首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 89 毫秒
1.
2008年汶川MS8.0地震前地震活动异常特征   总被引:1,自引:1,他引:0  
薛艳  刘杰  梅世蓉  宋治平 《地震学报》2009,31(6):606-619
分析了汶川地震前地震活动时空演化特征.结果表明:①汶川地震前38a龙门山断裂带及其附近形成5级地震背景空区,震前6.5a形成ML4.0地震孕震空区,震前1a孕震空区内部及其两端相继发生多次ML4.0—5.0地震,空区缩小;②中国大陆西部及邻区2001年以来处于大震活跃时段,而中国大陆内部地震活动水平非常低,出现非常显著的7级、6级和5级地震平静;③南北地震带7级以上地震在时间上具有准周期特征,空间上存在由南向北迁移的特点,汶川地震的发生符合这一规律;④1998年以来南北地震带中段为7级地震空段,汶川地震就发生该空段内;⑤2003年云南大姚地震后,南北地震带地震活动显著增强,且在中、南段形成4.6级以上地震环形分布,四川及其附近表现为异常平静,同时震群活动显著,且在4.6级地震平静区内形成震群空区,汶川地震就发生震群空区的边缘,震前8个月,震群频度出现高值异常;⑥汶川地震前7个月,青藏块体大范围ML≥4.0地震平静103d,2008年1月13日以后平静区逐渐解体,至汶川地震前4级地震平静区缩小到巴颜喀拉地块,汶川地震就发生在巴颜喀拉地块的东边界带上,汶川地震前3 个多月,孕震空区内部出现NW走向的3级地震条带,与龙门山断裂带斜交.   相似文献   

2.
2008年汶川MS8.0地震对周边断层地震活动的影响   总被引:10,自引:1,他引:9       下载免费PDF全文
为分析2008年5月12日四川汶川MS8.0级地震对周边断层地震活动的影响,本文首先基于Burgers体黏滞松弛模型计算汶川MS8.0级地震引起的库仑应力动态演化,分析认为2008年汶川MS8.0级地震在周边断层上引起的库仑应力显著增加的主要有四个断层段,分别为鲜水河断裂道孚-康定段、东昆仑断裂东段玛曲段、青川断裂和龙门山断裂南段.而且震后4年内黏滞松弛引起的库仑应力变化量可能与同震变化相当,相当于再发生一次汶川地震所造成的影响,因此震后效应在分析强震影响时不应忽略.本文基于强震引起的库仑应力变化动态演化,结合背景地震发生率、由Dieterich(1994)模型给出地震发生概率,结合相关构造地质、历史地震、余震活动等方面资料的综合分析认为,上述4个断裂段地震危险性由高到低依次为鲜水河断裂道孚-康定段、龙门山断裂南段、东昆仑断裂东段玛曲段和青川断裂.  相似文献   

3.
近年来南北地震带强震频发,位于南北地震带北段的甘东南地区被认为可能是未来发生强震的区域之一。2013年7月22日岷县6.6级地震发生在这一区域,本文对岷县地震前后甘东南地区地下流体资料进行了分析,认为岷县地震前距震中300 km内的一些地下流体资料出现了明显的中期异常、短临异常和同震响应。本文从中期异常、短临异常、同震响应等几个方面对甘东南地区的水氡、水温、水位、流量资料进行分析和探讨。利用从属函数方法定量提取出的中期异常效果较为理想,震前7-32个月各测点资料开始出现异常;震前几个月地下流体资料出现了上升速率加快、趋势性上升、下降及与正常形态不一致等短临异常。  相似文献   

