首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Despite spectacular landform evidence of a dominant role for glacial action in shaping landscapes under former northern hemisphere ice sheets, there is little quantitative evidence for rates and patterns of erosion associated with specific glaciations. Here we use cosmogenic nuclide data to assess rates of subglacial erosion underneath the Fennoscandian ice sheet. By testing whether there are remnant nuclide concentrations in samples taken from sites that include both relict areas and features and landscapes typically associated with vigorous glacial erosion, we can constrain the level and pattern of modification that resulted from the last glaciation. Cosmogenic 10Be and 36Cl data from the Torneträsk region confirm the temporal and spatial variability of glacial erosion suggested by geomorphological mapping. At some sites, glacial erosion estimates in what appear to be heavily scoured areas indicate erosion of only c. 2 ± 0.4 m of bedrock, based on cosmogenic nuclide inheritance. This implies that the generation of severely scoured terrain in this study area required multiple glaciations. The overall modification produced by ice sheets along glacial corridors may be more restricted than previously thought, or may have occurred preferentially during earlier Quaternary glacial periods.  相似文献   

2.
Despite spectacular landform evidence of a dominant role for glacial action in shaping landscapes under former northern hemisphere ice sheets, there is little quantitative evidence for rates and patterns of erosion associated with specific glaciations. Here we use cosmogenic nuclide data to assess rates of subglacial erosion underneath the Fennoscandian ice sheet. By testing whether there are remnant nuclide concentrations in samples taken from sites that include both relict areas and features and landscapes typically associated with vigorous glacial erosion, we can constrain the level and pattern of modification that resulted from the last glaciation. Cosmogenic 10Be and 36Cl data from the Torneträsk region confirm the temporal and spatial variability of glacial erosion suggested by geomorphological mapping. At some sites, glacial erosion estimates in what appear to be heavily scoured areas indicate erosion of only c. 2 ± 0.4 m of bedrock, based on cosmogenic nuclide inheritance. This implies that the generation of severely scoured terrain in this study area required multiple glaciations. The overall modification produced by ice sheets along glacial corridors may be more restricted than previously thought, or may have occurred preferentially during earlier Quaternary glacial periods.  相似文献   

3.
The geometry of estuarine and/or incised‐valley basins and their protected character compared with open sea basins are favourable for the preservation of sedimentary successions. The Lower St. Lawrence Estuary Basin (LSLEB, eastern Canada) is characterized by a thick (>400 m in certain areas) Quaternary succession. High‐ and very high‐resolution seismic reflection data, multibeam bathymetry coverage completed by core and chronostratigraphic data as well as a 3‐D seismic stratigraphic model are used to document the geometrical relationships between the bedrock and the Quaternary units of the LSLEB. The bedrock geometry of LSLEB is characterized by two large troughs that are interpreted as resulting mainly from repeated (?) periods of glacial overdeepening of a pre‐Quaternary drainage system. However, other mechanisms with complex feedback effects such as differential glacio‐isostatic uplift, erosion, sedimentary supply, and subsidence may have contributed to the formation of bedrock troughs. The two large bedrock troughs are mostly filled by ~200 m thick Wisconsinan (Marine Isotopic Stages 2–4) and possibly older sediments. Overlying units recorded the retreat of the Laurentian Ice Sheet during the Late Wisconsinan (Marine Isotopic Stage 2) and estuarine conditions during the Holocene. The strong correlation existing between the bedrock topography and the thickness of the Quaternary succession is indicative of the effectiveness of the LSLEB as a sediment trap.  相似文献   

