首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Quantitative prediction and evaluation of mineral resources are one of the important topics of mathematical geology. On the basis of GIS technologies and weights of evidence modeling, MapGIS is integrated with GIS and mineral-resource prediction and evaluation. The final product is a predictor map of posterior probabilities of occurrence of the discrete event within a small unit cell. Predictor layers were created on a digital database that includes 1:200,000 scale geological, and geochemical, and geophysical maps, and remote-sensing images in study area. According to metallogenetic factors extractiont and weights of evidence modeling, there are four main metal ore belts in the study area: (1) the Batang belt; (2) the Lei Wuqi belt; (3) the Basu-Chayu belt; and (4) the Ganzi-Litang belt. The predictor map of posterior probabilities show that 29% of study area as zones with potential for porphyry copper, and 81% known mineral occurrences success rate is circled in the metallogenetic posterior probabilities map. The results demonstrate plausibility of weights-of-evidence modeling of mineral potential in large areas with small number of mineral prospects.  相似文献   

2.
To provide guides for exploration of porphyry copper mineralization at a district scale, we examine the spatial association between known porphyry copper deposits and geologic features in Benguet, Philippines. The spatial associations between the porphyry copper deposits and strike-slip fault discontinuities, batholithic pluton margins and porphyry plutons are quantified using weights of evidence modeling. In the training and testing district, the porphyry copper occurrences are associated spatially with strike-slip fault discontinuities, batholithic pluton margins and contacts of porphyry plutons within distances of 3 km, 2.25 km, and 1 km, respectively. In addition, the porphyry plutons are associated spatially with strike-slip fault discontinuities and contacts of batholithic plutons within a distance of 2.25 km and 3 km, respectively. Based on these significant spatial associations, predictive maps are generated to delineate zones favorable for porphyry copper mineralization and zones favorable for emplacement of porphyry plutons in Benguet province, Philippines. Validations of the predictive models demonstrate their efficacy in pointing to zones for subsequent follow-up exploration work.  相似文献   

3.
Harris  J. R.  Wilkinson  L.  Heather  K.  Fumerton  S.  Bernier  M. A.  Ayer  J.  Dahn  R. 《Natural Resources Research》2001,10(2):91-124
A Geographic Information System (GIS) is used to prepare and process digital geoscience data in a variety of ways for producing gold prospectivity maps of the Swayze greenstone belt, Ontario, Canada. Data used to produce these maps include geologic, geochemical, geophysical, and remotely sensed (Landsat). A number of modeling methods are used and are grouped into data-driven (weights of evidence, logistic regression) and knowledge-driven (index and Boolean overlay) methods. The weights of evidence (WofE) technique compares the spatial association of known gold prospects with various indicators (evidence maps) of gold mineralization, to derive a set of weights used to produce the final gold prospectivity map. Logistic regression derives statistical information from evidence maps over each known gold prospect and the coefficients derived from regression analysis are used to weight each evidence map. The gold prospectivity map produced from the index overlay process uses a weighting scheme that is derived from input by the geologist, whereas the Boolean method uses equally weighted binary evidence maps.The resultant gold prospectivity maps are somewhat different in this study as the data comprising the evidence maps were processed purposely differently for each modeling method. Several areas of high gold potential, some of which are coincident with known gold prospects, are evident on the gold prospectivity maps produced using all modeling methods. The majority of these occur in mafic rocks within high strain zones, which is typical of many Archean greenstone belts.  相似文献   

4.
A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping   总被引:1,自引:0,他引:1  
This paper describes a hybrid fuzzy weights-of-evidence (WofE) model for mineral potential mapping that generates fuzzy predictor patterns based on (a) knowledge-based fuzzy membership values and (b) data-based conditional probabilities. The fuzzy membership values are calculated using a knowledge-driven logistic membership function, which provides a framework for treating systemic uncertainty and also facilitates the use of multiclass predictor maps in the modeling procedure. The fuzzy predictor patterns are combined using Bayes’ rule in a log-linear form (under an assumption of conditional independence) to update the prior probability of target deposit-type occurrence in every unique combination of predictor patterns. The hybrid fuzzy WofE model is applied to a regional-scale mapping of base-metal deposit potential in the south-central part of the Aravalli metallogenic province (western India). The output map of fuzzy posterior probabilities of base-metal deposit occurrence is classified subsequently to delineate zones with high-favorability, moderate favorability, and low-favorability for occurrence of base-metal deposits. An analysis of the favorability map indicates (a) significant improvement of probability of base-metal deposit occurrence in the high-favorability and moderate-favorability zones and (b) significant deterioration of probability of base-metal deposit occurrence in the low-favorability zones. The results demonstrate usefulness of the hybrid fuzzy WofE model in representation and in integration of evidential features to map relative potential for mineral deposit occurrence.  相似文献   

5.