4.
南北地震带北段强震破裂空段的地震危险性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
综合活动构造与重要活动断裂带的历史及现今强震震源区或破裂分布等资料,南北地震带北段存在长期缺少MSge;7.0地震的破裂空段.为了考察这些空段的地震危险性,首先采用Burgers体黏弹介质模型,计算周围有记载以来的历史强震在空段引起的库仑应力动态演化;其次结合背景地震发生率,采用Dieterich模型分析历史强震对空段地震活动的影响,讨论了空段所在区域的地震发生概率.结果显示,南北地震带北段强震破裂空段的地震危险性程度自高到低依次是:东昆仑活动断裂带东段的若尔盖——九寨沟段、六盘山断裂带中南段空段、香山——天景山段裂中南段同心空段、天祝——大靖空段、西秦岭北缘断裂带中西段、西秦岭北缘断裂带东段.该结果可为南北地震带北段的地震危险性估计提供参考.   相似文献   

5.
南北地震带及邻近区域强震时空分布特征   总被引:1,自引:0,他引:1  
搜集整理南北地震带区域自史料记载(公元前193年)到2012年9月的强震(Ms≥6.0)资料,初步分析南北地震带及附近区域的地震发震构造活动性和时空分布规律.结果表明,地震一般发生在断层带上,具有空间分布的集群性特征和时间群集性质.研究发现,地震带南段发生6.0≤Ms≤7.9地震次数明显高于北段和中段,而发生Ms≥8.0地震的可能性较低,中段与南段较接近,与北段有明显差异;南北地震带存在明显的纬向、经向强震活动迁移现象,纬向尤其明显;1900年以来,南北地震带已经有4次明显的能量释放阶段,并给出Ms≥6.0地震的震级-频度统计关系式.  相似文献   

6.
在以往地震监测预报攻关研究时,我们曾提出过,先沿地震带的D-t图确定出现空段的时间,再按此时间段在震中分布图山圈定强震前的空区的方法.2008年5月12日汶川8.0级地震与1933年8月25日叠溪7.5级地震是先后发生在南北地震带中段的两次大地震.  相似文献   

7.
2013年4月20日在龙门山断裂南段发生的芦山M7.0级地震已过去近1年.本文根据四川省地震台网资料和收集的国内外相关历史资料,研讨了巴颜喀拉地块东缘区域龙门山断裂、岷江断裂、虎牙断裂等历史地震活动;分析了龙门山断裂带2008年5月12日汶川8.0级和2013年4月20日芦山7.0级地震余震时空、震源机制及破裂扩展等特征;讨论了巴颜喀拉地块东缘区域的能量释放特征等.结果表明:(1)芦山7.0级地震西南的龙门山断裂南段仍存在尚未破裂的背景性破裂空段;(2)芦山7.0级地震与汶川8.0级地震两余震区之间的空段区存在能量待释放;(3)龙门山断裂中北段(在汶川余震区内)的北川附近存在能量释放不充分的局部区域.  相似文献   

8.
本文从区域地震活动分期,强震复发周期、未来强震震级计算、相邻区域活跃期的相关性、强震纬向迁移以及6级以上地震的自律关系等入手,研究了南北地震带各段地震总形势。根据历次强震前中强震活动图象研究得出的北段平静—大震,中段、南段平静—活跃—大震特点,寻找目前北段存在的平静区,中段和南段的背景性空区。结合近二年来存在的背景性地震条带,诱发前震分布及 b 值扫描等结果,判定强震危险区。文中还对各段强震可能发生的危险点提出了初步意见。  相似文献   

9.
龙门山断裂带南段应力状态与强震危险性研究   总被引:17,自引:5,他引:12       下载免费PDF全文
龙门山断裂带可分为南段、中段和北段,2008年汶川M8.0级地震发生在该断裂带中-北段. 龙门山断裂带南段是否存在发生强震的危险性倍受关注. 利用1977-2012年四川区域地震台网资料,获得了龙门山断裂带南段的地震活动性参数b值图像以及汶川地震前、后b值的差值Δb图像. 同时,根据宽频带数字地震波形资料,计算了2007年以来南段及附近区域ML≥3.8级地震的视应力. 结果表明,2008年汶川地震后,龙门山断裂带南段天全-芦山、泸定和宝兴北部等区域应力增强,而靠近汶川余震区南端的大邑地区应力水平降低. 天全至宝兴段应力水平相对较高,具有发生中-强地震的条件. 鲜水河断裂带康定以南段应力水平低,短期内发生强震的可能性较小.  相似文献   

