首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dominantly passive volcanic Vøring and Møre Margins, NE Atlantic, are separated by the 200 km long Vøring Transform Margin (VTM). The southern Vøring Basin and the VTM have been studied by use of four regional Ocean Bottom Seismograph (OBS) profiles, combined by gravity modelling. The models demonstrate a complex pattern of magmatism along the transform margin. The distribution of magmatism seems to be related to the existence and trend of a lower crustal 8+ km/s body, interpreted as eclogitized rocks, present in the southern Vøring Basin. Early Tertiary breakup related magmatic ‘leakage’ across the Continent–Ocean-Transition (COT) appears to be facilitated where this layer is absent. These results support earlier workers who have concluded that the Jan Mayen Fracture Zone originated from a Caledonian zone of weakness. We propose that partly eclogitized rocks were uplifted into the lower crust close to this zone during the Caledonian orogeny and that this body acted as a barrier to magma emplacement during the Late Cretaceous–Early Eocene phase of rifting/breakup. The eclogitized terrain also appears to have caused northeastward channeling of the Late Cretaceous–Early Tertiary intrusions within the Vøring Basin. An up to 10 km thick pre-Cretaceous sedimentary basin in the southern Vøring Basin may be genetically related to the NS-trending Late Paleozoic and Mesozoic rift basins in North-East Greenland.  相似文献   

2.
Five lineaments on the volcanic Vøring Margin, NE Atlantic, have been identified in crustal scale models derived from Ocean Bottom Seismograph (OBS) data. It is suggested that the Vøring Basin can be divided in four compartments bounded by the Jan Mayen Fracture Zone/Lineament, a new lineament defined from this study, the Gleipne Lineament, the Surt Lineament and the Bivrost Lineament. The NW–SE trending Jan Mayen-, Gleipne- and Bivrost lineaments probably represent old zones of weakness controlling the onset of the early Eocene seafloor spreading, whereas the Surt- and New lineaments, rotated ca. 30° symmetrically from the azimuth of the Gleipne Lineament, may represent adjustment features related to the early Cretaceous/early Tertiary rifting. The longest landward extent of a lower crustal high-velocity body, assumed to represent intrusions related to the last phase of rifting, is found between the New Lineament and the Gleipne Lineament, where the body extends across the Helland Hansen Arch. Northeastwards in the Vøring Basin, the landward limit of the body steps gradually seawards, closely related to the interpreted lineaments. Northeast of the Gleipne Lineament, the body terminates close to the Fles Fault Complex, north of the Surt Lineament, it extends across the Nyk High, and northeast of the Bivrost Lineament the intrusions terminate around the Vøring Escarpment. Evidence for an interplay between active and passive rifting components is found on regional and local scales on the margin. The active component is evident through the decrease in magmatism with increased distance from the Icelandic plume, and the passive component is documented through the fact that all found crustal lineaments to a certain degree acted as barriers to magma emplacement. The increased thickness of the continental crust on the seaward side of the Vøring Escarpment, the upwarping of Moho and thinning of the lower crustal high-velocity layer in the western part of the Vøring Basin, as well as a strong shallowing of the Moho observed in parts of the area between the Jan Mayen Fracture Zone/Lineament and the New Lineament, can be explained by lithospheric delamination models.  相似文献   

