首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对2006—2015年青岛冬半年不同相态降水的统计分析得出,青岛冬半年纯雨日数1月最少,纯雪日数2月最多,12月和1月是雨夹雪及雨雪转换日数占当月降水日数比例最高的两个月。通过个例分析表明,雨雪转换过程多与冷空气入侵相联系。温度场和风场条件能较好地反映出雨雪转换的特征,降温和风向转换在850 h Pa以下层更为明显。探空资料分析表明,850 h Pa、925 h Pa、1 000 h Pa和地面气温对不同相态降水都有很好的指示意义,越低层指示性越好。0℃层高度对不同相态降水同样具有指示意义,100~500 m高度是雨雪转换的关键高度层;以不同高度层气温为指标确定出青岛冬半年降水相态预报判别指标。  相似文献   

2.
基于WRF(Weather Research and Forecasting)模式及其3DVAR(3-Dimentional Variational)资料同化系统,采用36 km、12 km、4 km三层嵌套网格进行逐3 h资料同化和快速更新循环预报,对2011年5月8日鲁中一次局地大暴雨过程进行了资料同化敏感性试验。试验结果表明,地面观测资料同化和快速更新循环对本次降水的预报起到了关键性作用。在快速更新循环预报时不同化地面观测资料,或同化全部观测资料进行冷启动预报,模式均不能预报出山东的降水。同化地面观测资料后,显著改进了模式降水落区预报。地面观测资料同化可以影响到700 hPa高度以上温压湿风要素的变化,从而改变了大气初始场的温湿结构,导致模式预报的700 h Pa附近高空大气湿度和热力不稳定增强,700 hPa以下低层风场更强,850 h Pa鲁中以南风速较无观测资料同化的偏强2~4 m·s-1,低层风场的动力作用触发高空的不稳定大气,降水出现在山东。  相似文献   

3.
利用常规气象观测资料、NCEP/NCAR再分析资料和多普勒天气雷达资料,对2016年8月6——8日潍坊一次强对流天气的成因和预报误差进行了分析,结果表明:1) 500 hPa冷涡底部低槽、850 hPa低涡切变线和地面倒槽是主要影响天气系统,数值预报对此次天气过程的影响系统预报偏差大,而预报员对数值预报依赖程度高是此次预报失误的主要原因; 2) 850 hPa以下强的水汽辐合是强降水发生的重要条件,低层辐合和高层辐散配置导致的强垂直上升运动是暴雨产生的动力机制,位势不稳定因中高层的冷空气入侵下沉得以加强; 3)列车效应和强回波维持少动是造成短时强降水的重要回波特征,逆风区的发展和移动对于判断强降水的落区有指示作用,多普勒雷达反演风场中的中尺度辐合线是导致局地强降水发生的直接原因; 4)风廓线雷达水平风场可以连续地反映降水过程中风场垂直结构及其变化,降水发生前探测高度明显升高,中高层冷空气侵入时间与强降水的时段相对应。  相似文献   

4.
采用高空和地面观测资料,对山东1999—2013年24次有相态逆转降雪过程的影响系统、出现时间、逆转前后的温度变化及各类系统逆转的天气形势特征进行了统计分析。结果表明:1)低槽冷锋、江淮气旋、黄河气旋和暖切变线可在山东产生降水相态逆转,而回流形势降雪不会产生逆转。2)山东降水相态逆转发生在11月—次年4月,以12月和1月居多,12月频率最高;有明显的日变化,14时前后最容易发生逆转,而23时—次日05时最少。3)雪转雨时最显著的特征为地面2 m气温升高,升温幅度多在1~2℃;850 h Pa以下至地面的温度至少有1~2个层次升温。4)地面2 m气温对逆转的指示性最好,降雪时在0℃左右,略高于通常降雪阈值,最低为-1℃;其次为1 000 h Pa,降雪时接近于0℃。5)对流层低层暖平流升温或温度日变化升温导致雪转雨,温度平流弱时温度日变化起主要作用。各类天气系统的逆转范围、时段等有明显差异。因此,对于降雪阈值附近的相态预报,需综合考虑低层温度平流和日变化两个因素,重点关注地面2 m气温能否升温,午后为关键时段。  相似文献   