Structural equation modeling (SEM) was applied here to modify the ordinary weights-of-evidence (WofE) method for calculating posterior probability to improve conditional independence (CI) in the application of this method mineral potential prediction. The new method attempts to reduce the effect of CI by defining new binary patterns with an optimum combination of cutoff values of patterns. The solution is calculated through SEM, and the goodness of fit between evidence and mineral deposit occurrences is evaluated by a specified target function. The main difference between the new WofE and ordinary WofE is that evidence in the new method maintains a balance between the significance for mineral potential prediction and CI, rather than the significance for mineral prediction only as in ordinary WofE. A case study of prediction of potential for hydrothermal Au mineral deposits in Nova Scotia, Canada, is discussed here. The results indicate that the new method performs better than the ordinary WofE.

  相似文献   

6.
The Salafchegan area in central Iran is a greenfield region of high porphyry Cu–Au potential, for which a sound prospectivity model is required to guide mineral exploration. Satellite imagery, geological geochemical, geophysical, and mineral occurrence datasets of the area were used to run an innovative integration model for porphyry Cu–Au exploration. Five favorable multi-class evidence maps, representing diagnostic porphyry Cu–Au recognition criteria (intermediate igneous intrusive and sub-volcanic host rocks, structural controls, hydrothermal alterations, stream sediment Cu anomalies, magnetic signatures), were combined using analytic hierarchy process and technique for order preference by similarity to ideal solution to calculate a final map of porphyry Cu–Au potential in the Salafchegan area.  相似文献   

7.
Large amounts of digital data must be analyzed and integrated to generate mineral potential maps, which can be used for exploration targeting. The quality of the mineral potential maps is dependent on the quality of the data used as inputs, with higher quality inputs producing higher quality outputs. In mineral exploration, particularly in regions with little to no exploration history, datasets are often incomplete at the scale of investigation with data missing due to incomplete mapping or the unavailability of data over certain areas. It is not always clear that datasets are incomplete, and this study examines how mineral potential mapping results may differ in this context. Different methods of mineral potential mapping provide different ways of dealing with analyzing and integrating incomplete data. This study examines the weights of evidence (WofE), evidential belief function and fuzzy logic methods of mineral potential mapping using incomplete data from the Carajás mineral province, Brazil to target for orogenic gold mineralization. Results demonstrate that WofE is the best one able to predict the location of known mineralization within the study area when either complete or unacknowledged incomplete data are used. It is suggested that this is due to the use of Bayes’ rule, which can account for “missing data.” The results indicate the effectiveness of WofE for mineral potential mapping with incomplete data.  相似文献   

8.
Mineral potential within the Greater Nahanni Ecosystem (GNE) was modelled in a Geographic Information System (GIS) for four different deposit types: (1) SEDEX (stratiform shale-hosted sedimentary exhalative Zn–Pb–Ag), (2) ‘Carbonate-Fault’ (carbonate-hosted zinc–lead–silver associated with major faults), (3) ‘Intrusion-Related’ (includes skarn, rare metals and gemstones) and (4) Carlin-Type gold as lode and/or derived placer deposits. This mineral potential modelling study integrates data collected during the Nahanni Mineral and Energy Resource Assessment (MERA) undertaken from 2003 to 2007. The results have contributed to the process of determining the geographic boundaries of the proposed expansion of the Nahanni National Park Reserve. Four mineral potential maps were produced (one for each deposit type) using a knowledge-driven approach. A weighting scheme based on integrated mineral deposit and regional geological knowledge was derived for the various evidence maps for each deposit model using expert opinion. The four potential maps were then combined into a final potential map using a maximum operator. Plots showing the efficiency of the models (mineral potential maps) for predicting the known occurrences of the four deposit types show that partial data sets provide reasonable predictions of the remaining known mineral prospects, occurrences and deposits. Hydrocarbon potential from Nahanni MERA 1 was added to the final potential map to ensure that both mineral and energy potential data were incorporated into the park configuration modelling.  相似文献   

9.

