxygen, and lead isotopic compositions are reported in this paper. The properties and sources of ore-forming fluid have been discussed and a metallogenic model for the Shuiyindong gold deposit has been proposed. The d34 S values of stibnite, realgar, orpiment, pyrite from orebodies, and pyrite from quartz veins are similar to or slightly higher than the d34 S values of mantle sulfur. It is suggested that the sulfur of hydrothermal sulfides was likely of magmatic origin with minor heavy sulfur contributed from the country rocks. The measured d D values and calculated d18OH2 O values of inclusion fluid in quartz plotted within or below a magmatic hydrothermal fluid field far from the meteoric water line. This indicates that the ore-forming fluid for the main-stage gold mineralization could have been derived mainly from a magmatic source and mixed with a small amount of meteoric water. The carbon and oxygen isotopic compositions of calcites in the d18 O vs. d13 C diagram suggest that the CO2 in ore-forming fluid was derived from dissolution of bioclastic limestone and oxidation of sedimentary organic carbon in limestone. However, the d13 C values of ore-related calcites, which contain intergrown realgar and/or orpiment, are similar to those of mantle carbon. Although no igneous intrusive rock has been observed in the vicinity of the gold deposits, the possibility of mantle fluid integrated into the ore-forming fluid cannot be eliminated based on the d13 C values of ore-related calcites. The lead isotopes of sulfides are distributed near the growth curves of upper crust and orogenic belt in the plumbotectonic diagram. Their calculated Dc and Db values plotted within the magmatism field of crust-mantle subduction zone in the Dc- Db diagram. This suggests that the lead of sulfides has an intimate connection with magmatism. Our S, H, O, C, and Pb isotopic studies for the Shuiyindong Carlin-type gold deposit in Guizhou manifest a concordant possibility that the ore-forming fluid was mainly derived from magmatic fluid with minor contribution from the surrounding strata. With the integration of comprehensive geology and isotopic geochemistry, we have proposed a magmatic hydrothermal model for the origin of the Shuiyindong gold deposit.  相似文献   

7.
Chausudake Volcano is representative of the active volcanoes in northeastern Japan, and has a record of many historical eruptions. Because its 16-ky eruptive history is well documented, Chausudake is well-suited for examining the temporal change of magma chamber processes and for assessing potential hazards. The activity of the Chausudake Volcano can be divided into six magmatic units (CH1-CH6). Most of its products have similar characteristics, but those from unit CH1 show wider variation. Most rocks are andesite and have plagioclase, clinopyroxene, orthopyroxene, and Fe-Ti oxides as phenocrysts, with or without olivine or quartz. Mafic inclusions, which are observed in most products, are basaltic andesites that have various combinations of the same phenocryst species. Petrographic features observed in host rocks and mafic inclusions, such as disequilibrium phenocrysts and resorbed textures, suggest magma mixing/co-mingling. Whole rock compositions of both host rocks and mafic inclusions show linear trends in variation diagrams, which suggest that the rocks are derived from the mixing/co-mingling between mafic and felsic end members. Bulk silica content of the mafic end-member magma is estimated to be ca. 52%, and contains Mg-rich olivine and An-rich plagioclase. The temperature of this end member is estimated to have been higher than 1,100 °C. Bulk silica content of the felsic end-member magma is estimated to be ~66%, and contains Mg-poor pyroxenes, An-poor plagioclase, and quartz phenocrysts, with a temperature of between 800 and 900 °C. Trace element compositions show that the end members have different origins, but have changed little over the entire 16-ky of activity. The mafic end-member magmas might come from a lower-crustal homogeneous, large magma chamber, whereas the felsic end-member magmas may be partial melts of crustal materials produced by the heat of the mafic end member. Felsic end-member magma may have accumulated in the middle crust before CH1 activity. The mixing ratio of the felsic to mafic end members was 0.5:0.5 to 0.4:0.6 for the CH1 unit, and ca. 0.4:0.6 for the other units. Considering that ca. 75% of the total volume of the eruptive products form the first unit, its wider compositional variation is attributed to more heterogeneous mixing ratios.  相似文献   