5.
利用常规气象观测资料、GPS可降水资料、地闪定位资料以及NCEP 1°×1°再分析格点资料,对2011年7月2—3日山东中北部地区一次低槽冷锋暴雨天气过程进行分析,进一步采用中尺度模式WRF对此次降水过程开展了高分辨率数值模拟,并对模拟资料进行了诊断分析。得到如下结果:(1)此次降水过程具有强降水持续时间短,短时降水强度大、局地性强等特点,在空间和时间上都具有明显的中尺度特征。(2)整个强降水期间,负地闪占绝对优势,负地闪出现在强对流发展的整个阶段,正地闪出现在强对流减弱消散阶段。云顶温度越低,负地闪越密集,当系统减弱,正地闪迅速增加。当云顶亮温(TBB)下降到最低值,负地闪频数达到极大值时,降雨强度也达到最大。GPS可降水量在暴雨监测和预报中具有重要作用。(3)利用模拟结果的分析显示,散度、涡度和垂直速度的分布与对流系统的发生、发展较一致。  相似文献   

6.
渤海一次强阵性雷雨大风过程的诊断分析   总被引:1,自引:0,他引:1  
利用中尺度天气预报数值模式、粗网格再分析资料、地面和高空常规观测资料,对2011年8月31日渤海地区一次强阵性雷雨大风天气过程中的大气资料进行了重建.根据该资料,分析了对流有效位能、水汽输送、假相当位温和湿位涡等物理量在这次强对流过程中的演变特征.结果表明,修正的对流有效位能可以提前对强对流不稳定天气做出指示,与850 hPa假相当位温θse=340 K高能暖湿气团所在的位置以及处于△θse<0的位势不稳定区有明显对应关系.另外,水汽通量的辐合中心与雷雨大风天气发生的区域基本一致.而700hPa等压面上的湿位涡最大负值区的叠加位置也是雷暴发展的另一有利形势,MPV正负交界处带状区域出现了南压和东移,表明湿位涡的发展趋势对冷锋锋面移动的路径、速度有较为明确的指示意义,移动过程中,由于出现降水,同时还伴随了湿位涡负区减弱的特征.上述物理量为雷雨大风预报提供了部分客观判断依据,可作为预报员得出预报结论的辅助手段之一.  相似文献   

7.
针对渤海区域冬季较为常见的海效应事件,利用2000——2012年的GMS5、GOES9和MTSAT等卫星遥感数据及NCEP FNL再分析数据、海面温度SST、地面降水观测数据等资料,系统研究了渤海海效应事件的季节变化和日变化特征。研究结果表明:渤海海效应事件一般持续时间不长,但在11月——次年1月,有持续时间较长的个例,这段时间也是发生次数最多的时期;海效应事件的发生有较明显的日变化特征,清晨和上午出现的频次明显大于下午和前半夜,且不同季节也不尽相同;海效应事件中有约一半会造成山东半岛降水,其中在冬半年主要造成降雪,但个别情况下也有可能形成降雨;另外,造成海效应事件的天气学环境指标也具有很强的季节变化特征,其中850 hPa温度、海面温度、地面2 m温度和比湿均有较明显的月变化,而风速、海面和850 hPa温差则相对稳定,季节变化不大。这些研究结果将进一步加深对渤海海效应事件的认识,为预报思路凝练和研究的开展提供参考和借鉴。  相似文献   

8.
利用常规资料、自动气象站、风廓线、ERA Interim 0.25°×0.25°再分析资料、EC-thin和TJwrf模式结果,对2017年11月23日夜间渤海突发性大风成因进行了诊断分析,并探讨短期时效的预报失败原因及订正思路。研究表明:(1)高空动量下传是风速快速增长的原因,较强的高层动量下传及风速垂直切变明显增强了近地层风速的突发性和对流性;(2)大风过程冷平流强度的增强直接造成地面增压,前期增温使冷锋过境时锋区强度加大地面气压梯度加强,风速变化与最大变压梯度对应,大风区位于正变压梯度中心;(3)由于前期增温导致补充冷空气过境前层结不稳定伴有上升运动,有利于空气的垂直能量交换;(4)数值模式因对地面高压强度及移速的预报偏差,导致模式对于渤海23日风场预报大幅度偏弱。  相似文献   

