首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pairwise waveform (PWW) and pairwise spectrogram (PWS) processors for 3-D localization of unknown, continuous-wave, broadband sources in shallow water have been developed and implemented. The processors use sparse hydrophone arrays and are applicable to multiple sources, which can be unknown, continuous wave, and broadband. Here, we give new formulas for these two processors that significantly reduce computational requirements, making localization at longer ranges and higher frequencies feasible. The new processors are motivated by a demonstration that an incoherent version of the PWW (IPWW) processor (in which processor outputs at different frequencies are averaged after being processed independently) is the Bartlett processor without autoreceiver terms. The new PWW processor is mathematically equivalent to the original version, though much faster. The new PWS processor is mathematically equivalent to the original version only in the limit of infinite spectrogram window length, but for window lengths that are optimal with the old PWS processor, the new PWS processor gives essentially the same results with much greater speed. Simulations comparing PWS processing to Bartlett, PWW processing, and a time difference of arrival method indicate that the main advantage of PWS processing is for multiple sources in uncertain, high-noise environments at ranges many wavelengths long. With PWS, increased robustness with respect to mismatch is obtained at the expense of reduced resolution; varying PWS processor parameters (such as the size of windows used to create spectrograms) optimizes this tradeoff. This work is motivated by the problem of localizing singing humpback whales, and simulation results use whale sources.  相似文献   

2.
A new broadband acoustic Doppler current profiler (ADCP) is described, with a useful range comparable to that of a commercially available narrowband (incoherent) system of the same acoustic frequency, but having enhanced performance. The extra performance may be traded off among (1) reduced velocity variance, (2) reduced averaging time, and (3) finer depth resolution. This improvement permits the observation of phenomena with smaller time and space scales than is now possible with available ADCPs. An expression predicting r.m.s. velocity error in terms of system parameters and the measured acoustic data is given and is shown to be consistent with the independently measured velocity error among redundant beams. Two major sources of bias error in incoherent ADCPs are shown to be much reduced for the broadband system. Field data demonstrating the improved performance over the existing incoherent ADCP are shown for cases of both strong and weak shear  相似文献   

3.
This paper deals with the development of a processing technique that improves the signal-to-noise ratio (SNR) at the single sensor for a received signal that is embedded in a partially correlated noise field. The approach of this study is unique in that the noise is treated as being non-white and partially correlated. The concept of the proposed development is based on the time interval over which the temporal coherence or correlation properties of a noise field are defined. For narrowband signals, the associated temporal coherence period is much longer than the correlation time interval of the anisotropic noise field. Thus, a coherent integration of discontinuous segments of received signals will enhance the SNR at the single sensor by lowering the correlation properties of the associated non-white noise. Reconstruction of the narrow-band signal time series, with improved SNR at the sensor will allow the use of the existing high resolution techniques to be utilized more effectively by lowering their threshold values in order to detect very weak signals. The intention here is to integrate the characteristics of the real anisotropic noise field during the preliminary processing stages of the received signals by an array of sensors. Simulations show that the proposed method can be integrated in the signal processing functionality of sonar and radar systems  相似文献   

4.
Conventional processing of synthetic aperture sonar (SAS) data is equivalent to a two-dimensional matched filter operation. In principle, two-dimensional deconvolution improves the resolution of the processed image. However, its direct implementation is generally impractical, due to numerical problems. The paper discusses the development of iterative algorithms that efficiently perform the deconvolution of broadband synthetic aperture data and gives examples of their application. It is concluded that, in many cases, the proposed approach is preferable to more classical solutions  相似文献   

5.
Adaptive-array beamforming achieves high resolution and sidelobe suppression by producing sharp s in the adaptive beampattern. Large-aperture sonar arrays with many elements have small resolution cells; interferers may move through many resolution cells in the time required for accumulating a full-rank sample covariance matrix. This leads to "snapshot-deficient" processing. In this paper, the -broadening technique originally developed for an ideal stationary problem is extended to the snapshot-deficient problem combined with white-noise constraint (WNC) adaptive processing. Null broadening allows the strong interferers to move through resolution cells and increases the number of degrees of freedom, thereby improving the detection of weak stationary signals.  相似文献   

6.
An operational passive sonar is required to detect signals from sources, which are subject to spatial and temporal coherence losses via modifications by the ocean environment. Furthermore, these signals are to be detected in the presence of frequency-dependent correlated noise fields. For a system which employs splitbeam cross-correlation processing, the spatial and spectral properties of the signal and noise are of significant import. Therefore, the exact probability density and cumulative distribution functions of the N-sampled correlator outputs of a splitbeam broadband passive sonar are derived for the case of Gaussian inputs which are described by arbitrary cross-spectral density matrices. The validity of approximating the exact probability density function (pdf) as a Gaussian distribution is investigated. The effect of signal coherence loss and noise correlation on the detection performance is considered and the associated processing loss is expressed as a degradation factor within the detection threshold equation  相似文献   