8.
High-TiO2, quartz-normative (HTQ) tholeiite sheets of Early Jurassic age have intruded mainly Late Triassic sedimentary rocks in several early Mesozoic basins in the eastern United States. Field observations, petrographic study, geochemical analyses and stable isotope data from three HTQ sheet systems in the Culpeper basin of Virginia and Maryland and the Gettysburg basin of Pennsylvania were used to develop a general model of magmatic differentiation and magmatic-hydrothermal interaction for HTQ sheets. The three sheet systems have remarkably similar major-oxide and trace-element compositions. Cumulus and evolved diabase in comagmatic sheets separated by tens of kilometers are related by igneous differentiation. Differentiated diabase in all three sheets have petrographic and geochemical signatures and fluid inclusions indicating hydrothermal alteration beginning near magmatic temperatures and continuing to relatively low temperatures. Sulfur and oxygen isotope data are consistent with a magmatic origin for the hydrothermal fluid.The three sheet systems examined apparently all had a similar style of crystal-liquid fractionation that requires significant lateral migration of residual magmatic liquid. The proposed magmatic model for HTQ sheets suggests that bronzite-laden magma was intruded in an upper crustal magma chamber, with bronzite phenocrysts collecting in the lower part of the magma chamber near the feeder dike. Early crystallization of augite and Ca-poor pyroxene before significant plagioclase crystallization resulted in density-driven migration of lighter residual magmatic liquids along lateral and vertical pressure gradients towards the upper part of the sheet. The influence of water on the physical properties of the residual liquid, including density, viscosity and liquidus temperature, may have facilitated the lateral movement more than 15 km up dip in the sheets. Exsolution of a Cl- and S-rich metal-bearing aqueous fluid from residual magma resulted in concentration and redistribution of incompatible and aqueoussoluble elements in late-stage differentiated rocks. This proposed hydrothermal mechanism has important economic implications as it exerts a strong control on the final distribution of noble metals in these types of diabase sheets.  相似文献   

9.
Polycrystalline quartz ribbons in high-grade metamorphic rocks from the Daqingshan region, are typi- cal microfabrics of, and provide information for, deep crust deformation and metamorphism. The quartz ribbons have straight boundaries and extend stably along gneissosity. They truncate other mineral grains in the rocks and may contain inclusions of such minerals that are lens-shaped and oriented. They frequently end into branching termination. Analysis fluid inclusions in polycrystalline quartz rib- bons reveal that the complex types of fluid inclusions are inhomogeneously distributed. They are ob- viously different from inclusions captured at granulite facies, in both fluid compositions and T-P esti- mations. Based on microfabric and fluid inclusion analysis, the polycrystalline quartz ribbons are suggested to be formed by SO2-rich fluids filling micro-fractures that are parallel to early gneissosity. The SO2 composition is derived from the deformed host rocks. The fluid phase has significant effects on the rheological characteristics, fracturing of rocks, and formation of quartz ribbons.  相似文献   

10.
Polycrystalline quartz ribbons in high-grade metamorphic rocks from the Daqingshan region, are typical microfabrics of, and provide information for, deep crust deformation and metamorphism. The quartz ribbons have straight boundaries and extend stably along gneissosity. They truncate other mineral grains in the rocks and may contain inclusions of such minerals that are lens-shaped and oriented. They frequently end into branching termination. Analysis fluid inclusions in polycrystalline quartz ribbons reveal that the complex types of fluid inclusions are inhomogeneously distributed. They are obviously different from inclusions captured at granulite facies, in both fluid compositions and T-P estimations. Based on microfabric and fluid inclusion analysis, the polycrystalline quartz ribbons are suggested to be formed by SO2-rich fluids filling micro-fractures that are parallel to early gneissosity. The SO2 composition is derived from the deformed host rocks. The fluid phase has significant effects on the rheological characteristics, fracturing of rocks, and formation of quartz ribbons.  相似文献   

11.
Two kinds of inclusions, fluid-melting inclusion and gas-liquid inclusion, are present in the Huanggangliang deposit in eastern Inner Mongolia. Temperature ranges from 1050°C of fluid-melting inclusion to 150°C of liquid inclusion. Away from intrusion, the inclusions of orebodies intend to be characterized by simpler type, lower temperature and lower salinity, as well as weakened relation to intrusion. The metallization of the Huanggangliang deposit is characterized by multiple activities of ore-forming fluid, multi-source, multi-stage accumulation of ore-forming material, F-rich environment, enrichment of F, organic gas, CO2 and N2, and involving of residual magma.  相似文献   