9.
本文根据CMAP(The Climate Prediction Center Merged Analysis of Precipitation)观测资料,使用相关系数和均方根误差,对CHFP2(Coupled Historical Forecast Project, phase 2 )的2个模式对东亚夏季降雨的季节预报技巧作出评价。在完美模式的理论框架下,分别使用基于信噪比的潜在相关系数和基于信息熵的潜在可预报性指标,对该区域主要针对夏季降雨的可预报性作出评价。通过最可预报分量分析(PrCA),得到季节降雨的最可预报型。将最可预报型投影到海温场,得到了降水最可预报型对应的海温分布。研究发现:相关系数所反映的预报和观测的线性相关程度总体上是低纬度海洋区域比高纬度陆地区域高,而均方根误差反映的则是在海洋区域降雨预报偏离实际值的程度较陆地区域大,预报水平与目前降雨的季节预报水平相符。潜在可预报性估计表明,潜在可预报率存在空间上的变化,从低纬度向高纬度、从海洋到内陆,呈衰减趋势。同时,信号和噪音的分析表明,信号成分占主导作用,形成了潜在可预报率的空间分布格局,暗示了海洋外强迫的重要作用;中国大陆缺少像海洋区域那样明显的外强迫,因此降水季节预报技巧相比热带海洋区域非常有限。海温投影的分析表明海洋的外强迫是东亚降雨季节预报的重要来源。尽管厄尔尼诺本身的复杂性,它对东亚夏季风的重要影响及其与东亚降雨预报之间的遥相关揭示了它们内在的联系。  相似文献   

10.
用与文献[1]完全相同的资料,差分格式和计算方法,对8211台风就高低层环流系统、风速的垂直切变、涡度场、散度场、垂直速度场、辐射特征、温度和稳定度场、质量通量场和纬向垂直环流圈等九个方面进行了结构分析,结果发现,对这次近海台风,700-400hPa的中低层在台风发生发展过程中起的作用很大,各种条件有利于中低层扰动的发展,700hPa以下为对流性稳定,700-400hPa气层为对流性不稳定,这种层结分布,加上积云对流的质量通量的垂直辐散(合)在这一层最强,使700-400hPa的中层成为和周围环境交换属性最集中的一层;也使之成为台风发生发展的主要涡源和动力源,分析200hPa流场发现,台风发展到强盛阶段,这个等压面上在台风外围发展出多通道的辐散流出,这是发生和发展初期所没有的,所以对于8211台风,高层台风外围的辐散流出可能不是最初导致热带气旋发展的原因,而更可能是台风发展过程的结果,根据对南北风分量时间剖面图,中尺度垂直运动和积云对流质量通量随时间的变化以及纬向垂直环流圈随时间的变化等的分析,似乎也支持这种看法。  相似文献   

11.
基于WRF集合预报系统开发了概率匹配平均降水产品,选取了山东省2014—2016年共13次强降水过程,检验评估了概率匹配平均法在山东省强降水预报中的综合表现。结果表明:对于不同的强降水过程,各预报产品的预报能力差异较大,尤其是对暴雨以上量级降水的预报存在较大偏差;概率匹配平均相对集合平均,对大雨以上量级降水预报有明显改善,较WRF确定性预报产品也有一定提高,对强降水预报具有一定指示意义;该方法的改进主要体现在对不同量级降水的调整上,尤其是强降水的落区,相对集合平均增大了强降水的范围和强度,但对整个区域的总降水量预报没有很好的改进作用。  相似文献   

12.
利用2007—2015年济南市区及历城区自动气象观测站的逐小时降水量资料,以及常规高空、地面观测资料,统计了198次短时强降水过程的范围和强度特征,年际、月际变化特征,按照短时强降水发生时的天气形势和影响系统,分为切变线型、低槽冷锋型、西风槽型、冷涡型、台风外围型及无系统型6类,并分析了不同类型和不同范围短时强降水的关键环境参量。研究表明:短时强降水的强度与范围有较好的相关性,7月中旬—8月中旬出现强降水的次数最多;切变线型短时强降水发生范围与强度分布最广,7、8月的低槽冷锋型过程极易造成大范围高强度降水;地面露点(Td)、850 h Pa假相当位温(θse)、对流有效位能(CAPE)以及暖云层厚度能较好地区分不同范围的短时强降水过程。在天气分型的基础上,结合不同降水范围和不同降水类型环境参量箱线图与阈值表,可为济南市区短时强降水的预报提供有价值的参考。  相似文献   

