首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
砂土中扩体锚杆承载特性模型试验研究   总被引:1,自引:0,他引:1  
郭钢  刘钟  邓益兵  杨松  马利军 《岩土力学》2012,33(12):3645-3652
在25个室内模型试验基础上,研究了均质砂土中竖向拉拔扩体锚杆的几何尺寸及埋深对其承载特性的影响。试验结果表明,根据深径比的不同,扩体锚杆可以分为浅埋与深埋扩体锚杆2种形式,它们在拉拔过程中均经历了土体弹性变形阶段、非扩体锚固段-土界面剪切破坏阶段、土体弹塑性变形阶段以及剪切破坏阶段,破坏特征分别表现为整体剪切破坏与局部剪切破坏。通过扩体锚杆与普通拉力型锚杆模型试验对比发现:与普通拉力型锚杆相比,扩体锚杆极限承载力、承载比与安全性均有大幅度提高。而通过增大扩体锚固段直径的方式提高扩体锚杆承载力的优势较为明显。此外,根据承载比分析,扩体锚杆存在最优扩体锚固段直径,因此,在实际工程中应寻找一个满足需要的最优扩体锚固段尺寸以取得较好的经济效益。  相似文献   

2.
青岛胶州湾北岸广泛分布厚层海相沼泽化软黏土,为研究穿越厚层软土时压力型锚杆的适用性,开展了压力分散型锚杆、拉力型锚杆和承压型囊式扩体锚杆的现场对比试验。试验结果表明,压力分散型和承压型囊式扩体锚杆极限承载力离散性较大,难以满足锚杆验收标准;相对于极限粘结强度和局部受压承载力,锚杆成孔曲率导致的锚固体整体失稳可能是穿越厚层软土的压力型锚杆极限承载力不足的主要原因;对滨海基坑工程中穿越软土的预应力锚杆,建议优先采用拉力型锚杆。  相似文献   

3.
改变锚固体直径、改善锚固体与岩土间界面特性是提高锚杆抗拔承载力的重要途径。软岩地层多段扩体锚杆采用机械扩孔工艺施工,进行多级循环加载卸载试验,根据锚杆的荷载-位移曲线及现场变形破坏特征,确定锚杆破坏模式为钢筋先屈服,最后钢筋被拔出,同时锚固体被拉裂。试验结果表明多段扩体抗浮锚杆施工工艺可行,锚杆抗拔承载力高,实际工程中能满足抵抗较高水浮力的需求。  相似文献   

4.
压力型和拉力型锚杆工作性能对比研究   总被引:2,自引:0,他引:2  
通过压力型和拉力型锚杆各自的荷载传递模型,对比分析了岩层中压力型和拉力型锚杆的受力机制、摩阻力分布特征,并采用剪切变形系数与锚固体等效变形模量的比值衡量了锚杆的承载力和变形性能。压力型和拉力型锚杆现场试验和理论分析结果表明:岩层中压力型锚杆工作时,锚固体受压后径向体积膨胀,加大了锚固体与岩层间的摩阻力,α值相对较大,压力型锚杆承载能力和变形性能均优于拉力型锚杆,进而说明了采用剪切变形系数与锚固体等效变形模量的比值来衡量锚杆的承载力和变形是可行的,为压力型锚杆的进一步理论研究和工程应用提供了有益的参考。  相似文献   

5.
扩体型锚杆的研制及其抗拔试验研究   总被引:3,自引:0,他引:3  
胡建林  张培文 《岩土力学》2009,30(6):1615-1619
在研制锚杆机械扩孔器的基础上,进行了扩体型锚杆的工艺试验和抗拔试验研究。试验结果表明,所研制的锚杆机械扩孔器对地层具有良好的适应性;扩体型锚杆较普通锚杆的承载力平均提高20 %~30 %,最大为66 %;扩体型锚杆的轴向应变陡降现象明显,具有显著的端承效应。  相似文献   