3.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   

4.
A two-dimensional numerical modelling that simulate the kinematic and thermal response of the lithosphere to thinning was used for the quantitative reconstruction of the late Neogene to Recent times tectonic and stratigraphic evolution of the North Sicily continental margin (southern Tyrrhenian Sea). The numerical study of the evolution of the North Sicily margin builds on the crustal image and kinematic interpretation of the margin obtained by Pepe et al. [Tectonics 19 (2000) 241] on the basis of seismic data and gravity modelling. Tectonic modeling indicate that different segments of the margin were undergoing different vertical movements, which are mainly expression of the rifting and thinning of the lithosphere occurred during tectonic evolution of the southern Tyrrhenian Sea. A prediction of the pre-rift basement topography and the Moho along the margin converges to a value of 6.5 km for the depth of necking and a temperature-dependent EET (500° isotherm). The model fails to reproduce the morphology of the Solunto High confirming its non-extensional origin. A polyphase evolution is required to reproduce the observed syn- and post-rift stratigraphy. During the first rifting stage (between 9 and 5 Ma), crustal thinning factors reach maximum values of 1.27 in the Cefalù basin. A similar value is predicted for the subcrustal thinning around 60 km NNE of the profile margin. Crustal thinning factors increase during the second rifting stage (from 4 to 2 Ma) and reach values of 2 and up to 3.5 in the Cefalù basin and in the continent–oceanic transition zone, respectively. Similarly, subcrustal lithospheric thinning factors reach values up to 2.5 in the distal sector of the margin. An uplift of more than 100 m is predicted for the North Sicily shelf and surrounding onshore areas during the post-rift stage. The evolution of thermal structure with time is very sensitive to the partial thinning factors describing the evolution of the thinning itself during time. The lithosphere preserved part of its strength during extension. The effective elastic thickness (EET) along the margin through time is 24 km at the onset of rifting and reaches values less to 8 km during the second rifting stage in the northeastern end of the margin.  相似文献   

5.
Numerical experiments reproduce the fundamental architecture of magma-poor rifted margins such as the Iberian or Alpine margins if the lithosphere has a weak mid-crustal channel on top of strong lower crust and a horizontal thermal weakness in the rift center. During model extension, the upper crust undergoes distributed collapse into the rift center where the thermally weakened portion of the model tears. Among the features reproduced by the modeling, we observe: (1) an array of tilted upper-crustal blocks resting directly on exhumed mantle at the distal margin, (2) consistently oceanward-dipping normal faults, (3) a mid-crustal high strain zone at the base of the crustal blocks (S-reflector), (4) new ocean floor up against a low angle normal fault at the tip of the continent, (5) shear zones consistent with continentward-dipping reflectors in the mantle lithosphere, (6) the mismatch frequently observed between stretching values inferred from surface extension and bulk crustal thinning at distal margins (upper plate paradox). Rifting in the experiment is symmetric at a lithospheric scale and the above features develop on both sides of the rift center. We discuss three controversial points in more detail: (1) weak versus strong lower crust, (2) the deformation pattern in the mantle, and (3) the significance of detachment faults during continental breakup. We argue that the transition from wide rifting towards narrow rifting with a pronounced polarity towards the rift center is associated with the advective growth of a thermal perturbation in the mantle lithosphere.  相似文献   

6.
We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the eastern Korean margin that led to the separation of the southwestern Japan Arc. The eastern Korean margin is rimmed by fundamental elements of rift architecture comprising a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau that is a continental fragment extended and partially segmented from the Korean Peninsula. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau are bounded by major synthetic and smaller antithetic faults, creating wide and considerably symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Analysis of rift fault patterns suggests that rifting at the Korean margin was primarily controlled by normal faulting resulting from extension rather than strike-slip deformation. Two extension directions for rifting are recognized: the Onnuri and Hupo Basins were rifted in the east-west direction; the Bandal Basin in the east–west and northwest–southeast directions, suggesting two rift stages. We interpret that the east–west direction represents initial rifting at the inner margin; while the Japan Basin widened, rifting propagated southeastward repeatedly from the Japan Basin toward the Korean margin but could not penetrate the strong continental lithosphere of the Korean Shield and changed the direction to the south, resulting in east–west extension to create the rift basins at the Korean margin. The northwest–southeast direction probably represents the direction of rifting orthogonal to the inferred line of breakup along the base of the slope of the Korea Plateau; after breakup the southwestern Japan Arc separated in the southeast direction, indicating a response to tensional tectonics associated with the subduction of the Pacific Plate in the northwest direction. No significant volcanism was involved in initial rifting. In contrast, the inception of sea floor spreading documents a pronounced volcanic phase which appears to reflect asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin, although it is in a back-arc setting, can be explained by the processes occurring at the passive continental margin with magmatism influenced by asthenospheric upwelling.  相似文献   