13.
利用天津WRF中尺度数值预报业务模式系统,对2016年6月10日夜间渤海西部的一次强对流大风过程进行控制预报和敏感性试验预报(渤海到海峡修改为陆地)的对比分析。结果表明:海洋下垫面对渤海前半夜生成的雷雨大风有增强作用,增幅在5~6 m/s。海洋下垫面会使冷池出流边界具有更明显的温度梯度和气压梯度,增幅分别为3℃/经度,2 hPa/经度;海洋下垫面在雷达回波刚入海时对其强度变化没有明显影响,当回波持续一段时间(4 h以上)后,海洋下垫面对回波强度有减弱作用,可能是由于下垫面对近地面风速的增幅作用,使垂直风切变小,回波倾斜度和垂直速度也相应减小造成。  相似文献   

14.
韩芙蓉  鹿翔  梁亮 《海洋预报》2020,37(1):67-74
利用NCEP FNL再分析资料和中国自动站与CMORPH融合降水资料对1614号台风"莫兰蒂"进行了非地转湿Q矢量和垂直螺旋度诊断分析。对比非地转湿Q矢量散度和垂直螺旋度的三维结构可见,低层正垂直螺旋度与台风移动和强度变化相对应,可作为台风演变的动力因子。而综合考虑了动力和热力作用的非地转湿Q矢量在台风暴雨预报中作用更突出,其中低层700 hPa上的非地转湿Q矢量散度辐合值大于20×10^-16/(hPa·s^3)可作为台风暴雨落区和强度预报的重要参考量,其所对应的辐合区变化与台风暴雨落区变化有较好的对应关系,此外,湿Q矢量散度的三维结构反映了台风内部存在明显的中尺度对流系统,中尺度对流云团不断生消使得台风暴雨维持。  相似文献   

15.
以2014年南海北部陆坡M站春、秋两季底流观测潜标回收为例,建立数学模型分析潜标上浮过程中垂直运动特征。首先做出忽略水平海流影响、刚性连接以及主要部件外形简化等假设。通过刚性连接部分上浮数值试验,得到释放后各部件能够保持相对位置不变、整体上浮的结论。视整个系统为刚体建立了垂直运动模型。分别模拟两次潜标回收,模型与高精度超短基线观测结果的对比表明:整个上浮过程可分为加速上浮阶段和稳定上浮阶段;模型速度曲线与观测速度拟合线比较接近,给出的平均模型速度与平均观测速度均相差0.2m/s;模型能够反映出在稳定上浮阶段,稳定上浮速度随时间缓慢降低的变化特征;各部件上浮的垂直速度是振荡变化的。模型可为相关水下仪器回收工作提供定量化依据。  相似文献   

16.
春晒期关键性降水天气过程是指≥10mm降水,该降水过程是盐业生产的重要灾害性天气之一,对于海盐生产有着极其重要的影响。因此,关键性降水天气过程预报准确率的高低、时效的长短,对完成全年生产任务起着举足轻重的作用,在此期间≥10mm降水过程预报至关重要。该专家系统研制主要目标是预报未来24小时大连复州湾盐场出现≥10mm降水过程,同时也注视了48小时和72小时的关键性降水天气过程的预报问题。我们普查1974~1988年3月到6月份高空三层(850、700、500hPa)天气图,≥10mm降水过程,确定出60个例子进行聚类,共分成4种类型。在广泛收集、汇总专家经验和科研成果、在降水成因、机制物理量场诊断分析基础上,结合数值预报产品的应用,建立了专家系统历史个例库、知识库、预报规则库,研究出了客观、定量易于使用的降水预报专家系统。  相似文献   