Recognition of effective factors that influence the spatial extension of supergene weathering zones is important both for the identification of high potential areas of exotic deposits and for the cost-effective planning of mining. In particular, recognition of exotic mineralization around porphyry copper deposits early in mine development prevents them from being buried beneath mine infrastructures such as waste dump and tailing structures. Mass-balance modeling, a practical method for determining high potential areas of undiscovered exotic mineralization, investigates important factors in forming exotic deposits. Mass-balance modeling is a two-phase methodology that becomes progressively more detailed. An initial result, presented here as phase 1, is based solely on Cu assays. Phase 2 incorporates relict sulfide mineral studies to improve phase 1 modeling results and computes actual fluxes of copper that escaped vertically downward from the leached cap to form the enrichment blanket and then flowed laterally away to form exotic mineralization. In addition, geostatistical approaches, especially sequential Gaussian simulation, are useful tools for investigating the spatial relationships and modeling of mass-balance results in phase 1 studies. This paper introduces a method for interpolation and downscaling of the preliminary mass-balance analysis (phase 1) to highlight the role of geological features in the evolution of the supergene process. Using only copper assays without any need for relict sulfide mineralogy, this approach can be used to approximately identify the geographic direction of metal movement in exotic copper deposits, and thus serve as an initial exploration guide in prospecting for exotic deposits. For this, a vertical columnar block model was constructed for each of the supergene weathering zones and preliminary analysis of mass balance was conducted to reconstruct the apparent total leached zone column height assuming zero lateral flux. This analysis was applied to each of the vertical block model columns. The results of mass balance were interpolated in a 5?×?5 m grid by sequential Gaussian simulation method, and the simulated surface of the total leached zone was conflated with geological features. The roles of topography, argillic alteration and linear structures were identified in the transport of supergene solutions in the Miduk porphyry copper deposit of Iran. In the northern section of the deposit, which is in accordance with the topography gradient and the presence of advanced argillic alteration zone, the computed top total of leaching is below the actual surface topography, whereas the hypogene isograd curves confirm the expansion of primary copper in these areas. The northern section of the deposit was introduced as a susceptible area for the removal of copper-bearing solutions from the supergene enrichment system.

  相似文献   

10.
This paper is focused primarily on how to represent landslide scarp areas, how to analyze results achieved by the application of specific strategies of representation and how to compare the outcomes derived by different tests, within a general framework related to landslide susceptibility assessment. These topics are analyzed taking into account the scale of data survey (1:10,000) and the role of a landslide susceptibility map into projects targeted toward the definition of prediction, prevention, and mitigation measures, in a wider context of civil protection planning. These aims are achieved by using ArcSDM (Arc Spatial Data Modeler), a software extension to ArcView GIS useful for developing spatial prediction models using regional datasets. This extension requires a representation by points of the investigated problems (landslide susceptibility, aquifer vulnerability, detection of mineral deposits, identification of natural habitats of animals, and plants, etc.). Maps of spatial evidence from regional geological and geomorphological datasets were used to generate maps showing susceptibility to slope failures in two different study areas, located in the northern Apennines and in the central Alps (Italy), respectively. The final susceptibility maps for both study areas were derived by the application of the weights-of-evidence (WofE) modeling technique. By this method a series of subjective decisions were required, strongly dependent on an understanding of the natural processes under study, supported by statistical analysis of the spatial associations between known landslides and evidential themes. Except for maps of attitude, permeability, and structure, that were not available for both study areas, the other data were the same and comprised geological, land use, slope, and internal relief maps. The paper illustrates how different representations of scarp areas by points (in terms of different number of points) did not greatly influence the final response map, considering the scale of this work. On the contrary, some differences were observed in the capability of the model to describe the relations between predictor variables and landslides. In effect, a representation of the scarp areas using one point every 50 m led to a more efficient model able to better define relationships of this type. It avoided both problems of redundancy of information, deriving by the use of too many points, and problems related to a random positioning of the centroid. Moreover, it permitted to minimize the uncertainty related with identification and mapping of landslides.  相似文献   