7.
The concept of plate tectonics implies that the normal sea floor spreading stage is preceded by a sequence of events associated with the break-up of continental crust. Thus, evidence of the early development of “non-failed” rifts is to be found at passive continental margins. Of special interest is the question of the extent of the continental crust and the structural and compositional changes associated with the change in crustal type. In addressing these topics, we have focused attention on the Norwegian margin between the Jan Mayen and Senja fracture zones (66°–70°N) in an attempt to understand its history of rifting and early sea floor spreading. p ]The southern part of this rifted margin is characterized by a wide shelf and the marginal Vøring Plateau interrupts a gentle slope at a level of about 1500 m. However, the margin becomes progressively narrower towards the north and a typical narrow shelf and steep slope emerge off the Lofo—tenVesterålen Islands (Fig. 1). In a reconstructed pre-opening configuration (Talwani and Eldholm, 1977) the narrowest part of the juxtaposed EastGreenland margin is found in the south and a wide shelf and slope corresponds to the Lofoten-Vesterålen margin.The most prominent structural element is a buried basement high underneath the Vøring Plateau. The high is bounded landward by the Vøring Plateau Escarpment, a major structural boundary which defines typical changes in the geophysical parameters. These are: (1) a sudden increase of depth to acoustic basement; (2) changes in the velocity-depth function; (3) a gravity gradient; and (4) a magnetic edge anomaly separating sea-floor spreading type anomalies from a quiet zone on the landward side (Talwani and Eldholm, 1972). These observations were interpreted in terms of a sharp ocea—ncontinent crustal transition along the escarpment with sea-floor spreading commencing between anomaly 24 and 25 time (56–58 m.y. B.P.). Alternatively, the concept of ancient oceanic crust landward of this escarpment and the possible existence of continental crust under the outer basement high have been argued and we refer to Eldholm et al. (1979) for a detailed discussion.  相似文献   

8.
松辽盆地裂谷期前火山岩与裂谷盆地关系及动力学过程   总被引:11,自引:0,他引:11  
刘德来 《地质论评》1998,44(2):130-135
松辽盆地存在裂谷期前火山岩,之后上地壳脆性伸展发育半地堑裂谷盆地。裂谷期前火山岩近水平展布于基底之上,裂谷期,沉则分布于半地暂内,两者属于不同构造层。  相似文献   

9.
The southern margin of Australia is a passive continental margin, formed during a Late Jurassic–Cretaceous rifting phase. The development of this passive margin is mainly associated with extensional processes that caused crustal thinning. In this work, we have measured the amount of extension and the stretching factor (β factor) across seven transect profiles approximately evenly distributed across the margin. The obtained results show that the amount of extension and the β factor along the margin vary from west to east. The lowest amount of extension, low–intermediate β factors and a very narrow margin are observed in the western part with 80 km of extension and is underlain mostly by the Archean Yilgarn Craton and the Albany–Fraser Orogen. The Gawler Craton in the centre of the south Australian margin is another region of low extension and low–intermediate β factor. The largest amount of extension (384 km) and the largest β factor (β = 1.88) are found in the eastern part of the passive margin in an area underlain by Phanerozoic Tasman Orogen units. Our results imply that there is a strong control of the age and thickness of the continental lithosphere on the style of rifting along the Australian passive margin. Rifting of old and cold lithosphere results in a narrow passive margin, with the formation of relatively few faults with relatively wide spacing, while rifting of younger, warmer lithosphere leads to wide rifting that is accommodated by a large number of faults with small spacing.  相似文献   