6.
锚索与锚杆联合锚固支护岩坡的有限元分析   总被引:1,自引:0,他引:1  
曾祥勇  邓安福 《岩土力学》2007,28(4):790-794
针对广东某高速公路74 m高的7级挖方边坡,采用三维弹塑性有限元数值计算方法分析山区路堑开挖岩质边坡的锚固支护的受力情况。分别计算了坡体无锚和3种不同的锚固方案。通过坡体无锚方案的计算确定坡体的滑动面并为锚固方案的设计提供依据。3种锚固方案中的预应力锚索和锚杆按不同方式进行了组合。所建立的锚固坡体三维有限元分析模型对锚固坡体进行了合理简化并节约了计算量。计算中锚索的预应力采用预先施加应变的方式施加。计算分析表明,边坡加锚后可显著减少边坡塑性区。实际工程中采用预应力锚索和锚杆交错布设方案进行边坡锚固支护可较好地达到安全与经济并重的边坡处治原则。现场监测结果表明,锚固边坡有限元分析合理可行。  相似文献   

7.
可回收式锚杆抗拔试验研究   总被引:4,自引:0,他引:4  
庞有师  刘汉龙  龚医军 《岩土力学》2010,31(6):1813-1816
为了研究可回收式锚杆的锚固机制,结合实际边坡加固工程进行了不同长度锚杆的现场抗拔试验研究,得到可回收式锚杆的p-s曲线。分析结果表明:可回收式锚杆属于压力型锚杆,能较好地发挥锚固体材料的力学性能,承载力较高,防腐性能好,回收方便;该锚杆存在着一个临界长度,当锚固长度超过其临界长度时,再增加锚固长度对锚杆抗拔力的提高作用不大;该锚杆杆体在回收后不造成地下空间的污染,尤其适用于临时性和短期工程加固。试验验证了该锚杆设计的合理性和安全性,对该锚杆今后的工程应用具有参考价值。  相似文献   

8.
锚杆几何形态对于锚杆承载机制的影响及其在软弱土层中的工作性状一直是岩土锚固工程领域具有争议且亟待解决的问题。采用粗细径比为4.44的扩体锚杆现场足尺试验方法,通过宁波软弱地层的30 m深埋囊式扩体锚杆拉拔试验,获得了一组带有共性的单调上升的锚杆荷载–位移曲线。试验结果表明,深埋扩体锚杆具有卓越的力学特性,位移延性性能也表现出色,即使在大变形区域,锚杆承载力仍然能够持续提升。分析锚杆的荷载–位移曲线、锚杆弹性与塑性变形的试验结果以及对比锚杆极限承载力计算值与试验值,加深了对囊式扩体锚杆独特的应变硬化性状、承载机制和位移控制量值等规律的认识,试验研究结果对大埋深的新型扩体锚杆在宁波地区的推广应用具有指导意义。  相似文献   

9.
黄明华  赵明华  陈昌富 《岩土力学》2018,39(11):4033-4041
基于锚固界面的一种非线性剪切滑移模型,采用荷载传递方法分析了锚固长度对锚杆受力特性的影响,建立了锚杆临界锚固长度的计算方法,并通过工程案例检验其可行性。结果表明:锚固长度较小时,锚杆荷载-位移曲线为承载力较小的单峰曲线;随着锚固长度的增加,逐渐衍生出一个平缓变化区段;锚固长度越小,界面剪应力分布越均匀,但整体承载力也越小;随着锚固长度增加,界面剪应力分布的不均匀特征逐渐明显,整体承载力也随之提高;锚固长度超过一定取值时,锚固界面软化荷载、抗拔荷载以及整体承载力均趋于定值,与锚固长度无关;计算得到的临界锚固长度与工程实际的锚固长度具有较好的一致性,验证了方法的可行性。  相似文献   

10.
本文从理论和实践的结合上,针对机械扩底锚杆技术的研究、提高、推广和应用展开论述。其内容共分五大部分:1.前言;2.扩底锚杆的构造与工作原理;3.扩底锚杆的施工;4.扩底锚杆的设计;5.工程实例。论文通过典型事例的剖析,运用深入浅出的对比方法,论证了机械扩底锚杆技术与传统灌浆锚杆技术的差异。充分证实了机械扩底锚杆技术独有的受力机理明确、质量可靠、锚固力强、造价低、工期短的五大优点、充分的显示了现行机  相似文献   