4.
We seek to quantify glacial erosion in a low relief shield landscape in northern Sweden. We use GIS analyses of digital elevation models and field mapping of glacial erosion indicators to explore the geomorphology of three granite areas with the same sets of landforms and of similar relative relief, but with different degrees of glacial streamlining. Area 1, the Parkajoki district, shows no streamlining and so is a type area for negligible glacial erosion. Parkajoki retains many delicate pre‐glacial features, including tors and saprolites with exposure histories of over 1 Myr. Area 2 shows the onset of significant glacial erosion, with the development of glacially streamlined bedrock hills. Area 3 shows extensive glacial streamlining and the development of hill forms such as large crag and tails and roches moutonnées. Preservation of old landforms is almost complete in Area 1, due to repeated covers of cold‐based, non‐erosive ice. In Area 2, streamlined hills appear but sheet joint patterns indicate that the lateral erosion of granite domes needed to form flanking cliffs and to give a streamlined appearance is only of the order of a few tens of metres. The inheritance of large‐scale, pre‐glacial landforms, notably structurally controlled bedrock hills and low relief palaeosurfaces, remains evident even in Area 3, the zone of maximum glacial erosion. Glacial erosion here has been concentrated in valleys, leading to the dissection and loss of area of palaeosurfaces. Semi‐quantitative estimates of glacial erosion on inselbergs and palaeosurfaces and in valleys provide mean totals for glacial erosion of 8 ± 8 m in Area 1 and 27 ± 11 m in Area 3. These estimates support previous views that glacial erosion depths and rates on shields can be low and that pre‐glacial landforms can survive long periods of glaciation, including episodes of wet‐based flow.  相似文献   

5.
Comparison of the degree of post‐depositional erosion and weathering to which different landforms and sediments have been subject over time provides a valuable aid to age differentiation of Quaternary deposits. A variety of parameters, including erosional modification both of depositional and older erosional landforms, the weathering of surface clasts and the weathering of subsurface clasts and matrix, has proven useful to Quaternary workers. However, time is only one of a number of factors that control the amount of weathering and erosion that occurs at a site. Examples from the glacial deposits of Tasmania show that if results useful for dating are to be obtained, it is essential to minimise the influence of other factors which may obscure a time‐dependent sequence.  相似文献   

6.
Whalebacks are convex landforms created by the smoothing of bedrock by glacial processes. Their formation is attributed to glacial abrasion either by bodies of subglacial sediment sliding over bedrock or by individual clasts contained within ice. This paper reports field measurements of sediment depth around two whaleback landforms in order to investigate the relationship between glacigenic deposits and whaleback formation. The study site, at Lago Tranquilo in Chilean Patagonia, is situated within the Last Glacial Maximum (LGM) ice limits. The two whalebacks are separated by intervening depressions in which sediment depths are generally 0.2 to 0.3 m. Two facies occur on and around the whalebacks. These facies are: (1) angular gravel found only on the surface of the whalebacks, interpreted as bedrock fracturing in response to unloading of the rock following pressure release after ice recession, and (2) sandy boulder‐gravel in the sediment‐filled depressions between the two whalebacks, interpreted as an ice‐marginal deposit, with a mixture of sediment types including basal glacial and glaciofluvial sediment. Since the whalebacks have heavily abraded and striated surfaces but are surrounded by only a patchy and discontinuous layer of sediment, the implication is that surface abrasion of the whalebacks was achieved primarily by clasts entrained in basal ice, not by subglacial till sliding.  相似文献   