10.
《Gondwana Research》2014,25(3-4):886-901
The Late Mesoproterozoic (1085–1040 Ma) Ngaanyatjarra Rift, previously referred to as the Giles Event, is the dominant component of the Warakurna Large Igneous Province (LIP) that affected much of central and western Australia. This rift is well preserved and provides excellent examples of rift structure at a variety of crustal levels and times in the rift's evolution. Geological knowledge is integrated with geophysical interpretations and models to understand the crustal structure and evolution of this rift. Two phases are identified: an early rift stage (1085–1074 Ma) that is characterised by voluminous magmatism within the upper crust and relatively little tectonic deformation; and a late rift stage that is characterised by tectonic deformation, synchronous with the deposition of a thick pile of volcanic and sedimentary rocks (1074–1040 Ma). Compared to modern rift examples, this rift is unusual in that the crust was thickened by ~ 15 km and overall extension was very limited. However, its structure and evolution are very similar to the near-contemporaneous Midcontinent Rift, which shows the addition of a similar quantity of magmatic material as well as crustal thickening and limited extension. For these Mesoproterozoic rifts, we suggest that magmatism was the dominant process, and that the extension observed was a response to magmatism-induced crustal thickening and the gravitational collapse of the crustal column. Other Proterozoic rifts show similar characteristics (e.g. Transvaal Rift), whereas most Phanerozoic rifts are dissimilar, showing instead a dominance of extension, with magmatism largely a result of this extension. This change in the style of rifting from the Precambrian to the Phanerozoic may relate to the influence of a typically cooler and stronger lithosphere, which has caused stronger strain localisation and a greater role for extension as the controlling factor in rift evolution.  相似文献   

11.
High P-wave velocities (7.1–7.8 km/s) lower crustal bodies (LCBs) imaged along volcanic margins are commonly interpreted as plume and breakup-related thick mafic underplating. This interpretation is partly challenged in this paper based on new seismic observations and modelling of the outer Vøring Basin (Norway). An exceptional strong amplitude reflection, the T Reflection, is particularly well defined below the North Gjallar Ridge (NGR) between 7and 8 s TWT. The T Reflection is located near the volcanic lava flows emplaced during the NE Atlantic breakup ( 55–54 Ma ago) and coincides with the top of the LCB, forming a mid-crustal dome. Based on structural and temporal relationships, we show that the dome clearly influences the structural development of the NGR and predates the continental breakup at least by 10–15 Ma. Using a thermo-kinematical model, we tried also to investigate and quantify the relationships between the extension, LCB and the magmatic production. Modelling suggests that significant Paleocene–Early Eocene magmatism can be produced without any temperature anomaly in the mantle if differential stretching occurs during the breakup initiation. The conclusion of 2D thermo-kinematical parametric analysis is that the magmatic model predicts, either little extension (β < 2) with no melting or high extension (β > 5) with significant melting along the outer Vøring Basin. We suggest that the continental part of the LCB could not necessarily be breakup-related and so magmatic, as has often been stated previously. It is concluded here that the continental part of the LCB observed beneath the outer Vøring Basin may be partly (or fully) attributed to inherited, high-pressure granulite/eclogite lower crustal rocks. The real amount of mafic material emplaced along the outer Vøring Basin could be 20–40% less than thought.  相似文献   

12.
杨文采 《地质论评》2014,60(5):945-961
本篇讨论大陆岩石圈拆沉、伸展与裂解作用过程。由于大陆岩石圈厚度大而且很不均匀,产生裂谷的机制比较复杂。大陆碰撞远程效应的触发,岩石圈拆沉,以及板块运动的不规则性和地球应力场方向转折,都可能产生岩石圈断裂和大陆裂谷。岩石圈拆沉为在重力作用下"去陆根"的作用过程,演化过程可分为大陆根拆离、地壳伸展和岩石圈地幔整体破裂三个阶段。大陆碰撞带、俯冲的大陆和大洋板块、克拉通区域岩石圈,都可能产生岩石圈拆沉。大陆岩石圈调查表明,拉张区可见地壳伸展、岩石圈拆离、软流圈上拱和热沉降;它们是大陆岩石圈伸展与裂解早期的主要表现。从初始拉张的盆岭省到成熟的张裂省,拆离后地壳伸展成复式地堑,下地壳幔源玄武岩浆侵位,断裂带贯通并切穿整个岩石圈,表明地壳伸展进入成熟阶段。中国东北松辽盆地和西欧北海盆地曾处于成熟的张裂省。岩石圈破裂为岩浆侵位提供了阻力很小的通道网。岩浆侵位作用伴随岩石圈破裂和热流体上涌,成熟的张裂省可发展成大陆裂谷。多数的大陆裂谷带并没有发展成威尔逊裂谷带和洋中脊,普通的大陆裂谷要演化为威尔逊裂谷带,必须有来自软流圈的长期和持续的热流和玄武质岩浆的供应。威尔逊裂谷带岩石圈地幔和软流圈为地震低速带,其根源可能与来自地幔底部的地幔热羽流有关。  相似文献   

