首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南海北部陆缘盆地形成的构造动力学背景   总被引:2,自引:0,他引:2  
摘要:南海北部陆缘盆地处于印度板块与太平洋及菲律宾海板块之间,但三大板块对南海北部陆缘盆地的影响是不同的。通过对三大板块及古南海演化的研究,可知南海北部陆缘地区应力环境于晚白垩世发生改变。早白垩世处于挤压环境,晚白垩世以来转变为伸展环境并且不同时期的成因不同。晚白垩世-始新世,华南陆缘早期造山带的应力松弛、古南海向南俯冲及太平洋俯冲板块的滚动后退导致其处于张应力环境。始新世时南海北部陆缘裂陷盆地开始产生,伸展环境没有变,但因其是由太平洋板块向西俯冲速率的持续降低及古南海向南俯冲引起的,南海北部陆缘盆地继续裂陷。渐新世-早中新世,地幔物质向南运动及古南海向南俯冲导致南海北部陆缘地区处于持续的张应力环境;渐新世早期南海海底扩张;中中新世开始,三大板块开始共同影响着南海北部陆缘盆地的发展演化。  相似文献   

2.
The early Cretaceous structure of NE China was a result of slab‐rollback‐driven extensional tectonics, characteristic of Western Pacific‐type continental margins. Oblique docking of a microcontinent along the Asian active margin in the early Late Cretaceous induced a compressional stress regime that brought about an Andean‐type continental margin development. Partitioning of contractional–transpressional strain across NE China produced a retroarc foreland basin system, comprising, from east to west, an orogenic wedge, a foredeep (Songliao basin), a forebulge (Great Xing'an Range) and a back‐bulge depozone (Hailar and Erlian basins). A sub‐circular lacustrine depozone in the pre‐existing Songliao basin evolved into a NNE‐trending depocentre near the forebulge and acquired a westward flowing fluvial–deltaic drainage system during the Campanian. Development of this retroarc foreland basin system signals a significant tectonic switch from a Western Pacific‐type to an Andean‐type continental margin evolution in the geological history of East Asia.  相似文献   

3.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

4.
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing‘anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part (or collision zone). The determination of the eruption age of the volcanics of the Zhangjiakou Formation definitely constrains the switch period, which began in the Indosinian and finished in the Yanshanian, that is, 140-135 Ma. The switch is concretely the change from the approximate E-W Paleo-Asian tectonic system to the NE to NNE Pacific system, and the period is also the apex of a continent-continent collision and orogenesis of subduction, being consumed and eventually disappearing of the Paleo-Pacific ancient continent, and all the processes commenced in the Indosinian. While the following post-orogenic large-scale eruption in the Early Cretaceous marks the final completeness of the Paleo-Pacific structure dynamics system.  相似文献   

5.
Discussion on the Transform of Paleotethys into the Pacific   总被引:1,自引:0,他引:1  
1.IntroductionTherehavebeenalargeamountofresearchesontheN--SextendingPaleotethysinthePaleozoicandonthemodernE--WextendingPacificOceanintheCenozoic.ButfewhavetouchedonhowthePaleotethysevolvedintothemodemPacific,andthereareonlyguessesaboutthesitllationofthePaleo--Pacificbetweenthetwostages.ThispapertriestodiscussthedynamicmechanismofthePaleo--PacificplateandthecharacteristicsoftheactivitiesofEastAsiacontinentalmarginintheMesozoicthroughtheterranesfromPaleotethysremainingintheEastAsiacont…  相似文献   