7.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   

8.
The landscapes of western Jameson Land bordering Hall Bredning fjord comprise upper river basins, glacial landscapes, lower river basins and a near‐shore zone. The upper river basins are incised into bedrock and display no cover of young sediments whilst the glacial landscapes, located closer to the coast, are dominated by Pleistocene deposits and an irregular topography with hills and ridges. The lower river basins, dissecting the glacial landscapes, are connected to the upper river basins and contain well‐defined Holocene delta terraces. The near‐shore zone, which includes the present coast, displays a few raised shorelines. Geomorphological observations combined with stratigraphic work and 14C dates provide a chronological framework for the development of landscape and shoreline, as presented by a four‐stage reconstruction. The first stage covers the deglaciation of western Jameson Land at the Weichselian‐Holocene transition after a collapse of the main fjord glacier in Hall Bredning. The sea inundated the low‐lying areas on Jameson Land forming small side‐entry fjord basins that possibly follow the track of older valleys. This was followed by a second stage, the paraglacial period, when large meltwater production and sediment transport resulted in a fast infilling of the side‐entry fjord basins by deltas. These are now exposed in terraces in the lower river basins at 70–80 m a.s.l. During a third stage, the relaxation period, fluvial activity decreased and the land surface was increasingly occupied by a cover of tundra vegetation. A glacio‐isostatic rebound resulted in a relative sea level fall and fluvial incision. During stages two and three the coast was exposed to shallow marine processes that aided the alignment of the coast. Stages one to three presumably lasted for less than 2000 years. During stage four, the stable period, lasting for several thousand years till the present, there were minor adjustments of shoreline and landscape. The four‐step reconstruction describes the sedimentary response of a lowland fjord margin to dramatic changes in climate and sea level. The distribution of erosion and sedimentation during this development was mainly controlled by topography. The reconstruction of the latest environmental development of Jameson Land puts new light on Jameson Land's long and complex Quaternary stratigraphic record. The reconstruction may also be used as a model for the interpretation of deposits in similar areas elsewhere.  相似文献   

9.
Here we present datasets from a hydroacoustic survey in July 2011 at Lake Torneträsk, northern Sweden. Our hydroacoustic data exhibit lake floor morphologies formed by glacial erosion and accumulation processes, insights into lacustrine sediment accumulation since the beginning of deglaciation, and information on seismic activity along the Pärvie Fault. Features of glacial scouring with a high‐energy relief, steep slopes, and relative reliefs of more than 50 m are observed in the large W‐basin. The remainder of the lacustrine subsurface appears to host a broad variety of well preserved formations from glacial accumulation related to the last retreat of the Fennoscandian ice sheet. Deposition of glaciolacustrine and lacustrine sediments is focused in areas situated in proximity to major inlets. Sediment accumulation in distal areas of the lake seldom exceeds 2 m or is not observable. We assume that lack of sediment deposition in the lake is a result of different factors, including low rates of erosion in the catchment, a previously high lake level leading to deposition of sediments in higher elevated paleodeltas, tributaries carrying low suspension loads as a result of sedimentation in upstream lakes, and an overall low productivity in the lake. A clear off‐shore trace of the Pärvie Fault could not be detected from our hydroacoustic data. However, an absence of sediment disturbance in close proximity to the presumed fault trace implies minimal seismic activity since deposition of the glaciolacustrine and lacustrine sediments.  相似文献   

10.
Landforms are used as analytical tools to separate inherited features from the glacial impact on Precambrian basement rocks in southwest Sweden. The study covers three different palaeosurfaces, the sub-Cambrian peneplain (relative relief (r.r.) 0–20 m) with the character of a pediplain, an uplifted and dissected part of the sub-Cambrian peneplain (r.r. 5–40 m) and an etch-surface (r.r. 20–135 m), presumably sub-Mesozoic. The surfaces were recently re-exposed, probably due to a Neogene upheaval with some pre-glacial reshaping. Strong structural control and no alignment with glacial erosional directions other than those coinciding with structures, are arguments for etch processes as a most important agent for relief differentiation. This is strengthened by the occurrence of saprolite residues and etchforms in protected positions.
The glacial reshaping of the sub-Cambrian flat bedrock surfaces is negligible. The glacial impact becomes more evident in the uplifted and dissected parts of the peneplain and within the hilly sub-Mesozoic surface. The higher the initial relief the more effect of glacial erosion on individual hills, both on the abrading side, with formation of roches moutonnées, and on the plucking side. Detailed etchforms are preserved in protected positions in spite of erosion by a clearly wet-based ice. The magnitude of the Pleistocene glacial erosion is considerably less than the amplitude of the palaeorelief in the entire area.
Landscapes of areal glacial scouring have been described as comprising irregular depressions with intervening bosses scraped by ice and labelled 'knock and lochan' topography, but we suggest that an etched bedrock surface is a prerequisite for this type of landscape to develop.  相似文献   