11.
Using the analytic hierarchy process (AHP) method for multi-index evaluation has special advantages, while the use of geographic information systems (GIS) is suitable for spatial analysis. Combining AHP with GIS provides an effective approach for studies of mineral potential mapping evaluation. Selection of potential areas for exploration is a complex process in which many diverse criteria are to be considered. In this article, AHP and GIS are used for providing potential maps for Cu porphyry mineralization on the basis of criteria derived from geologic, geochemical, and geophysical, and remote sensing data including alteration and faults. Each criterion was evaluated with the aid of AHP and the result mapped by GIS. This approach allows the use of a mixture of quantitative and qualitative information for decision-making. The results of application in this article provide acceptable outcomes for copper porphyry exploration.  相似文献   

12.
A case application of data-driven estimation of evidential belief functions (EBFs) is demonstrated to prospectivity mapping in Lundazi district (eastern Zambia). Spatial data used to represent recognition criteria of prospectivity for aquamarine-bearing pegmatites include mapped granites, mapped faults/fractures, mapped shear zones, and radioelement concentration ratios derived from gridded airborne radiometric data. Data-driven estimates EBFs take into account not only (a) spatial association between an evidential map layer and target deposits but also (b) spatial relationships between classes of evidences in an evidential map layer. Data-driven estimates of EBFs can indicate which spatial data provide positive or negative evidence of prospectivity. Data-driven estimates of EBFs of only spatial data providing positive evidence of prospectivity were integrated according to Dempster’s rule of combination. Map of integrated degrees of belief was used to delineate zones of relative degress of prospectivity for aquamarine-bearing pegmatites. The predictive map has at least 85% prediction rate and at least 79% success rate of delineating training and validation deposits, respectively. The results illustrate usefulness of data-driven estimation of EBFs in GIS-based predictive mapping of mineral prospectivity. The results also show usefulness of EBFs in managing uncertainties associated with evidential maps.  相似文献   

13.
An application of the theory of fuzzy sets to the mapping of gold mineralization potential in the Baguio gold mining district of the Philippines is described. Proximity to geological features is translated into fuzzy membership functions based upon qualitative and quantitative knowledge of spatial associations between known gold occurrences and geological features in the area. Fuzzy sets of favorable distances to geological features and favorable lithologic formations are combined using fuzzy logic as the inference engine. The data capture, map operations, and spatial data analyses are carried out using a geographic information system. The fuzzy predictive maps delineate at least 68% of the known gold occurrences that are used to generate the model. The fuzzy predictive maps delineate at least 76% of the unknown gold occurrences that are not used to generate the model. The results are highly comparable with the results of previous stream-sediment geochemical survey in the area. The results demonstrate the usefulness of a geologically constrained fuzzy set approach to map mineral potential and to redirect surficial exploration work in the search for yet undiscovered gold mineralization in the mining district. The method described is applicable to other mining districts elsewhere.  相似文献   

14.
A personal computer-based geographic information system (GIS) is used to develop a geographic expert system (GES) for mapping and evaluating volcanogenic massive sulfide (VMS) deposit potential. The GES consists of an inference network to represent expert knowledge, and a GIS to handle the spatial analysis and mapping. Evidence from input maps is propagated through the inference network, combining information by means of fuzzy logic and Bayesian updating to yield new maps showing evaluation of hypotheses. Maps of evidence and hypotheses are defined on a probability scale between 0 and 1. Evaluation of the final hypothesis results in a mineral potential map, and the various intermediate hypotheses can also be shown in map form.The inference net, with associated parameters for weighting evidence, is based on a VMS deposit model for the Chisel Lake deposit, a producing mine in the Early Protoerzoic Snow Lake greenstone belt of northwest Manitoba. The model is applied to a small area mapped at a scale of 1:15,840. The geological map, showing lithological and alteration units, provides the basic input to the model. Spatial proximity to contacts of various kinds are particularly important. Three types of evidence are considered: stratigraphic, heat source, and alteration. The final product is a map showing the relative favorability for VMS deposits. The model is implemented as aFortran program, interfaced with the GIS. The sensitivity of the model to changes in the parameters is evaluated by comparing predicted areas of elevated potential with the spatial distribution of known VMS occurrences.  相似文献   