6.
东北亚中生代洋陆过渡带的研究及启示   总被引:3,自引:2,他引:1  
邵济安  唐克东 《岩石学报》2015,31(10):3147-3154
从中生代起,亚洲大陆作为一个统一的大陆岩石圈板块,开始了大陆边缘的组建和改造。本文采用构造地层-地体观点,依据生物地层学和碰撞造山带的不同特征,将东北亚洋陆过渡带从西到东分成了7个带:(1)受郯庐断裂系改造的华北克拉通东缘带;(2)以近陆缘物质为主的增生带I;(3)以异源混杂堆积为主的增生带II;(4)新西伯利亚-楚科奇-阿拉斯加陆缘增生带III;(5)陆缘火山-深成岩带;(6)科里亚克增生带IV;(7)堪察加-萨哈林-东北日本增生带V。其中自早白垩世末至古新世初形成的楚科奇海-东锡霍特阿林的火山-深成岩带作为太平洋板块开始正向俯冲并导致弧岩浆活动的重要标志。此前晚三叠世至早白垩世末,在转换大陆边缘活动背景下,大量低纬度的外来地体以左旋平移断裂作用向北迁移并斜拼贴在陆缘。时空格局的分带性和阶段性清晰地展示了东北亚大陆边缘洋陆演化的关系。作者基于上述研究,并结合其他学科近期研究成果,对中国东部中生代岩浆作用与太平洋板块俯冲作用的关系进行了讨论,认为中国东部晚侏罗世-早白垩世大规模岩浆活动的高峰期正值东北亚洋陆过渡带转换大陆边缘活动和地体拼贴增生的阶段。然而太平洋板块正向俯冲主要发生在早白垩世末-晚白垩世,此时我国东部的大规模岩浆活动业已结束。因此难以将中国东部的岩浆活动与太平洋板块的正向俯冲作用相联系。以年轻陆壳组成的大兴安岭为例,作者提出晚侏罗世-早白垩世不同深度的两种地质作用同时控制着中国东部岩浆活动的源区特征和侵位的空间:即深部软流圈底辟上涌与中-上部地壳受到的洋陆之间的剪切走滑作用形成的变形。  相似文献   

7.
Tectonic migration is a common geological process of basin formation and evolution. However, little is known about tectonic migration in the western Pacific margins. This paper focuses on the representative Cenozoic basins of East China and its surrounding seas in the western Pacific domain to discuss the phenomenon of tectonic jumping in Cenozoic basins, based on structural data from the Bohai Bay Basin, the South Yellow Sea Basin, the East China Sea Shelf Basin, and the South China Sea Continental Shelf Basin. The western Pacific active continental margin is the eastern margin of a global convergent system involving the Eurasian Plate, the Pacific Plate, and the Indian Plate. Under the combined effects of the India-Eurasia collision and retrogressive or roll-back subduction of the Pacific Plate, the western Pacific active continental margin had a wide basin-arc-trench system which migrated or ‘jumped’ eastward and further oceanward. This migration and jumping is characterized by progressive eastward younging of faulting, sedimentation, and subsidence within the basins. Owing to the tectonic migration, the geological conditions associated with hydrocarbon and gashydrate accumulation in the Cenozoic basins of East China and its adjacent seas also become progressively younger from west to east, showing eastward younging in the generation time of reservoirs, seals, traps, accumulations and preservation of hydrocarbon and gashydrate. Such a spatio-temporal distribution of Cenozoic hydrocarbon and gashydrate is significant for the oil, gas and gashydrate exploration in the East Asian Continental Margin. Finally, this study discusses the mechanism of Cenozoic intrabasinal and interbasinal tectonic migration in terms of interplate, intraplate and underplating processes. The migration or jumping regimes of three separate or interrelated events: (1) tectonism-magmatism, (2) basin formation, and (3) hydrocarbon-gashydrate accumulation are the combined effects of the Late Mesozoic extrusion tectonics, the Cenozoic NW-directed crustal extension, and the regional far-field eastward flow of the western asthenosphere due to the India-Eurasia plate collision, accompanied by eastward jumping and roll-back of subduction zones of the Pacific Plate.  相似文献   