11.
This article examines how snow plays a role in current erosive processes in a high mountain area (1800—2400 m a.s.l.) known as Peñalara, located in Spain's Central Range (40°50' N; 3°58' W). The hypothesis maintains that snow becomes an important erosive factor when it accumulates over sedimentary or weathered materials, therefore geomorphological heritage is a key factor in nival erosion. To test this hypothesis, the authors identified the landforms in the study area and determined their relative ages by weathering and lichenometry ( Rizocarpon geographicum ag. ), differentiating between preglacial, glacial (Recent Pleistocene) and postglacial (Holocene) forms. The information was used to plot a reticulate pattern of observation sites for the study area. Snow depth and the movement of selected blocks at each site were recorded from October 1991 to June 1995. The relationship between late-lying snowpatches, geomorphological heritage and current erosive processes was determined. Between 1800 and 2000 m a.s.l., there is an indirect relationship between snowpatches and predominant processes (stream incision and gelifluction) on terminal moraines. Between 2000 and 2200 m, direct action is present where there are late-laying snowpatches on lateral moraines and some glacial steps. Between 2200 and 2400 m, gelifraction and gravity processes are also in direct relation to snowpatches.  相似文献   

12.
POST-VOLCANIC EROSION RATES OF SHOMYO FALLS IN TATEYAMA, CENTRAL JAPAN   总被引:2,自引:0,他引:2  
Post‐eruptive fluvial erosion of welded pyroclastic flow deposits often depends on the recession of waterfalls because of their rapid erosion involved. We examine the recession rate of Shomyo Falls, which consists of Pleistocene welded pyroclastic flow deposits in Tateyama, north‐central Japan. The mean recession rate of the waterfall obtained from lithological and topographical evidences is 0.08‐0.15 m/a for 100000 a. However, the recession rate estimated by means of an empirical equation comprising physical parameters of erosive force and bedrock resistance is 0.006‐0.011 m/a with small uncertainties. The discrepancy between the geology‐based and equation‐based recession rates indicates that some factors, not taken account of in the equation, significantly influence the recession rate. We suggest that a factor in the rapid erosion of the waterfall is a large amount of transported sediment acting as abrasive material, which is supplied from high mountains in the watershed above the waterfall.  相似文献   

13.
Paraglacial rock slope failure (RSF) is here studied as a locally major contributor to mountain landscape evolution in the Caledonian ranges. Dense RSF clusters exist in Scotland and Norway, but overall RSF distribution in Scandinavia is poorly known. In the Abisko area, air photo scrutiny confirms the reported incidence of sparse but significant RSF. In the Kärkevagge complex, the Rissa RSF is one of the largest in northern Europe, with a scar volume of 42 Mm3. The well–known Giant Boulder Deposit (GBD) is a rock avalanche emanating from the Rissa RSF scar, the interpretation of wholesale valley wall retreat at deglaciation being discounted. In the adjacent valley of Vassivagge, a major RSF on Vuoitasrita has a similar area and morpholocation, but lacks a GBD. It has consumed 5–10% of the relict preglacial mountain surface. Both RSFs are near incipient watershed breaches in valleys which may have undergone vigorous enlargement during the last stadial. Glaciation history may explain spatial incidence as well as neotectonic and other triggers. The localised geomorphic impact of RSF in the Abisko mountains is high by comparison with contemporary slope processes. The cumulative impact of paraglacial RSF over the Quaternary may have been considerable, and RSF may be an indicator of concentrated late–stage glacial erosion.  相似文献   