11.
目前,在我国地质灾害防治及道路建设工程中,岩土锚固施工大多采用单一的拉力型锚索工法。一般锚索索体的长效防腐问题没有得到应有的重视。文章对云南省个旧-冷墩公路边坡工程中所采用的压力分散型锚索工法从设计、试验及成功应用等多方面进行了详细介绍。①在一些复杂地形条件下,锚索防护方案有其独特的经济实用性。②在地基承载力较低的软弱地层中,常用的拉力型锚索无法提供防护工程所需的大吨位锚固力。而有多个受力体的压力分散型锚索则因其对锚固段全长范围内地基承载力的充分利用来提供较大吨位的锚固力;③永久锚索防护工程作为一项具有隐蔽性强特点的结构工程,为保证在其报务年限内锚索能够可靠地工作,在设计阶段,锚索体的长效防腐应为不能忽略的主要考虑因素。在该工程中首次应用了新型高强材料——环氧全喷涂无粘结钢绞线作为锚索体的杆材,较好地解决了永久锚固工程中的锚索防腐问题。  相似文献   

12.
基于室内足尺模型试验对比研究压力型和拉力型锚杆的工作性状,给出锚固体轴向应变的分布特点,验证基于Mindlin问题位移解推导出的压力型锚杆锚固段应力分布理论解的可行性,分析了在试验条件锚杆的极限承载力及破坏形式。试验结果表明,拉力型锚固段处于受拉状态,轴向应变值最大值发生在张拉端附近,距离张拉端越远应变值越小;压力型锚杆的锚固段处于受压状态,轴向应变值最大值发生在承载体附近,距离承载体越远应变值越小;拉力型锚杆破坏形式为锚固段注浆体与岩土层间的粘结滑移破坏,压力型锚杆的破坏形式为承载体附近锚杆周围土体剪胀破坏;压力型锚杆极限承载力较之拉力型锚杆在相同条件下有明显提高;实测值与基于Mindlin问题的位移解推导出的压力型锚杆锚固段应力分布理论解较吻合。  相似文献   

13.
为了研究锚杆间距对全长黏结锚杆之间相互作用产生的影响,推导出基于Mindlin解的双锚杆锚固段应力分布近似解,并结合单锚和双锚静载拉拔模型试验,得到了锚杆间距改变对双锚杆应力分布、极限承载力及最终破坏形态的影响规律。结果表明:间距减小使得锚杆的轴向应力和侧摩阻力呈现均匀化趋势,且轴向应力随间距减小而增大,锚固段中部增长幅度最大。当锚固系统进入破坏阶段,随着间距减小,锚固系统周边岩体破坏的位置深度增加,破坏锥形体的面积增大,并由单锚的倒锥状破坏转变为复合破坏模式。间距过小时,增加锚杆数量对承载力的提升十分有限,为起到锚固联合作用,锚杆间距应不小于10 D(D为锚杆直径),在软弱岩体中间距取值应加大。  相似文献   

14.
压力型锚杆力学性能模型试验研究   总被引:6,自引:2,他引:4  
张永兴  卢黎  饶枭宇  李剑 《岩土力学》2010,31(7):2045-2050
为了研究在软质沉积岩条件下压力型锚杆的力学性能,进行了缩尺模型试验。设计的试验锚杆构造良好,模拟的承载体和无黏结形式简单可靠。通过设计不同的锚固段长度,试验获得了岩石条件下压力型锚杆的荷载-位移全曲线。与相同条件的普通拉力型锚索对比,压力型锚杆体现出优秀的抗拔极限承载力、良好的位移延性特征和残余强度;在归纳压力型锚杆破坏模式的基础上提出最佳锚固长度的基本范围,并按理论解进行了算例验证,计算结果与试验结果吻合良好。模型试验对压力型锚杆的力学性能进行了较深入探索,可供相关理论研究、科学试验和工程实践参考。  相似文献   

15.
锚杆临界锚固长度简化计算方法   总被引:1,自引:1,他引:0  
龙照  赵明华  张恩祥  刘峻龙 《岩土力学》2010,31(9):2991-2994
假定锚固体与周围岩土体之间剪应力呈倒三角形分布,计算出锚固体顶端弹性位移;基于锚杆抗拔承载机制及变形特性分析,锚固体周围岩土体变形分析采用与抗拔桩类似的剪切位移模型,得到锚固体周围紧贴锚固体表面岩土体的位移;然后根据锚固体与周围岩土体之间的位移协调原理,推导出了锚杆临界锚固长度的简化计算公式。工程算例对比分析结果表明,其计算结果与实测值吻合较好,且计算公式简单易记,取值明确,适用于工程设计中估算锚杆临界锚固长度。  相似文献   