8.
The East China Sea basins, located in the West Pacific Continental Margin (WPCM) since the late Mesozoic, mainly include the East China Sea Shelf Basin (ECSSB) and the Okinawa Trough (OT). The WPCM and its adjacent seas can be tectonically divided into five units from west to east, including the Min‐Zhe Uplift, ECSSB, the Taiwan–Sinzi Belt, OT, and the Ryukyu Island Arc, which record regional tectonic evolution and geodynamics. Among those tectonic units, the ECSSB and the OT are important composite sedimentary pull‐apart basins, which experienced two stages of strike‐slip pull‐apart processes. In seismic profiles, the ECSSB and the OT show a double‐layer architecture with an upper half‐graben overlapping on a lower graben. In planar view, the ECSSB and the OT are characterized by faulted blocks from south to north in the early Cenozoic and by a zonation from west to east in the late Cenozoic. The faulted blocks with planar zonation and two‐layer vertical architecture entirely jumped eastward from the Min‐Zhe Uplift to the OT during the late Cenozoic. In addition, the whole palaeogeomorphology of the ECSSB changed notably, from pre‐Cenozoic highland or mountain into a Late Eocene continental margin with east‐tilting topography caused by the eastward tectonic jumping. The OT opened to develop into a back‐arc basin until the Miocene. Synthetic surface geological studies in the China mainland reveal that the Mesozoic tectonic setting of the WPCM is an Andean‐type continental margin developing many sinistral strike‐slip faults and pull‐apart basins and the Cenozoic tectonic setting of the WPCM is a Japanese‐type continental margin developing dextral strike‐slip faults and pull‐apart basins. Thus, the WPCM underwent a transition from Andean‐type to Japanese‐type continental margins at about 80 Ma (Late Cretaceous) and a transition in topography from a Mesozoic highland to a Cenozoic lowland, and then to below sea‐level basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
南海北部陆缘位于大华南地块洋陆过渡带南段的关键核心段落,曾处于特提斯洋构造域与(古)太平洋构造域交接地带,是印度洋构造动力系统与太平洋构造动力系统波及的共同地区。然而,以往研究和勘探程度较低,特提斯构造域与太平洋构造域交接转换区域的大地构造背景、过程、机制始终不够明确。基于南海北部陆缘地震剖面,不仅关注该区新生代盆地结构构造,以服务该区油气精准勘探,并且试图以此解剖、揭示该区中生代基底结构特征,进而探索新生代南海海盆打开、扩张、停滞到消亡过程的前生今世。对珠江口盆地地震剖面解析和华南陆缘野外构造研究表明:华南地块洋陆过渡带先后经历了中生代印支期碰撞造山、燕山早期增生造山、燕山晚期压扭造山三个过程;随后进入新生代,又经历了早期北东东—南西西走向正断层主控下的弥散性裂解成盆、中期北东—北北东走向张扭断裂主控下的右行走滑拉分成盆、晚期北西—北西西向张扭断裂主控下的左行走滑拉分成盆三期伸展构造叠加。总体上,该区特提斯洋构造体系向太平洋构造体系的转换过程经历了四个阶段:古特提斯洋构造体系向新特提斯洋构造体系转换、新特提斯洋构造体系向古太平洋构造体系转换、新特提斯洋构造体系向太平洋构造体系转换及古太平洋构造体系向太平洋构造体系的转换。东亚洋陆过渡带的构造转换折射出地球深浅部动力系统驱动“东亚大汇聚”的长期机制,即东南亚环形俯冲驱动体系、太平洋LLSVP和非洲LLSVP的深部动力系统(统称为海底“三极”)的重要性,其中,东南亚环形俯冲驱动体系是地球板块运动的重要动力引擎之一。   相似文献   