7.
This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably.  相似文献   

8.
In an attempt to investigate the technical feasibility of a CW Doppler sonar, we have examined a method of measuring low velocities with a high-velocity resolution, or frequency resolution, by use of a simple circuit configuration employing digital signal processing technique. The following discussion presents the results of the investigation. In the measuring method described, the fast Fourier transform (FFT) of undersampled data is calculated and the Doppler shift is obtained by searching for a peak frequency of the power spectrum. To achieve the intended frequency resolution of 1 Hz by FFT operation, measurement of data for a minimum measuring period of 1 s is essential. If the sampling frequency is set to 50 kHz, the number of samples obtained during the minimum measuring period of I s would amount to 50000. This is not practical in light of the time required for the FFT operation. To overcome this problem, our new measuring method employs a decimation technique for reducing the number of samples down to 1024 while maintaining a frequency resolution of about 1 Hz. This paper describes how the processing time can be drastically reduced to about 1/300th compared to the conventional technique by a combination of complex exponential functions, filtering and decimation, and thereby indicates the possibility of real-time CW Doppler data processing  相似文献   

9.
海洋工程勘察中,中浅地层剖面是一种应用广泛的调查设备,其具有便携性、高效率、高主频和高分辨率的特点。实际调查中,随机噪音、多次波等问题严重降低了地层剖面资料的信噪比和分辨率,同时,现场作业对海况的依赖性很强。本文从中浅地层剖面的野外采集设备和室内资料处理方面分析,提出立体震源、多道接收系统、带通滤波、预测反褶积和相关滤波等方法。立体震源拓宽了地层剖面资料的频带,获得了更深的剖面和更高的分辨率;多道接收系统使中浅地层剖面数据由单道变为多道,有利于室内资料处理;对于目前主流的单道中浅地层剖面数据,首先要识别噪音的来源和特征,再通过增益、带通滤波、涌浪校正,预测反褶积等方法来处理,最后获取的高质量地层剖面资料一定是各种方法的综合使用和多次试验的结果。  相似文献   

10.
海洋工程勘察中,中浅地层剖面是一种应用广泛的调查设备,其具有便携性、高效率、高主频和高分辨率的特点。实际调查中,随机噪音、多次波等问题严重降低了地层剖面资料的信噪比和分辨率,同时,现场作业对海况的依赖性很强。文中从中浅地层剖面的野外采集设备和室内资料处理方面分析,提出立体震源、多道接收系统、带通滤波、预测反褶积和相关滤波等方法。立体震源拓宽了地层剖面资料的频带,获得了更深的剖面和更高的分辨率;多道接收系统使中浅地层剖面数据由单道变为多道,有利于室内资料处理;对于目前主流的单道中浅地层剖面数据,首先要识别噪音的来源和特征,再通过增益、带通滤波、涌浪校正,预测反褶积等方法来处理,最后获取的高质量地层剖面资料一定是各种方法的综合使用和多次试验的结果。  相似文献   

11.
A permanent real-time geophysical observatory using a submarine cable was developed and deployed to monitor seismicity, tsunamis, and other geophysical phenomena in the southern Kurile subduction zone. The geophysical observatory comprises six bottom sensor units, two branching units, a main electro-optical cable with a length of 240 km and two land stations. The bottom sensor units are: 1) three ocean bottom broadband seismometers with hydrophone; 2) two pressure gauges (PGs); 3) a cable end station with environmental measurement sensors. Real-time data from all the undersea sensors are transmitted through the main electro-optical cable to the land station. The geophysical observatory was installed on the continental slope of the southern Kurile trench, southeast Hokkaido, Japan in July 1999. Examples of observed data are presented. Sensor noises and resolution are mentioned for the ocean bottom broadband seismometers and the PGs, respectively. An adaptable observation system including very broadband seismometers is scheduled to be connected to the branching unit in late 2001. The real-time geophysical observatory is expected to greatly advance the understanding of geophysical phenomena in the southern Kurile subduction zone  相似文献   

12.
Experimental results of the seismic profiling with bottom penetration up to 1000 m based on broadband signals and conducted in the Caspian Sea sites are presented. Use has been made of synchronized sequences of probing pulses with linear frequency modulation at a frequency deviation of 50 to100 Hz. The pulses were emitted by a towed sound source of an original design (acoustic power up to 300 W, frequency ranged from 100 to 1000 Hz) and received by a standard digital seismic streamer. The processing of the signals involved the matched filtering of the individual pulses and the trajectory accumulation of a long sequence of pulses lengthwise the horizontal-homogeneous reflecting layers of the bottom structure. The adaptive stacking procedure taking into account the linear inclinations of the individual layers allowed us to enlarge the stacking interval by up to 100 pulses and to increase the effective depth and the spatial resolution of the seismic profiling, which gave us a total increase of more than 30 dB in the S/N ratio. In our view, the seismic profiling using low-power (about 100 W) and broadband (up to several hundred Hz) coherent sound sources represents a promising technology for decreasing the hazardous impact on aquatic ecosystems. The approach developed is an alternative to the conventional technology of marine seismic prospecting based on powerful pulse sources of the shock type (air guns, sparkers) in the low frequency range (less than ~200 Hz).  相似文献   