16.
基于剪胀效应的桩底嵌岩锚杆荷载传递分析法   总被引:2,自引:0,他引:2  
赵明华  龙照  邹新军 《岩土力学》2008,29(7):1938-1942
针对基桩竖向承载力自锚法测试体系中桩底嵌岩锚杆的受力特点,基于锚固体-岩石作用的剪胀机制,建立了适合于桩底嵌岩锚杆的荷载传递函数,并由此推导出锚杆临界锚固长度的解析解。然后,基于该解答探讨了桩底嵌岩锚杆锚固段摩阻力沿锚固长度的分布规律及其影响,并提出可近似考虑各因素综合影响效果的? 值。工程算例对比分析结果表明,其计算结果与实测值吻合较好。  相似文献   

17.
白晓宇  张明义  匡政  王永洪  闫楠  朱磊 《岩土力学》2018,39(10):3891-3899
光纤测试技术是将光纤布拉格光栅(FBG)传感器用光纤连成一串,通过构建多点光栅测试系统实现传感,它具有精度高、抗干扰能力强、空间分辨率高和连续数据采集等特点。将光纤光栅传感技术应用到原型玻璃纤维增强复合材料(GFRP)抗浮锚杆受力测试中,同步测试了锚杆杆体-锚固体界面、锚固体-周围岩土体界面以及锚固体内的应变,实现GFRP抗浮锚杆多界面全长受力测试。测试结果表明,光纤光栅传感技术能准确记录拉拔过程中GFRP抗浮锚杆各界面的应变变化,揭示锚杆杆体-锚固体界面、锚固体内、锚固体-周围岩土体界面的轴向应力和剪应力分别随荷载水平和锚固深度变化的分布规律,但不同界面处荷载的传递深度和剪应力沿深度的影响范围有所差异。该测试技术和传感器埋设工艺有众多优势,在岩土工程科学研究与工程应用领域具有广阔的前景。  相似文献   

18.
高强钢绞树脂锚杆是一种特制组合钢绞杆体与钻结剂组成的高强锚杆,杆体在扩散离心力作用下,致使粘结剂与杆体,粘结剂与岩孔壁紧紧镶嵌为一体,达到锚固力大,安装施工速度快,能立即承载的高强支护手段,它可用于矿山地压与隧道工程,工程建筑,边坡工程的支护。  相似文献   

19.
周浩  肖明  陈俊涛 《岩土力学》2016,37(5):1503-1511
以大型地下洞室为背景,采用隐式锚杆柱单元模拟黏结式岩石锚杆,推导了杆体对围岩模型的附加刚度贡献模型。根据中性点理论,假定锚固体界面的剪切滑移模型,导出了锚杆与围岩相互作用下的荷载传递基本微分方程。基于三维弹塑性有限元增量法计算的围岩离散位移,采用插值拟合获得造成锚杆变形的围岩连续位移,通过求解微分方程得到锚固体界面剪应力和轴向力分布函数。将获得的锚固体剪应力采用等效附加应力模型作用于岩体,反映了锚杆的支护效应。实例分析表明,锚杆新算法能较好地模拟锚杆支护效果。获得的锚固体受力分布特征符合中性点理论,锚固体界面剪应力分为正、负两段,锚固体轴向力分布为单峰曲线。此外,新方法的计算值与实测值较为接近。  相似文献   

20.
红层泥岩是比较特殊的一类岩土体,在该类地层中进行抗浮锚杆施工时,因红层泥岩具有遇水软化强度降低、破碎后在锚孔内易形成含水量较高的塑性泥土、泥浆附着于孔壁影响锚固体强度、进入大气形成扬尘污染环境等不良特性,常导致地基土承载力受到扰动、锚固体抗拔承载力不足、施工现场作业环境恶劣等问题。针对以上难题,秉承因地制宜、绿色环保的原则对施工工艺进行了改进,并通过应用实例验证了改进工艺的可行性,改进后的抗浮锚杆施工工艺具有极好的推广价值,能够为今后类似工程的建设提供一定的参考和借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号