14.
Paraglacial rock slope failure (RSF) is here studied as a locally major contributor to mountain landscape evolution in the Caledonian ranges. Dense RSF clusters exist in Scotland and Norway, but overall RSF distribution in Scandinavia is poorly known. In the Abisko area, air photo scrutiny confirms the reported incidence of sparse but significant RSF. In the Kärkevagge complex, the Rissa RSF is one of the largest in northern Europe, with a scar volume of 42 Mm3. The well–known Giant Boulder Deposit (GBD) is a rock avalanche emanating from the Rissa RSF scar, the interpretation of wholesale valley wall retreat at deglaciation being discounted. In the adjacent valley of Vassivagge, a major RSF on Vuoitasrita has a similar area and morpholocation, but lacks a GBD. It has consumed 5–10% of the relict preglacial mountain surface. Both RSFs are near incipient watershed breaches in valleys which may have undergone vigorous enlargement during the last stadial. Glaciation history may explain spatial incidence as well as neotectonic and other triggers. The localised geomorphic impact of RSF in the Abisko mountains is high by comparison with contemporary slope processes. The cumulative impact of paraglacial RSF over the Quaternary may have been considerable, and RSF may be an indicator of concentrated late–stage glacial erosion.  相似文献   

15.
Despite abundant data on the early evolution of the Central Alps, the latest stage exhumation history, potentially related to relief formation, is still poorly constrained. We aim for a better understanding of the relation between glaciation, erosion and sediment deposition. Addressing both topics, we analysed late Pliocene to recent deposits from the Upper Rhine Graben and two modern river sands by apatite fission‐track and (U‐Th‐Sm)/He thermochronology. From the observed age patterns we extracted the sediment provenance and paleo‐erosion history of the Alpine‐derived detritus. Due to their pollen and fossil record, the Rhine Graben deposits also provide information on climatic evolution, so that the erosion history can be related to glacial evolution during the Plio‐Pleistocene. Our data show that Rhine Graben deposits were derived from Variscan basement, Hegau volcanics, Swiss Molasse Basin, and the Central Alps. The relations between glaciation, Alpine erosion, and thermochronological age signals in sedimentary rocks are more complex than assumed. The first Alpine glaciation during the early Pleistocene did not disturb the long‐term exhumational equilibrium of the Alps. Recent findings indicate that main Alpine glaciation occurred at ca. 1 Ma. If true, then main Alpine glaciation was coeval with an apparent decrease of hinterland erosion rates, contrary to the expected trend. We suggest that glaciers effectively sealed the landscape, thus reducing the surface exposed to erosion and shifting the area of main erosion north toward the Molasse basin, causing sediment recycling. At around 0.4 Ma, erosion rates increased again, which seems to be a delayed response to main glaciation. The present‐day erosion regime seems to be dominated by mass‐wasting processes. Generally, glacial erosion rates did not exceed the pre‐glacial long‐term erosion rates of the Central Alps.  相似文献   

16.
Soil‐forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial Stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has ‘dry‐frozen’ permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice cored rock glaciers and has ice‐cemented perma‐frost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone‐rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite‐rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.  相似文献   

17.
Evolution of mountain landscapes is controlled by dynamic interactions between erosional processes that vary in efficiency over altitudinal domains. Evaluation of spatial and temporal variations of individual erosion processes can augment our understanding of factors controlling relief and geomorphic development of alpine settings. This study tests the application of detrital apatite (U‐Th)/He thermochronology (AHe) to evaluate variable erosion in small, geologically complex catchments. Detrital grains from glacial and fluvial sediment in a single basin were dated and compared with a bedrock derived age‐elevation relationship to estimate spatial variation in erosion over different climate conditions in the Teton Range, Wyoming. Controls and pitfalls related to apatite quality and yield were fully evaluated to assess this technique. Probability density functions comparing detrital age distributions identify variations in erosional patterns between glacial and fluvial systems and provide insight into how glacial, fluvial, and hillslope processes interact. Similar age distributions representing erosion patterns during glacial and interglacial times suggest the basin may be approaching steady‐state. This also implies that glaciers are limited and no longer act as buzzsaws or produce relief. However, subtle differences in erosional efficiency do exist. The high frequency of apatite cooling ages from high altitudes represents either rapid denudation of peaks and ridges by mass wasting or an artifact of sample quality. A gap in detrital ages near the mean age, or mid‐altitude, indicates the fluvial system is presently transport limited by overwhelming talus deposits. This study confirms that sediment sources can be traced in small basins with detrital AHe dating. It also demonstrates that careful consideration of mineral yield and quality is required, and uniform erosion assumptions needed to extract basin thermal history from detrital ages are not always valid.  相似文献   