13.
The Vøring area, offshore mid-Norway has a complex geological history, has experienced several extensional phases and was significantly influenced by the break-up of the North Atlantic. We have modelled a cross-section over the Vøring Basin aiming to 1) reconstruct the basin evolution in a realistic way, and 2) to investigate the heat flow and temperature history in the basin.For the modelling we used the following tectonic events: the opening of the basin during the Permo-Triassic, an event during the Middle to Late Cretaceous and an event in the Late Cretaceous/Paleocene. The theoretical effects of the lithospheric stretching are depending on the palaeo-water depths of the area. We present a prediction of the palaeo-water depth, and a sensitivity analysis of the influence of the palaeo-water depth on the estimated beta-factors in the area.A lower crustal high-velocity body found in the area is often interpreted as magmatic underplating related to the break-up of the Norwegian Sea. We show the temperature history calculated by models that were run with and without assumption of underplating by a magmatic body emplaced during the Early Tertiary. The observed vitrinite reflectance in the Vøring area is best explained by numerical calculations of the vitrinite reflectance without a magmatic underplating. Our conclusion is that the Lower Crustal Body is not related to magmatic underplating or to significant sill intrusions. The body may consist of older mafic rocks, or a mixture of old continental crust and mafic intrusions.  相似文献   

14.
This study investigates the rifting structures of Santos Basin at the Southeastern Brazilian margin, based on an integrated geophysical approach. Our aim is to constrain the crustal basement topography of central and northern Santos basin, the presence of magmatism and the role of inherited structures in space and time through the rifting processes. We present a new high resolution aeromagnetic dataset, which in correlation with gravity anomalies enables us to interpret the tectonic trends and crustal basement structures. We calculated the magnetic basement depth for the central and northern Santos Basin using power spectrum analysis. The obtained depths range between 2 and 9 kms, and are comparable with results from previous works. From our integrated study, three margin domains could be identified, which display distinct rifting structures and are characterized by important lateral variation along the margin. The proximal domain displays trends and magnetic basement blocks NE–SW oriented, i.e., parallel to inherited onshore crustal basement with an inflexion to E–W oriented trends; the necking domain is characterized by oblique magnetic basement highs and lows (E–W and NW–SE) and a structural trend change. The trends and magnetic basement highs are bounded by NW–SE negative anomalies, interpreted as transfer zones. Oceanwards at the distal domain, the lineaments and transfer zones show a progressive structural inflexion to ENE and E–W, sub-parallel to adjacent South Atlantic Fracture Zones. The observed crustal basement architecture and segmentation suggest the reactivation of pre-rift structures at the proximal margin and the obliquity of rifting relative to them. From the proximal domain oceanwards the structural pattern may reflect the passage from a “continental type” domain, where lithospheric inheritance controls the deformation, to a distal margin where this influence diminishes and “new” structural trends are formed. We propose that northern Santos Basin show evidences of an intensely deformed zone, where rift evolved under oblique extension, similar to that observed at transform margin segments.  相似文献   