10.
High‐resolution tomographic images of the belt crossing the Japan Trench‐Changbai Mountains‐Dong Ujimqin Qi are represented in this paper, revealing the shape of a subducted slab in the western Pacific region and characteristics of the lithospheric structures under the Changbai Mountains and the Da Hinggan Mountains. Studies of the spatial distribution, subduction time and the time‐lag between the subduction and magmatism, combined with petrology and isotope geochemistry of the Late Mesozoic volcano‐plutonic rocks from the Da Hinggan Mountains‐Yanshan Mountains have further proved the independence of magmatic activities from the subduction of the Pacific plate. The Mesozoic tectono‐thermal evolutionary history and structural characteristics of the lithosphere in the Da Hinggan Mountains and North China suggest that the formation and evolution of magma have probably a close relationship with the delamination and thinning of the continental lithosphere and the underplating resulting from the consequent upwelling of the asthenosphere. On the other hand, the large‐scale strike‐slip fault system, resulting from sinistral shearing of the Pacific plate relative to the Asian continent in the Mesozoic, is responsible for the formation and emplacement of magma on the continental margin. It was the intense crust‐mantle interaction, together with structural deformation at the shallower levels that led to the large tectono‐magmatic belt in the East Asian continental margin.  相似文献   

11.
This paper briefly reviewed the tectonic evolution history of the Paleo-Pacific Plate and tectonic regimes of NE China and adjacent areas. It also summarized the spatial and temporal association and petrogenesis of Cretaceous igneous rocks, proposing its relationship with Paleo-Pacific Plate subduction. The Erguna, Xing'an, Songliao, and Jiamusi blocks of NE China have significant igneous activities in 145-88 Ma, characterized by a spatial and temporal eastward migration and an association of I-And A-Type granites and asthenosphere-derived basaltic rocks, with minor OlB-Type basalts after ~ 88 Ma. The Cretaceous magmatism in the Wandashan-Sikhote-Alin and Vanbian area is also characterized by eastward migration but an association of intermediate to acidic rocks including high-Mg andesites, adakites, and I -And S-Type granites. Cretaceous magmatism in Erguna-Xing'an-Songliao-Jiangmusi and Wandashan-Sikhote-Alin-Yanbian areas was thought to be formed in back-Arc( intra-plate) and continental arc settings, respectively, and was controlled by roll-back of the Paleo- Pacific Plate. The Early Cretaceous continental arc accompanied with back-Arc extension was most likely to result from subduction of old oceanic lithosphere, which rarely occurred in the modem earth. The Late Cretaceous continental arc at NE China, characterized by back-Arc compression, was similar to the present Chilean continental margin.  相似文献   

12.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

13.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

14.
郯庐断裂带构造演化的同位素年代学制约   总被引:10,自引:0,他引:10       下载免费PDF全文
朱光  张力  谢成龙  牛漫兰  王勇生 《地质科学》2009,44(4):1327-1342
近年来在郯庐断裂带内获得了大量的同位素年龄,为了解该断裂带的演化规律与相关动力学过程提供了有效的制约。该断裂带早期走滑构造带内给出了238~236 Ma的白云母 40Ar/39Ar 变形年龄,指示其起源于华北与华南克拉通碰撞过程的深俯冲阶段,支持其造山期陆内转换断层成因观点。其晚中生代走滑韧性剪切带内已获得的较大白云母 40Ar/39Ar冷却年龄为162~150 Ma,表明其再次左行平移发生在晚侏罗世初或中 晚侏罗世之交,出现在区域压扭性动力学背景下。这一事件应代表了中国东部滨太平洋构造域的开始时间。已获得的一系列断裂带内岩体与火山岩锆石LA ICPMS年龄显示,该断裂带内伸展性背景下最早的岩浆活动时间为136 Ma。而断裂带所控制的断陷盆地内地层时代表明其伸展活动发生在早白垩世初(约145 Ma)。这应指示了中国东部转变为伸展性动力学背景的时间。该断裂带一系列长石40Ar/39Ar年龄与磷灰石裂变径迹年龄,显示其在晚白垩世与古近纪仍处于伸展活动之中。  相似文献   