10.
2008年5月12日汶川8.0级大地震发生在位于青藏高原东缘、南北地震带中段的龙门山断裂带中北段,该地震破裂自初始破裂点开始,沿龙门山断裂带中央及前山断裂呈NE向单侧扩展;龙门山断裂带南西段在本次地震中并未参与活动.  相似文献   

11.
基于鄂尔多斯块体的地质构造演变过程及历史强震活动规律,阐述南北地震带和龙门山断裂带强震时空分布规律对鄂尔多斯北缘的可能影响,对比分析鄂尔多斯其他3缘与北缘的地震活动.结果表明,青藏块体强震对鄂尔多斯北缘中强地震具有一定的触发作用;南北地震带中强以上地震的空间迁移特征表明,鄂尔多斯北缘将是未来中强以上地震的有利发震区域.2005年以来中小地震活动特征表明,鄂尔多斯北缘兼有Ms≥4.0地震平静和西北缘ML≥3.0地震活跃两种异常特征.综合地震地质背景和近期地震活动研究结果分析认为,今后一段时间鄂尔多斯北缘有可能发生中强以上地震.  相似文献   

12.
On April 20, 2013, the Lushan Ms7.0 earthquake struck at the southern part of the Longmenshan fault in the eastern Tibetan Plateau, China. The shear-wave splitting in the crust indicates a connection between the direction of the principal crustal compressive stress and the fault orientation in the Longmenshan fault zone. Our relocation analysis of the aftershocks of the Lushan earthquake shows a gap between the location of the rupture zone of the Lushan Ms7.0 earthquake and that of the rupture zone of the Wenchuan Ms8.0 earthquake. We believe that stress levels in the crust at the rupture gap and its vicinity should be monitored in the immediate future. We suggest using controlled source borehole measurements for this purpose.  相似文献   

13.
The reason for the failure to forecast the Wenchuan M_S8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kunlun Mountains Pass M_S8.1 earthquake and the 2008 Wenchuan M_S8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a M_S8.0 large earthquake in Chinese Mainland after the 2001 Western Kunlun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of M_S7.0 earthquake and an obvious quietude of M_S5.0 and M_S6.0 earthquakes during 2002~2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning’er M_S6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with M_S≥7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.  相似文献   

14.
2008年汶川8.0级地震发生的历史与现今地震活动背景   总被引:13,自引:5,他引:8       下载免费PDF全文
为了了解2008年5月12日四川汶川MS8.0地震发生的地震活动背景,本文综合历史与现代地震资料,从南北地震带中段及其邻区的视野研究了汶川地震前1~2千年的强震活动性,以及震前20年的地震活动性背景.结果主要表明:(1)至少在2008年之前的1100~1700年中,龙门山断裂带未发生M≥7的地震,相对其南、北两侧的其他活动断裂带(或段)形成一个地震空区,2008年汶川MS8.0地震发生在该空区中;(2)17世纪以来,在由龙门山断裂带大部分地区、川北岷江-虎牙断裂带以及甘南文县-武都断裂带组成的巴颜喀拉块体东边界上共发生了12次M=6.5~8.0地震,显示出一个已持续了近400年、逐渐加速的应变能释放过程,2008年汶川MS8.0地震属于该过程中两次巨大地震之一;(3)汶川地震前20年,龙门山断裂带中、南段不存在背景地震活动的平静,反而显示出比曾经发生过1879年MS8地震的甘南文县-武都断裂带还略高的地震活动背景水平;(4)2008年汶川地震的强度远远超出龙门山断裂带的历史最大地震,说明仅基于数百年至一、两千年的历史地震记载,远不足以正确评估较低滑动速率的、大型活动断裂带的潜在地震危险性.  相似文献   