15.
The mid-Norwegian margin has a complex history and has experienced several phases of changing horizontal and vertical stresses on regional and local scale during the Cenozoic time. In addition to regional stresses related to the opening of the North Atlantic (i.e. ridge push), local variations in stress history may be important for development, distribution and reactivation of structures in the Vøring area in Cenozoic time. Presence and stability of flexural hinge zones between areas of relative uplift and subsidence have played an important role for focusing shallow horizontal stresses within the basins. Emplacement of lower crustal bodies during break-up will, whatever the nature of these bodies, have substantial isostatic effects, and modelling show that this could cause many hundred meters of temporal uplift above the lower crustal bodies, locally exceeding 1300 m of surface uplift. Effects of intra plate stress (IPS) are modelled along three 2D transects across the Vøring Basin. Modelling shows that IPS may have given substantial vertical motions in certain areas of the mid-Norwegian shelf, both with extensional IPS at the time of break-up, and later with compressive IPS during Tertiary time. The modelling assumes a strongly reduced effective elastic thickness (EET) due to lithospheric heating at break-up and later increasing EET as the lithosphere cooled towards present time. Our modelling takes into account the tectonic and isostatic effects of loading faulting and lithospheric thinning throughout the geological history, including several phases of extension prior to the Cenozoic compression. This approach emphasizes the importance of the deformation history of the lithosphere compared to other studies that only take into account the effects of Cenozoic processes of compression and loading on the sedimentary units. We do not state that isostatic uplift or intra plate stress are the most important causes for Cenozoic uplift and compressional deformation in this area, but point to the fact that these factors locally may have played an important role in focusing deformation caused by an interplay of different mechanisms.  相似文献   

16.
ABSTRACT

The South China Sea (SCS) is an excellent site for studying the process of conjugate margin rifting, and the origin and evolution of oceanic basins. Compared with the well-defined northern margin of the SCS, the western and southern segments of the SCS margin have not been researched in significant detail. To investigate the regional structure of the southwestern SCS, a gravity model is constructed, along with the lithospheric thermal structure along a wide-angle seismic profile. The profile extends across the conjugate margins of the Southwest Sub-Basin (SWSB) of the SCS and is based on the latest multiple geophysical measurements (including heat flow and thermo-physical parameters). The results show that the average thicknesses of the crust and thermal lithosphere along the profile are about 15 km and 57 km, respectively. The overall amount of extension of continental crust and lithosphere is more than 200 km. Thermal structure of the lithosphere shows that the continental margins are in a warm thermal state. The southwest SCS is characterized by ultra-wide, thinned continental crust and lithosphere, high Moho heat flow, early syn-rift faulted basins, undeformed late syn-rifting, and high seismic velocities in the lower crust. These various pieces of evidence suggest that the break-up of the mantle lithosphere occurred before that of the continental crust favouring a depth-dependent extension of the southwestern SCS margin.  相似文献   

17.
松辽盆地成因演化与软流圈对流模式   总被引:5,自引:0,他引:5       下载免费PDF全文
马莉  刘德来 《地质科学》1999,34(3):365-374
松辽盆地位于中国东北,是晚中生代在活动大陆边缘上发育的裂谷-坳陷盆地。松辽盆地有两个特点:一是裂谷期前火山岩分布以盆地西部的大兴安岭厚度大、面积大,盆地东部靠近俯冲边缘火山岩分布厚度、面积变小;二是裂谷期主要发育东倾控坳断层。由此推测在板块俯冲牵引作用下,在楔形区产生单向环流。单向环流在大兴安岭一带上升,在地表形成强烈的火山作用,然后沿岩石圈底部向东运动,并逐渐转变为下降流,火山作用也逐渐减弱。单向环流由上升流逐渐转入近平流后,对岩石圈底面施加单向剪切牵引作用,岩石圈伸展在脆性上地壳形成主要东倾控坳断层。单向环流可以源源不断地从深部将热能和动能带到浅部,满足岩石圈减薄和伸展的需要。而且用单向环流解释活动大陆边缘和弧后区火山岩的成分极性可能更趋于实际。  相似文献   