12.
A fluid-inclusion study has been performed on quartzite nodules of stromboli volcano hosted by calc-alkaline lavas of both the Strombolicchio (200 ka) and Paleostromboli II (60 ka) periods. The nodules are mainly composed of quartz crystals with subordinate plagioclase and K-feldspar. Small interstitial minerals such as plagioclase, K-feldspar, clinopyroxene, biotite, and quartz are also found, together with glass. Muscovite, epidote and zircon occur as accessory minerals. Different quartzite nodules occur: (1) equigranular polygonal granoblastic quartzite nodules forming a polygonal texture with clear triple points; (2) inequigranular polygonal granoblastic quartzite nodules; and (3) break-up nodules with strongly resorbed quartz. These quartzites are restites from partial melting, involving felsic crustal rocks at the magma/wall rock contact. Restitic quartz re-crystallises at variable and generally high temperatures, leading to the formation of quartzites with different textures. Quartz grains contain five types of fluid inclusions distinguished on the basis of both fluid type and textural/phase relationships at room temperature. Type I are two-phase (liquid+vapour) CO 2-rich fluid inclusions. They are primary and subordinately pseudosecondary in origin and have undergone re-equilibration processes. Type II mono-phase/two-phase (vapour/liquid+vapour) CO 2-rich fluid inclusions are the most common and, based on their spatial distribution and shape, they can be divided into two subclasses: type IIa and type IIb. Type II inclusions are secondary or pseudosecondary and they are assumed to have formed after decrepitation of type I inclusions and cracking of the host quartz. Type III inclusions are mono-phase (vapour); they possibly contain CO 2 at very low density and surround the inner rims of quartz grains. Type IV two-phase silicate-melt inclusions contain glass±CO 2-rich fluid. Some of them are cogenetic with type II inclusions. Finally, type V two-phase (liquid+vapour) aqueous inclusions are both vapour-rich and liquid-rich aqueous inclusions. Microthermometric experiments were performed on both type I and II inclusions. Type I inclusions homogenise to liquid between 20 and 30.5 °C. Type IIa inclusions homogenise to vapour in the 24 to 30 °C range, with a maximum peak of frequency at 29 °C. Type IIb inclusions also homogenise to vapour between 14 and 25 °C. There appears to be no difference in homogenisation temperature distribution between the Strombolicchio and Paleostromboli II samples. The trapping pressures of the fluid inclusions have been obtained by combining the microthermometric data of the Strombolicchio and Paleostromboli II samples with the pressure–temperature–volume (i.e. density) characteristics for a pure CO 2 system. The data on the early inclusions (type I) suggest an important magma rest at a pressure of about 290 MPa (i.e. about 11-km depth). Type IIa CO 2 inclusions suggest that a second magma rest occurred at a pressure of about 100 MPa (i.e. about 3.5-km depth), whereas type IIb inclusions were trapped later at a shallower depth during the final magma upwelling. No pressure/depth differences seem to occur between the Strombolicchio and Paleostromboli II periods, indicating the same polybaric rests for the calc-alkaline magmas of Stromboli, despite their significantly different ages. This persistence in magma stagnation conditions from 200 to 60 ka suggests a similar plumbing system for the present-day Strombolian activity.  相似文献   

13.
The mechanics of explosive eruptions influence magma ascent pathways. Vulcanian explosions involve a stop–start mechanism that recurs on various timescales, evacuating the uppermost portions of the conduit. During the repose time between explosions, magma rises from depth and refills the conduit and stalls until the overpressure is sufficient to generate another explosion. We have analyzed major elements, Cl, S, H2O, and CO2 in plagioclase-hosted melt inclusions, sampled from pumice erupted during four vulcanian events at Soufrière Hills volcano, Montserrat, to determine melt compositions prior to eruption. Using Fourier transform infrared spectroscopy, we measured values up to 6.7 wt.% H2O and 80 ppm CO2. Of 42 melt inclusions, 81 % cluster between 2.8 and 5.4 wt.% H2O (57 to 173 MPa or 2–7 km), suggesting lower conduit to upper magma reservoir conditions. We propose two models to explain the magmatic conditions prior to eruption. In Model 1, melt inclusions were trapped during crystal growth in magma that was stalled in the lower conduit to upper magma reservoir, and during trapping, the magma was undergoing closed-system degassing with up to 1 wt.% free vapor. This model can explain the melt inclusions with higher H2O contents since these have sampled the upper parts of the magma reservoir. However, the model cannot explain the melt inclusions with lower H2O because the timescale for plagioclase crystallization and melt inclusion entrapment is longer than the magma residence time in the conduit. In Model 2, melt inclusions were originally trapped at deeper levels of the magma chamber, but then lost hydrogen by diffusion through the plagioclase host during periodic stalling of the magma in the lower conduit system. In this second scenario, which we favor, the melt inclusions record re-equilibration depths within the lower conduit to upper magma reservoir.  相似文献   