15.
Weights-of-Evidence (WofE) and Radial Basis Function Link Net (RBFLN) were applied to soil group mapping in eastern Finland. The data consisted of low altitude airborne geophysical measurements, Landsat 5 TM-satellite image, and digital elevation model (DEM) and slope information derived from it. Probability maps were constructed for each soil group one by one and combined into a prediction map of soil groups using maximum posterior probability (WofE) or pattern membership (RBFLN). Self-Organizing Map (SOM) and Sammon’s Mapping were applied for selecting the data sets for modeling and visualizing the data. The soil types belonging to each soil group used in the Arc-SDM modeling were defined by clusters revealed by the SOM and Sammon’s Mapping algorithms. The soil types with similar characters were collected in the same cluster. Numerical evaluation of the models’ performance was performed using the confusion matrix. The Ratio of Correct Classifications (RCC) for the best WofE model was 0.64 in the training area and 0.61 in the testing area. The RCC for the best RBFLN model was 0.62. Modeling of soil groups using Arc-SDM is time consuming because models need to be constructed for each soil group before combining them into a final prediction map. In this study a simple method was tested for combining the maps. In the future, more attention should be paid to combining the posterior probability models and also to selecting data sets used for modeling.  相似文献   

16.
The Random Forests (RF) algorithm is a machine learning method that has recently been demonstrated as a viable technique for data-driven predictive modeling of mineral prospectivity, and thus, it is instructive to further examine its usefulness in this particular field. A case study was carried out using data from Catanduanes Island (Philippines) to investigate further (a) if RF modeling can be used for data-driven modeling of mineral prospectivity in areas with few (i.e., <20) mineral occurrences and (b) if RF modeling can handle predictor variables with missing values. We found that RF modeling outperforms evidential belief (EB) modeling of prospectivity for hydrothermal Au–Cu deposits in Catanduanes Island, where 17 hydrothermal Au–Cu prospects are known to exist. Moreover, just like EB modeling, RF modeling allows analysis of the spatial relationships between known prospects and individual layers of predictor data. Furthermore, RF modeling can handle missing values in predictor data through an RF-based imputation technique whereas in EB modeling, missing values are simply represented by maximum uncertainty. Therefore, the RF algorithm is a potentially useful method for data-driven predictive modeling of mineral prospectivity in regions with few (i.e., <20) occurrences of mineral deposits of the type sought. However, further testing of the method in other regions with few mineral occurrences is warranted to fully determine its usefulness in data-driven predictive modeling of mineral prospectivity.  相似文献   

17.
Posterior probabilities of occurrence for Zn-Pb Mississippi Valley Type (MVT) mineralization were calculated based on evidence maps derived from regional geology, Landsat-TM, RADARSAT-1, a digital elevation model and aeromagnetic data sets in the Borden Basin of northern Baffin Island, Canada. The vector representation of geological contacts and fault traces were refined according to their characteristics identified in Landsat-TM, RADARSAT-1, DEM, slope, aspect, and shaded relief data layers. Within the study area, there is an association between the occurrence of MVT mineralization and proximity to the contact of platformal carbonates and shale units of the adjacent geological formation. A spatial association also tends to exist between mineralization and proximity to E-W and NW-SE trending faults. The relationships of known MVT occurrences with the geological features were investigated by spatial statistical techniques to generate evidence maps. Supervised classification and filtering were applied to Landsat-TM data to divide the Society Cliffs Formation into major stratigraphic subunits. Because iron oxides have been observed at some of the MVT occurrences within the Borden Basin, Landsat-TM data band ratio (3/1) was calculated to highlight the potential presence of iron-oxides as another evidence map. Processed Landsat-TM data and other derived geological evidence maps provided useful indicators for identifying areas of potential MVT mineralization. Weights of evidence and logistic regression were used independently to integrate and generate posterior probability maps showing areas of potential mineralization based on all derived evidence maps. Results indicate that in spite of the lack of important data sets such as stream or lake sediment geochemistry, Landsat-TM data and regional geological data can be useful for MVT mineral-potential mapping.  相似文献   