15.
New data on geology, geochemistry, and isotope systematics of lavas in the East Sikhote-Alin area, along with earlier published evidence for the Sea of Japan, provide insights into the dynamics of back-arc basins and their role in the tectonic and magmatic history of continental margins. Right-lateral strike-slip faulting, the key event in the Cenozoic history of East Sikhote-Alin, apparently had no relation with the subduction in post-Eocene time. At that time, the Late Cretaceous subduction ended and oceanic asthenosphere with Pacific-type MORB isotope signatures injected into the subcontinental mantle through slab windows. The Sea of Japan opening began in the Eocene with formation of small rift basins in the Tatar Strait, which accumulated coastal facies. During the main Miocene phase of activity, the zone affected by oceanic asthenosphere moved eastward, i.e., to the modern deepwater Sea of Japan. The effect of oceanic asthenosphere on the continental margin ended in the Late Miocene after the Sea of Japan had opened and new subduction initiated east of the Japan Islands.  相似文献   

16.
Genesis of the so‐called Bentong‐Raub Suture of Malay Peninsula does not fit to the model of subduction‐related collision. It has evolved from transpression tectonics resulting closure and exhumation of the inland basin which underwent extensive back‐arc extension during Triassic. Crust having similar thickness (average ~35 km) below entire Malay Peninsula nagate collision of two separate continental blocks rather supports single continental block that collided with South China continental block during Permo‐Triassic. Westward subduction of intervening sea (Proto South China Sea) below Malay Peninsula resulted in widespread I‐ and S‐Type granitization and volcanism in the back‐arc basins during Triassic. Extensive occurrence of Permo‐Triassic Pahang volcanics of predominantly rhyolitic tuff suggest its derivation from back‐arc extension. Back‐arc extension, basin development and sedimentation of the central belt of the peninsula continued until Cretaceous. A‐Type granite of metaluminous to peraluminous character indicates their emplacement in an intraplate tectonic setting. Malay Peninsula suffered an anticlockwise rotation due to the rifting of Luconia–Dangerous Grounds from the east Asia in the Late Cretaceous–Early Tertiary. Extensive ductile and brittle deformation including crustal segmentation, pull‐apart fracturing and faulting occurred during the closure and exhumation of the basins developed in the peninsula during Late Cretaceous–Early Tertiary. Crustal shortening in the central belt of the peninsula has been accomodated through strike‐slip displacement, shearing and uplift.  相似文献   

17.
On the basis of field observations of the structures of three profiles from the Linshu region, deformation characteristics and the tectonic background of the Yishu fault belt in the Late Cretaceous–Early Cenozoic have been discussed in detail.Three structural profiles, whose deformations consist mainly of earlier transpressional faults and later normal faults, were developed for the Mengtuan Formation of the Lower Cretaceous Dasheng Group.Typical positive flower structures, duplex structures, and break-through faults were found in these profiles.On the basis of analyses of the structural deformation and previous geochronological studies, it was concluded that the earlier transpressional faults of the profiles were triggered by the sinistral transpression of the Yishu fault belt in the Late Cretaceous–Early Paleogene, and that the later normal faults, formed during the Late Paleogene–Neogene extension, truncated the earlier transpressional faults.With consideration of the tectonic evolution of the Tan-Lu fault belt and the different drift directions of the Pacific plate since the Cretaceous, we suggest that the major tectonic events of the Late Cretaceous–Neogene in eastern China were mainly controlled by the subduction of the Pacific plate.  相似文献   