14.
The Tongling area is one of the most important ore cluster areas in the middle to lower Yangtze River metallogenic belt. The ore-forming process in Tongling region was mainly resulted from the me- dium-acidic magma intrusion activity during Yansha- nian epoch[1―4]. Lots of research of the structure sys- tem and intrusion series were carried out in recent decades and the following aspects were mainly fo- cused on: (1) Accurate determination of the petrologic structure, chemical composition a…  相似文献   

15.
The newly discovered Baogudi gold district is located in the southwestern Guizhou Province,China,where there are numerous Carlin-type gold deposits.To better understand the geological and geochemical characteristics of the Baogudi gold district,we carried out petrographic observations,elemental analyses,and fluid inclusion and isotopic composition studies.We also compared the results with those of typical Carlin-type gold deposits in southwestern Guizhou.Three mineralization stages,namely,the sedimentation diagenesis,hydrothermal(main-ore and late-ore substages),and supergene stages,were identified based on field and petrographic observations.The main-ore and late-ore stages correspond to Au and Sb mineralization,respectively,which are similar to typical Carlin-type mineralization.The mass transfer associated with alteration and mineralization shows that a significant amount of Au,As,Sb,Hg,Tl,Mo,and S were added to mineralized rocks during the main-ore stage.Remarkably,arsenic,Sb,and S were added to the mineralized rocks during the late-ore stage.Element migration indicates that the sulfidation process was responsible for ore formation.Four types of fluid inclusions were identified in ore-related quartz and fluorite.The main-ore stage fluids are characterized by an H2O–NaCl–CO2–CH4±N2system,with medium to low temperatures(180–260℃)and low salinity(0–9.08%NaCl equivalent).The late-ore stage fluids featured H2O–NaCl±CO2±CH4,with low temperature(120–200℃)and low salinity(0–7.48%Na Cl equivalent).The temperature,salinity,and CO2and CH4concentrations of ore-forming fluids decreased from the main-ore stage to the late-ore stage.The calculated δ^13C,d D,and δ^18O values of the ore-forming fluids range from-14.3 to-7.0%,-76 to-55.7%,and 4.5–15.0%,respectively.Late-ore-stage stibnite had δ^34S values ranging from-0.6 to 1.9%.These stable isotopic compositions indicate that the ore-forming fluids originated mainly from deep magmatic hydrothermal fluids,with minor contributions from strata.Collectively,the Baogudi metallogenic district has geological and geochemical characteristics that are typical of Carlin-type gold deposits in southwest Guizhou.It is likely that the Baogudi gold district,together with other Carlin-type gold deposits in southwestern Guizhou,was formed in response to a single widespread metallogenic event.  相似文献   

16.
Gabbro — quartz diorite inclusions, angular to rounded and up to 20 cm in size, have been found as accidental fragments in a mud flow of the Okata basalt group, O-shima Island and in a tuff breccia, Hakone. New analyses are represented for seventeen inclusions and three pyroxenes. It is reasonable to conclude from petrographic and chemical features that the olivine gabbro inclusions were produced by crystal settling from a quartztholeiite magma at the early stage of fractionation within a magma reservior. On the other hand, gabbro and quartz gabbro inclusions are fragments of a small intrusive body within the Tertiary volcanic formation and consist of various amounts of cumulus phases and liquid. Quartz diorite inclusions are also fragments of a plutonic equivalent, but represents a strongly-differentiated liquid phase of the quartz-tholeiite magma.  相似文献   