13.
The Surface Contour Radar (SCR) is a 36-GHz computer-controlled airborne radar which generates a false-color-coded elevation map of the sea surface below the aircraft in real time, and can routinely produce ocean directional wave spectra with post-flight data processing which have much higher angular resolution than pitch-and-roll buoys. The SCR range measurements are not error-free and the resulting errors in the elevations corrupt the directional wave spectrum. This paper presents a technique for eliminating that contamination.  相似文献   

14.
15.
This paper deals with the basic modeling problem in underwater acoustics that is the characterization of the channel between a transmitter and a receiver. The problem is analyzed here using an array of sensors that receive PSK signals emitted by several sources. Data come from an experiment realized by a physical system situated in the Mediterranean Sea. In order to identify the multipath channel, we need to access the propagation time delay and the angle of arrival of each propagation ray. However, many of these acoustic ray paths are too close to be separated by classic processing methods (matched filter, beamforming, etc.); new methods with better resolution must be applied in order to analyze the experimental signals and to determine their arrival time on the array of sensors. After a presentation of this problem, we will first discuss high-resolution methods that are usually applied in the localization problem; we will then focus on wavelet packet analysis which provides good results by improving the temporal resolution of acoustic signals  相似文献   

16.
大量研究表明南海北部东沙海域的中生界地层具有很好的油气成藏条件, 是油气勘探的有利区域。但中生界地层构造成像不清晰限制了该区域油气资源的准确评价。本文利用在该海域采用单源单缆长排列采集的三维地震数据, 提出了对该类数据的优化处理技术方案, 以期获得中生界地层的清晰成像。处理过程主要包括各种噪音干扰和不同类型多次波的压制, 尤其是比较严重的海洋湍流干扰压制, 提高中深层反射信号信噪比; 通过压制气泡和压缩子波提高地震反射的分辨率; 同时利用高密度速度分析进行各向异性双谱非双曲线动校正, 提高成像质量, 使波组特征、振幅特征更为明显。针对密集二维采集数据特点, 通过合理的面元规则化处理, 使得覆盖次数均匀和横向分辨率提高, 实现高精度三维成像。本研究针对噪音干扰较严重的单源单缆长排列加密地震资料, 按照三维地震资料进行数据处理, 处理后明显突出了浅、中、深各层的有效信息, 特别是针对中生界的成像质量改善更为明显, 形成了一套行之有效的处理流程, 为今后邻近区块的勘探和资料处理提供了技术基础, 也为东沙海域的油气勘探与评价提供了科学依据。  相似文献   

17.
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging.This paper presents a novel method for realizing the field monitoring of channel siltation in real time.The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle.By use of the multipath propagation structure of underwater acoustic channel,the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths.Bistatic transducer pairs are employed to transmit and receive the acoustic signals,and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver.The WRELAX (Weighted Fourier transform and RELAX) algorithm is used to obtain the high resolution estimation of multipath time delay.To examine the feasibility of the presented method and the accuracy and precision of the developed system,a series of sea trials are conducted in the southwest coast area of Dalian City,north of the Yellow Sea.The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM,and the uncertainty is smaller than ±0.06 m.Compared with the existing means for measuring the silt thickness,the present method is innovative,and the system is stable,efficient and provides a better real-time performance.It especially suits monitoring the narrow channel with rapid changes of siltation.  相似文献   

18.
Two-dimensional images of broadband ocean reverberation in deep water have been made from explosive source data. The effective spatial resolution is 1 m×10 m for the frequency band of 120-1430 Hz. This paper presents two typical images for wind speeds of 4 and 17 ms-1 . The high wind case exhibits substantial spatial variability on the scale of 100 meters that is not observed in the low wind case. These results have significance for the evaluation of hypotheses for wind induced surface reverberation  相似文献   

19.
多波束测深技术在海底管道检测中的应用   总被引:2,自引:1,他引:2  
为查明海底管道的位置和掩埋状态,在海底管道检测中使用多波束测深技术。介绍了多波束的系统组成、调查方法和数据处理等内容。重点对数据处理进行了论述,提出了确定海底管道位置和掩埋状态的分析方法,并对影响多波束检测效果的频率、波束角和水深等因素进行了探讨。通过分析认为,与单波束相比,多波束在海底管道检测中具有直观、高效和高分辨率的特点,具有较好的工程应用前景。  相似文献   

20.
青岛市海洋功能区划中,大范围采用了法国高分辨率陆地卫星SPOT-5HRG 1A级遥感数据。利用Geoimage遥感影像处理软件对数据进行了处理.包括:遥感影像的正射纠正、辐射处理和不同分辨率影像地融合等,获得了高空间分辨率和良好的光谱分辨率的遥感图像。很好的识别出青岛海岸带地区地物分布特征。为海洋功能区划底图补充了真实而丰富的信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号