17.
利用探空观测资料,对比分析华北冷涡背景下青岛三次混合型对流天气过程环境场条件,揭示出现短时强降水、雷暴大风和冰雹天气时的水汽、稳定度和垂直风切变差异特征。分析结果表明:500 hPa上冷涡中心位于42°N的华北冷涡、850 hPa低涡系统和偏南风急流以及地面气旋是这三次混合型对流天气的影响系统;在这三次混合型对流过程中有无雷暴大风天气的环境参数区别比较显著:有雷暴大风表现出了相对较干的中低层和中层存在浅薄湿层的水汽层结,无雷暴大风的则是上干下湿和中层大气干燥的层结特征;稳定度差异决定了对流强度的差异:同时出现短时强降水、雷暴大风和冰雹的对流天气的层结不稳定度最强,表现为较大的850和500 hPa温差(大于30℃)以及较强的0~3 km垂直风切变(大于12 m·s^-1);出现短时强降水和大风的大气层结稳定度最弱,相应的环境参数值也最小;在强不稳定层结和低层水汽充足的条件下,大于12 m·s^-1的0~3 km垂直风切变对青岛地区雷暴大风和冰雹的预报预警有较好的指示意义。  相似文献   

18.
应用2009—2013年6—9月山东全省加密自动站资料、地面和探空观测资料,选出了98次区域性强降水过程。统计分析了产生强降水的天气系统特征,把500 hPa天气系统分为6种类型,850~700 hPa天气系统分为5种类型,地面影响系统分为7种类型。统计分析了强降水过程中及前期24个代表大气热力、水汽和动力特征的物理量,给出了最小值、最大值、平均值和各阈值所占百分率。850 hPa和700 hPa偏南风达到急流(≥12 m·s~(-1))强度的分别占56.1%和62.2%。对流有效位能(CAPE)≥300 J·kg~(-1)占72.6%。K指数≥30℃占86.7%。沙氏指数SI≤0占75.5%。925 hPaθse≥68℃占82.2%,850 hPaθ_(se)≥66℃占74.8%。GPS/MET水汽监测大气可降水量≥55mm占81.8%。850 hPa和700 hPa的水汽通量平均值分别为8.0和5.9 g·(cm·hPa·s)-1,水汽通量散度平均值分别为-4.6×10~(-9)和-2.7×10~(-9)g·(hPa·cm~2·s)~(-1)。925 hPa、850 hPa和700 hPa的涡度平均值分别为12.6×10~(-6)、12.3×10~(-6)和9×10~(-6)s~(-1),散度平均值分别为-5.5×10~(-6)、-3.1×10~(-6)、-3.4×10~(-6)s~(-1)。850 hPa、700 hPa和500 hPa的垂直速度平均值分别为-4.5×10~(-4)、-7.4×10~(-4)和-11.1×10~(-4)hPa·s~(-1)。  相似文献   

19.
利用2012-06—2013-05渤海湾北岸曹妃甸港100m风能塔风观测资料,研究了空气动力学粗糙度z0的月变化特征及其和地面10m风速之间的关系,并针对港口安全运营调度精细化气象服务保障需求,设计了一种港口塔吊定点、定量水平风荷载的预报模型。结果表明:受海陆风和周围环境的季节性变化影响,渤海湾北岸z0具有明显的月变化特征;通过拟合确立了z0和地面10m处10min平均风速在海-陆风和陆-海风两个方位上的粗糙度方程,梯度风速计算试验显示方程稳定可用;基于以上结论建立了定点、定量风荷载预报模型,预报试验和程序开发结果表明,基于上述结论所建立的港口塔吊水平风荷载计算模型正确可行,更适用于风险预报业务。  相似文献   

20.
西北非上升流锋研究具有较高的海洋学研究价值和军事应用价值,本文主要通过WOA13数据对西北非上升流锋区锋面分布、锋强度水平和垂直变化特点以及相应的季节变化特点等时空变化特征进行研究,旨在弥补国内外对于西北非上升流锋区研究的不足。分析认为,西北非上升流锋轴线大致沿海岸分布,且随着深度增加逐渐远离海岸;锋轴线上锋强度在水平和垂直分布不均匀,水平方向上强度大的区域集中在23°N~25°N之间,垂直方向上在水深50~150m范围内锋轴线强度较大;锋的季节变化主要表现在温度锋强度季节差异上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号