18.
Tectonic and environmental patterns and evolution of the present North Tibetan Plateau(NTP) prior to the India collision with Asia is significant to understand the formation of the Tibetan Plateau and its influence on the environment. In this study, we integrated and analyzed the tectonostratigraphy and the special sedimentary layers whose climatic implications are clear in the NTP. Additionally, we stressed the tectonic and environmental events and their evolutions from the Mesozoic to the Early Cenozoic. Our results show that four tectonic phases, which sequentially took place during the Triassic, Jurassic, Cretaceous and Paleogene, played an important role on the formation of the North Tibet. The climate was basically dry and hot from the Triassic to the Eocene and became dry and cool since the Oligocene in this region. The climatic evolution was characterized by a transition from a wet and hot phase during the Triassic- Middle Jurassic, to a dry and hot phase during the Late Jurassic- Eocene. Both phases encompassed 5 wet and hot periods followed by 5 dry and hot climate events, respectively. In addition, we found that the tectonic deformation and the climatic conditions were spatially and temporally different. In detail, in the regions north of the PaleoTian Shan and Paleo-Qilian Mts. the tectonic deformation and climatic condition were stronger and wetter than in regions south of the Paleo-Tian Shan and Paleo-Qilian Mts. during the Late Triassic – Jurassic. Whereas in the Cretaceous, the tectonic movement was intensive in the west but steady in the east, and climate was dry in the south but wet in the north of NTP. The formation of the tectonic and climatic patterns in NTP were the consequence of either global climate change or regional tectonics, including the Paleo-Asian Ocean closure and the Qiangtang block, Lhasa block and India plate collision subsequently to Asia. Furthermore, the regional tectonic events occurred before any global climate change and drove the climatic change in the NTP.  相似文献   

19.
晚侏罗世东亚多向汇聚构造体系的形成与变形特征   总被引:37,自引:2,他引:35  
板块构造研究成果与同位素精确定年数据的积累,使我们对发生在中国东部的晚侏罗世-早白垩世东亚多向汇聚作用有了深刻的认识.全球三大洋在晚侏罗世(165±5)Ma近乎同时的开启,以及东亚周边占太平洋、新特提斯洋和蒙古-鄂霍茨克洋的俯冲消亡,在中国中东部和东亚地区形成了多向挤压汇聚的燕山期构造体系,即东业多向汇聚构造体系(简称东亚汇聚).东亚汇聚启动了经典的燕山运动,发育了独特的构造变形特征.东亚汇聚构造体系具有两个近乎稳定的刚性陆核,即鄂尔多斯地块和四川(盆地)地块,在它们的周缘形成了晚侏罗世-早白垩世陆内多向挤压变形和似前陆盆地,如大巴山晚侏罗世前陆.此外,东亚多向汇聚构造体系影响了东亚和中亚大部分地区的板内变形作用,在中国大陆及其周边形成了反映南北向挤压的蒙古弧共轭走滑断裂系统、燕山-阴山陆内造山带、大别山-大巴山侏罗纪陆内造山带等典型的燕山期构造带.东亚汇聚具有深刻的全球构造背景与动力来源,是重要的科学研究问题.  相似文献   

20.
赵志刚  王鹏  祁鹏  郭瑞 《地球科学》2016,41(3):546-554
东海盆地处于西太平洋俯冲带前缘,是发育在华南克拉通基底之上的,以晚白垩世-新生代沉积为主的新生代盆地.东海盆地性质是在活动大陆边缘减薄陆壳之上的,由于洋-陆俯冲消减所引起的张裂、拉伸作用而形成的弧后裂谷型盆地,是西太平洋众多“沟-弧-盆”体系的一部分.东海盆地陆架外缘隆起控制着东海盆地的演化过程,该地质单元形成于晚白垩世,是陆缘隆起和增生楔的复合体,中新世后由于菲律宾海板块的活动而解体为现今的钓鱼岛隆褶带和琉球隆起.结合对陆架外缘隆起的研究后认为,东海盆地晚白垩世以来的演化历程具有3大构造阶段,即:第一阶段,古新世-中始新世西部坳陷形成发展期;第二阶段,中始新世-渐新世东部坳陷形成发展期,其中,中晚始新世太平洋板块的转向是东、西部坳陷构造迁移的分界点;第三阶段,中新世-全新世,东海盆地进入到菲律宾板块影响时期,原先的构造格局开始分解.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号