18.
The extensional architecture of the Northern Carnarvon Basin can be explained in terms of changes in lithospheric rheology during multiphase extension and lower crustal flow. Low‐angle detachments, while playing a minor role, are not considered to have been the primary mechanism for extension as suggested in previous models. Early extension (Cambrian‐Ordovician) in the Northern Carnarvon Basin is characterised by low‐angle detachment structures of limited regional extent. These structures have a spatial association with a Proterozoic mobile belt on the margin of the Pilbara Craton. Thermo‐mechanical conditions in the mobile belt may have predisposed the highly deformed crust to thin‐skinned extension and detachment development. Permo‐Carboniferous extension generated an extensive wide rift basin, suggesting ductile rheologies associated with intermediate lithospheric temperatures and crustal thickness. Thick Upper Permian to Upper Triassic post‐rift sequences and marked thinning of the lower crust occurred in association with only a small amount of extension in the upper crust. This observation can be reconciled by considering outward lower crustal flow, from beneath the basin towards the basin margin, following extension. Strong mid‐crustal reflectors, which occur over large areas of the Northern Carnarvon Basin, probably represent a boundary between flow and non‐flow regimes rather than detachment fault surfaces as in previous models. Crustal thinning and thermal decay following Permo‐Carboniferous extension contributed to the increased strength and brittle behaviour of the lithosphere. Consequently, Late Triassic to Early Cretaceous extension resulted in the development of far more localised narrow rift systems on the margins of the preceding wide rift basin. Diapiric intrusions are associated with the narrow rift basin development, resulting from either remobilisation of ductile lower crustal rock or the initial formation of sea‐floor spreading centres.  相似文献   

19.
The Songliao Basin, the largest oil-producing basin in China, was the centre of late Mesozoic rifting and lithospheric thinning in northeastern China. However, the rifts are still poorly revealed due to a thick cover of subsidence successions. By structural interpretation and sequential restoration of cross-sections based on new 2D seismic data and well data, this study presents the structural style, basin evolution, and horizontal crustal extension of the central Songliao Basin. We have developed a novel method to retrieve the regional extension principal strains. The results enable an assignment of rifting into two episodes. The earlier episode (ca. 157–130 Ma) was dominated by distributed faulting of numerous planar normal faults trending NNE–SSW, NNW–SSE, or near NS, probably reflecting pre-existing basement fabrics; in contrast, the later episode (ca. 130–102 Ma) was controlled by localized extension along several major listric faults. Horizontal crustal extension during rifting is estimated to have been 11–28 km (10.6%–25.5%), with the long-term average rate varying from 0.20 to 0.51 mm yr–1. Regional horizontal strains show a gradual evolution from biaxial extension at the beginning of rifting to WNW–ESE uniaxial stretching during the later rifting episode. Brittle crustal extension is interpreted to have been associated with vertical strain due to tectonic stretching, which is estimated to have contributed more in thinning the lower crust than the mantle lithosphere. Accordingly, a two-episode dynamic model is proposed to explain rifting in the Songliao Basin. We suggest that the earlier event was dominated by delamination of the thickened continental lithosphere, whereas the later event was probably controlled by regional crustal detachment due to slab subduction and stagnancy of the Izanagi lithospheric plate.  相似文献   

20.
中国及相邻区域岩石圈结构及动力学意义   总被引:19,自引:3,他引:19       下载免费PDF全文
中国大陆及邻近陆域海域是晚古生代以来由多个较小的板块或地块汇聚形成的。中生代亚洲东部岩石圈拉张解体和减薄。古新世印度与欧亚大陆碰撞引起地壳缩短隆升,形成青藏高原和喜马拉雅造山带。根据中国大陆及相邻区域天然地震、人工地震及其他地学资料,采用多学科多手段进行反演。对沉积层、地壳、岩石圈特性及厚度变化进行研究,探讨中国大陆及相邻陆域海域岩石圈结构特征及深部动力学问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号