15.
本文利用2013年芦山M_S7.0级地震同震GPS数据反演了芦山断层几何与断层滑动分布,结果表明:芦山地震发震断层具有南陡北缓、上陡下缓的特征,低倾角的区域位于发震断层北段且靠近映秀断层的一侧;滑动分布模型的最大滑动量为0.82m,其深度为13.67km与小震发生集中平均深度12.5km接近.我们选取1998—2014年龙门山断裂带区域地壳形变观测数据,拟合获得了龙门山断裂带走向方向上的速度分量,发现在汶川M_S8.0地震与芦山M_S7.0地震之间宽度约30km破裂空区,龙门山断裂带西南段与东北段的形变分量以破裂空区为界方向相反.断裂带东北段(汶川地震主要发震断层)的形变分量方向与断层右旋走滑运动方向一致,而在断裂带西南段(芦山地震发震断层)的形变分量方向与断层左旋走滑运动方向一致.芦山地震走滑方向与汶川地震走滑方向相反是因为该断裂带构造运动在特有几何构造下受青藏高原东南向挤压,遇龙门山中段岩石圈楔状构造的阻挡,在汶川M_S8.0地震与芦山M_S7.0地震间的地震空区,形成了构造运动向其两侧分流的结果.  相似文献   

16.
INTRODUCTIONManyhlstoric andrecent eaythquakes occurred along the Zhan9lakou-Penglal fanfaut zone situatedIn h。northern part of North China seismic regl()n(Fig.l),Including Sanhe-Pinggu MS.0 earthquakeonseptemberZ,1679 and Tangshan M7.8 eal’thquake on July28,1976.Afterthe Tangshanearthquake,a seismic quiescence along this zone lasted for 20 or more yeas without M 3 6.0eafthquake.Butonjanuary20,1998 theZhangbel M6.2 eafthquake occurred·Then the seismicactivity tends to …  相似文献   

17.
徐晶  邵志刚  刘静  季灵运 《地球物理学报》2017,60(10):4056-4068
本研究基于分层黏弹介质模型,考虑同震位错效应和震后黏滞松弛效应,分析巴颜喀拉地块东端1976年松潘地震序列、2008年汶川8.0级地震、2013年芦山7.0级地震和2017年九寨沟7.0级地震等多次大地震的可能存在的触发关系,计算大地震引起的周边各主要断裂的库仑应力变化.结果显示,1976年松潘地震序列各次地震间关系密切,存在明显的相继触发作用;综合考虑同震和震后效应,汶川8.0级地震对同属于龙门山断裂带的芦山7.0级地震有触发作用,且震后效应影响不可忽略;1976年地震序列,特别是1976年8月16日7.2级地震促进了2017年8月8日九寨沟7.0级地震的发生;汶川地震对九寨沟地震的影响研究中,采用不同的汶川地震同震位错模型,计算结果有差异.综合考虑多次大地震对周边断裂带的影响,龙门山断裂带南段、鲜水河断裂带中南段、平武—青川断裂北段、灌县—安县断裂北段、文县断裂的累积库仑应力增加显著,巴颜喀拉地块东端的东昆仑断裂带东段、迭部—白龙江断裂带西段以及金沙江断裂带库仑应力亦有所增加.综合考虑各重要断裂带已有的大地震危险性分析结果和库仑应力变化计算结果,龙门山断裂带南段、鲜水河断裂带中南段、东昆仑断裂带玛沁—玛曲段和金沙江断裂带的发震紧迫性有所增强,需引起关注.  相似文献   

18.
以西秦岭北缘断裂带不同段断层气Hg、Rn浓度空间分布特征分析为基础、通过对历史大震背景、现今地震活动影像以及b值空间分布特征的对比分析,从地球化学的角度,对西秦岭北缘断裂带不同段落的活动习性进行深入探讨,并识别出该断裂带潜在大震危险区段。可为未来地震趋势判定及震情跟踪提供重要的基础资料。  相似文献   