18.
The inherent problems of classifying or inventorying potential mineral resources (as opposed to known mineral resources) pose specific challenges. In this paper, the application of a conceptual mineral exploration model and GIS to generate mineral potential maps as input to land-use policy decision-making is illustrated. We implement the criteria provided by a conceptual exploration model for nickeliferous-laterites by using a GIS to classify the nickeliferous-laterite potential of an area in the northeastern part of the Philippines. The spatial data inputs to the GIS are geological map data, topographic map data, and stream sediment point data. Processing of these data yields derivative maps, which are used as indicators of nickeliferous-laterite potential. The indicator maps then are integrated to furnish a nickeliferous-laterite potential map. This map is compared with present land-use classification and policy in the area. The results indicate high potential for nickeliferous-laterite occurrence in the area, but the zones of potential are in places where mineral resources development is prohibited. The prohibition was imposed before the nickeliferous-laterite potential was assessed by this study. Mineral potential classification therefore is a critical input to land-use policy-making so that prospective land is not alienated from future mineral resource development.  相似文献   

19.
Despite wildfire being an important regulator of dryland ecosystems, uncontrolled wildfire can be harmful to both forest ecosystems and human society, and wildfire prevention and control continue to raise worldwide concern. Wildfire management depends on knowledge of wildfire ignitions, both for cause and location. The regimes and factors influencing wildfire ignition have been studied at length. Humans have a profound effect on fire regimes and human activity is responsible for igniting the largest number of fires in our study area. Understanding the spatial patterns of ignitions is foremost to achieving efficiency in wildfire prevention. Previous studies mainly concentrate on overall wildfire risk integrating numerous factors simultaneously, yet the importance of human factors on ignition has not received much attention. In this study, we mapped human accessibility to explore the influence of human activity on wildfire ignition in a simple and straightforward way. A Bayesian weights-of-evidence (WofE) method was developed based on fire hotspots in China's Yunnan province extracted from satellite images and verified as known wildfires for the period 2007–2013. We considered a set of factors that impact fire ignition as associated with human accessibility: the locations of settlements, roads, water and farmland susceptible to human wildfire ignition. Known points of likely wildfire ignition were selected as training samples and all suspected thematic maps of the factors were taken as explanatory layers. Next, the weights of each layer in terms of its explanatory power were computed and used to generate evidence based on a threshold to pass a statistical test. The conditional independence (CI) of each layer was checked with the Agterberg-Cheng test. Finally, the posterior probability was calculated and its precision validated using samples of both presence and absence by withheld validation data. A comparison of WofE models was made to test the predictability. Results show proximity to villages, roads and farmland are strongly associated with human wildfire ignition and that wildfire more often occurs at an intermediate distance from high-density human activity. The WofE method proved more powerful than logistic regression, improving predictive accuracy by 10% and was more straightforward in presenting the association of dependence and independence. In addition, WofE with 1000 m buffer bands is more robust in predicting human wildfire ignition risk than binary or 100 m buffers for the ecoregion studied. Our results are significant for advising practical wildfire management and resource allocation, evaluation of human ignition control and also provides a foundation for future efforts toward integrated wildfire prediction.  相似文献   

20.
Information extraction from processed remotely sensed images, in the case of missing initial spectra of pixels, can be a challenge for the users. In such situations, application of conventional methods based on spectral properties of pixels is impractical. We took advantage of the fractal theory for image segmentation of a principal component (PC) image for hydrothermal alteration mapping. The selected input images included short wave infrared bands of ASTER imagery covering the Darrehzar porphyry copper mine and surrounding areas with well-known hydrothermal alteration zones. Hydrothermal alteration like other geological processes can show spatial distribution with fractal properties. Principal component analysis was used to enhance hydrothermal alteration associated with the Darrehzar porphyry copper deposit. None of the resulting PCs were appropriate to portray clearly important alteration types in the study area. The PC1 image, which contains more than 98% of variance of the input bands, was selected for image segmentation using a digital number–area technique based on the established concentration–area fractal model. This technique was proposed based on frequency distributions and spatial correlation and variability of pixel values. The resulting hydrothermal alteration map indicates intense phyllic, weak phyllic, and propylitic as the main alteration types exposed at the surface of the Darrehzar area. In addition, the proposed technique delineated the phyllic zone in the exposed mine pit and a transition zone between inner phyllic and surrounding propylitic alteration zones. Field investigation and sampling in 23 locations including spectral measurements, XRD and thin section studies, confirmed the accuracy of the classified image by the proposed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号