17.
The 29.5 Ma Wah Wah Springs Formation which erupted from the Indian Peak Caldera has an estimated volume of > 3900 km3 making it one of the largest ignimbrites on earth. The magma was calc-alkaline, dacitic (68 wt. % SiO2) and phenocryst-rich (38 vol.%). Phenocrysts include plagioclase (An 47), magnesio-hornblende, Mg-biotite, quartz, Fe-Ti oxides, diopsidic-augite, and rare Ca-poor pyroxene, in order of decreasing abundance. Apatite, zircon and pyrrhotite occurs as inclusions within phenocrysts. Atmospheric glass losses (1040 km3) account for bulk-rock compositions that have SiO2 contents ranging from 63 to 67 wt.%. Glass compositions are high-silica rhyolite.Phenocrysts equilibrated at temperatures ranging from about 790 to 850°C and oxygen fugacities approximately 2.6 log units above the QFM buffer. Confining pressure estimates using the aluminum-in-hornblende geobarometer calibrated for calc-alkaline volcanic rocks suggest a mean pressure of 230±50 MPa corresponding to 7.5±1.5 km depth. These estimates are consistent with caldera formation accompanying emplacement.Crystal compositions for phenocrysts and mineral inclusions within phenocrysts are remarkably homogeneous throughout the outflow tuff, although minor zoning does occur. Given the dacitic composition of the magma, the weakly zoned phenocryst population cannot be modeled to produce the observed high-silica glass (melt) indicating open-system behavior for the magma. The high-silica rhyolite glass is interpreted to be an artifact of efficient magma mixing accompanying addition of highly evolved magma, or melt to intermediate composition magma. Mixing was followed by magma hybridization. Additional support for this hybridization model includes: (1) physically and chemically distinct populations of augite; (2) minor but unbiquitous resorbed plagioclase, biotite and hornblende phenocrysts; and (3) reverse zoning in some of the plagioclase euhedra within pumice lapilli.  相似文献   

18.
 This work presents the results of a microthermometric and EPMA-SIMS study of melt inclusions in phenocrysts of rocks of the shoshonitic eruptive complex of Vulcano (Aeolian Islands, Italy). Different primitive magmas related to two different evolutionary series, an older one (50–25 ka) and a younger one (15 ka to 1890 A.D.), were identified as melt inclusions in olivine Fo88–91 crystals. Both are characterized by high Ca/Al ratio and present very similar Rb/Sr, B/Be and patterns of trace elements, with Nb and Ti anomalies typical of a subduction zone. The two basalts present the same temperature of crystallization (1180±20  °C) and similar volatile abundances. The H2O, S and Cl contents are relatively high, whereas magmatic CO2 concentrations are very low, probably due to CO2 loss before low-pressure crystallization and entrapment of melt inclusions. The mineral chemistry of the basaltic assemblages and the high Ca/Al ratio of melt inclusions indicate an origin from a depleted, metasomatized clinopyroxene-rich peridotitic mantle. The younger primitive melt is characterized with respect to the older one by higher K2O and incompatible element abundances, by lower Zr/Nb and La/Nb, and by higher Ba/Rb and LREE enrichment. A different degree of partial melting of the same source can explain the chemical differences between the two magmas. However, some anomalies in Sr, Rb and K contents suggest either a slightly different source for the two magmas or differing extents of crustal contamination. Low-pressure degassing and cooling of the basaltic magmas produce shoshonitic liquids. The melt inclusions indicate evolutionary paths via fractional crystallization, leading to trachytic compositions during the older activity and to rhyolitic compositions during the recent one. The bulk-rock compositions record a more complex history than do the melt inclusions, due to the syneruptive mixing processes commonly affecting the magmas erupted at Vulcano. The composition and temperature data on melt inclusions suggest that in the older period of activity several shallow magmatic reservoirs existed; in the younger one a relatively homogeneous feeding system is active. The shallow magmatic reservoir feeding the recent eruptive activity probably has a vertical configuration, with basaltic magma in the deeper zones and differentiated magmas in shallower, low-volume, dike-like reservoirs. Received: 11 March 1998 / Accepted: 14 July 1998  相似文献   

19.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   

20.
地壳中的成矿地质流体体系   总被引:9,自引:0,他引:9  
本文论述了地质流体研究的学科前缘性.认为地壳中可划分出六大类不同的成矿地质流体体系:(1)与大陆地壳中─酸性岩浆热事件有关的热液流体体系(2)与海底基性火山活动有关的热浪喷流派体体系(3)与海相沉积盆地演化有关的盆地流体体系(4)与区域变质作用有关的变质流体体系(5)与地幔排气过程有关的深部流体体系(6)与大型剪切带的发生演化有关的流体体系并简要讨论了每个成矿流体体系的发生、演化、特征和成矿作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号