19.
On August 8, 2017, a strong earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, northern Sichuan. The earthquake occurred on a branch fault at the southern end of the eastern section of the East Kunlun fault zone. In the northwest of the aftershock area is the Maqu-Maqin seismic gap, which is in a locking state under high stress. Destructive earthquakes are frequent along the southeast direction of the aftershocks area. In Songpan-Pingwu area, only 50~80km away from the Jiuzhaigou earthquake, two M7.2 earthquakes and one M6.7 earthquake occurred from August 16 to 23, 1976. Therefore, the Jiuzhaigou earthquake was an earthquake that occurred at the transition part between the historical earthquake fracture gap and the neotectonic active area. Compared with other M7.0 earthquakes, there are few moderate-strong aftershocks following this Jiuzhaigou earthquake, and the maximum magnitude of aftershocks is much smaller than the main shock. There is no surface rupture zone discovered corresponding to the M7.0 earthquake. In order to understand the feature of source structure and the tectonic environment of the source region, we calculate the parameters of the initial earthquake catalogue by Loc3D based on the digital waveform data recorded by Sichuan seismic network and seismic phase data collected by the China Earthquake Networks Center. Smaller events in the sequence are relocated using double-difference algorithm; source mechanism solutions and centroid depths of 29 earthquakes with ML≥3.4 are obtained by CAP method. Moreover, the source spectrum of 186 earthquakes with 2.0≤ML≤5.5 is restored and the spatial distribution of source stress drop along faults is obtained. According to the relocations and focal mechanism results, the Jiuzhaigou M7.0 earthquake is a high-angle left-lateral strike-slip event. The earthquake sequence mainly extends along the NW-SE direction, with the dominant focal depth of 4~18km. There are few shallow earthquakes and few earthquakes with depth greater than 20km. The relocation results show that the distribution of aftershocks is bounded by the M7.0 main shock, which shows obvious segmental characteristics in space, and the aftershock area is divided into NW segment and SE segment. The NW segment is about 16km long and 12km wide, with scattered and less earthquakes, the dominant focal depth is 4~12km, the source stress drop is large, and the type of focal mechanism is complicated. The SE segment is about 20km long and 8km wide, with concentrated earthquakes, the dominant depth is 4~12km, most moderate-strong earthquakes occurred in the depth between 11~14km. Aftershock activity extends eastward from the start point of the M7.0 main earthquake. The middle-late-stage aftershocks are released intensively on this segment, most of them are strike-slip earthquakes. The stress drop of the aftershock sequence gradually decreases with time. Principal stress axis distribution also shows segmentation characteristics. On the NW segment, the dominant azimuth of P axis is about 91.39°, the average elevation angle is about 20.80°, the dominant azimuth of T axis is NE-SW, and the average elevation angle is about 58.44°. On the SE segment, the dominant azimuth of P axis is about 103.66°, the average elevation angle is about 19.03°, the dominant azimuth of T axis is NNE-SSW, and the average elevation angle is about 15.44°. According to the fault profile inferred from the focal mechanism solution, the main controlling structure in the source area is in NW-SE direction, which may be a concealed fault or the north extension of Huya Fault. The northwest end of the fault is limited to the horsetail structure at the east end of the East Kunlun Fault, and the SE extension requires clear seismic geological evidence. The dip angle of the NW segment of the seismogenic fault is about 65°, which may be a reverse fault striking NNW and dipping NE. According to the basic characteristics of inverse fault ruptures, the rupture often extends short along the strike, the rupture length is often disproportionate to the magnitude of the earthquake, and it is not easy to form a rupture zone on the surface. The dip angle of the SE segment of the seismogenic fault is about 82°, which may be a strike-slip fault that strikes NW and dips SW. The fault plane solution shows significant change on the north and south sides of the main earthquake, and turns gradually from compressional thrust to strike-slip movement, with a certain degree of rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号