18.
The role of post-Little Ice Age (LIA) Neoglacial retreat on landslide activity is investigated in 19 alpine basins along the upper Lillooet River Valley, British Columbia. We examine how Neoglacial scouring and glacial recession have modified hillslope form and slope stability, and construct a decision-making flowchart to identify landslide hazards associated with glacial retreat. This work is based on field mapping, GIS analysis, statistical associations between landslides and terrain attributes, and a comparison between Neoglaciated and non-Neoglaciated terrain within each basin.The bedrock landslide response to glacial retreat varies appreciably according to lithology and the extent of glacial scour below the LIA trimline. Valleys carved in weak Quaternary volcanics show significant erosional oversteepening and contain deep-seated slope movement features, active rock fall, rock slides, and rock avalanches near glacial trimlines. Basins in stronger granitic rock rarely show increased bedrock instability resulting from post-LIA retreat, except for shallow-seated rock slides along some trimlines and failures on previously unstable slopes. In surficial materials, landslides associated with post-LIA retreat originate in till or colluvium, as debris slides or debris avalanches, and are concentrated along lateral moraines or glacial trimlines.Significant spatial association was also observed between recent catastrophic failures, gravitational slope deformation, and slopes that were oversteepened then debuttressed by glacial erosion. Eight out of nine catastrophic rock slope failures occurred just above glacial trimlines and all occurred in areas with a previous history of deep-seated gravitational slope movement, implying that this type of deformation is a precursor to catastrophic detachment.  相似文献   

19.
Rapp, Anders: Periglacial nivation cirques and local glaciations in the rock canyons of Söderåsen, Scania, Sweden. A discussion and new interpretation. Geografisk Tidsskrift 82: 95–99, Copenhagen, October 15, 1982.

Present opinions about the genesis of the rock canyons OdensjOn, Skäralid and Klöva Hallar of Söderåsen, Sweden are reviewed, and a new theory is presented. It is proposed, that during periglacial tundra periods large amounts of drifting snow collected in valleys of north-south directions. Small glaciers were created, which caused local overdeepening and removal of loose material. These processes were active in tundra periods before and after the main Quaternary glaciations.

SUMMARY

Odensjön, Skäralid and Klöva Hallar are three valleys of canyon type, deeply cut (60–100 m) into the horst block of Söderåsen, of fractured Precambrian gneiss rock. It has been shown by other authors that the cold periods after the Weichselian deglaciation were characterized by permafrost and ice wedges on sandy plains in south Sweden. Strong winds caused widespread wind-polishing of stones and bedrock, predominantly from easterly and westerly directions. Based on this evidence, the author presents the theory that large deposits of wind-blown snow were trapped in the canyon valleys of Söderåsen, except for the valleys of east-west directions. The snow was metamorphosed to firn and local, small glaciers, which filled the valleys. The rims of the canyon valleys have in many cases well developed nivation hollows, either steep nivation funnels or gently sloping, semicircular nivation cirques. Odensjøn is a closed, semicircular rock basin, which has been much discussed by scientists earlier, and which seems to fit the theory of creation by nivation from mainly west, but also east, and a local cirque glacier flow northwards causing the overdeepening and removal of loose material. The three valleys mentioned were problably widened and deepened into a series of nivation basins in tundra periods before and after each major continental glaciation. The nivation hollows and the deep canyon valleys were not destroyed by glacial erosion during the Weichselian and earlier Quaternary major ice advances, because the valleys were filled with densely packed snow and ice from snow drifting before the main glacier front moved over them from NE directions. The theory will be further checked by a team of scientists from the Department of Physical Geography in Lund. A comparison is made with cirque forms in present-day mountain tundra conditions in the area of Kärkevagge in northern Lappland, investigated by the author during the 1950's and later.  相似文献   

20.
Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma− 1. The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号