首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the potential of drosophilids as indicators of the response of tropical ecosystems to climatic factors over an annual cycle in the montane forest of Mt Oku, by collecting samples at seven sites evenly spaced from 2200 m to 2800 m asl. Only 0.1% of the 11,000 specimens collected belonged to invading species or those commensal with humans, showing the weakness of anthropogenic factors. Species abundance was highly skewed. One species, Zaprionus vittiger, made up 81% of the sample, whereas 42 of the 62 morphological species found were represented by fewer than 20 individuals. Many of the most abundant species occurred over a narrow period, in the dry or in the rainy season, others also occurred at intervening periods. These different patterns of population dynamics, determined a succession of species over the annual cycle. Abundant species departed significantly from each other in their distribution over collection sites. The drosophilid populations from the central African montane forests are highly dependent on climatic factors, either directly, or indirectly through climatic effects on the biotic environment of the insects.  相似文献   

2.
《Quaternary Science Reviews》2007,26(11-12):1650-1669
We reconstruct the vegetational history of the southern side of the Alps at 18,000–10,000 cal yr BP using previous and new AMS-dated stratigraphic records of pollen, stomata, and macrofossils. To address potential effects of climatic change on vegetation, we compare our results with independent paleoclimatic series (e.g. isotope and chironomid records from the Alps and the Alpine forelands). The period before 16,000 cal yr BP is documented only at the lowland sites. The previous studies used for comparison with our new Palughetto record, however, shows that Alpine deglaciation must have started before 18,000–17,500 cal yr BP south of the Alps and that deglaciated sites were colonized by open woods and shrublands (Juniperus, tree Betula, Larix, Pinus cembra) at ca 17,500 cal yr BP. The vegetational history of a new site (Palughetto, 1040 m a.s.l.) is consistent with that of previous investigations in the study region. Our results show three conspicuous vegetational shifts delimited by statistically significant pollen zones, at ca 14,800–14,400, 13,300–12,800 and 11,600–11,200 cal yr BP. At sites situated above 1000 m a.s.l. (e.g. Palughetto, Pian di Gembro) forests expanded in alpine environments at ca 14,500 cal yr BP (onset of Bølling period, GI-1 in the Greenland ice record). At the same time, rather closed treeline communities of the lowlands were replaced by dense stands of Pinus sylvestris and Betula. These early forests and shrublands consisted of Larix, P. cembra, Juniperus, P. sylvestris, Pinus mugo, and Betula, and had become established at ca 16,000 cal yr BP, probably in response to a temperature increase. If combined with other records from the Southern Alps, our data suggest that treeline ascended by ca 800–1000 m in a few centuries at most, probably as a consequence of climatic warming at the beginning of the Bølling period. At 13,100–12,800 cal yr BP the onset of a long-lasting decline of P. sylvestris was accompanied by the expansion of Quercus and other thermophilous tree taxa below ca 600 m a.s.l. This vegetational change was probably induced by a shift to warmer climatic conditions before the onset of the Younger Dryas, as indicated by independent paleoclimatic records. Only a few centuries later, at ca 12,700–12,500 cal yr BP, an expansion of herbaceous taxa occurred in the lowlands as well as at higher altitudes, documenting an opening of forested habitats. This change coincided with the beginning of the Younger Dryas cooling (GS-1), which according to the paleoclimatic series (e.g. oxygen isotope series), started at 12,700–12,600 cal yr BP and lasted for about 1000 years. Environments south of the Alps responded markedly to climatic warming at the onset of the Holocene (11,600–11,500 cal yr BP). Thermophilous trees that had declined during the Younger Dryas re-expanded very rapidly in the lowlands and reached the high altitude sites below ca 1500 m a.s.l. within a few centuries at most. Our study implies that the synchronous vegetational changes observed over wide areas were probably a consequence of abrupt climatic shifts at the end of the Last Glacial Maximum (LGM) and during the Lateglacial. We emphasize that important vegetational changes such as the expansion of forests occurred millennia before the onset of similar processes in northwestern and central Europe.  相似文献   

3.
A set of radiocarbon dates on woolly mammoth were obtained from several regions of Arctic Siberia: the New Siberian Islands (n = 68), north of the Yana-Indigirka Lowland (n = 43), and the Taimyr Peninsula (n = 18). Based on these and earlier published dates (n = 201) from the East Arctic, a comparative analysis of the time-related density distribution of 14C dates was conducted. It was shown that the frequencies of 14C dates under certain conditions reflect temporal fluctuations in mammoth numbers. At the end of the Pleistocene the number of mammoths in the East Arctic changed in a cyclic manner in keeping with a general “Milankovitch-like” trend. The fluctuations in numbers at the end of the Pleistocene occurred synchronously with paleoenvironmental changes controlled by global climatic change. There were three minima of relative mammoth numbers during the last 50 000 years: 22 000, 14 500–19 000, and 9500 radiocarbon years ago, or around 26 000, 16–20 000, and 10 500 calendar years respectively. The last mammoths lived on the New Siberian Islands, which were connected to the continent at that time, 9470 ± 40 radiocarbon years ago (10 700 ± 70 calendar years BP). This new youngest date approximates the extinction time of mammoths in the last continental refugium of the Holarctic. The adverse combination of environmental parameters was apparently a major factor in the critical reduction in mammoth numbers. The dispersal of humans into the Arctic areas of Siberia no later than 28 000 radiocarbon years ago did not overtly influence animal numbers. Humans were not responsible for the destruction of a sustainable mammoth population. The expanding human population could have become fatal to mammoths during strong the minima of their numbers, one of which occurred at the very beginning of the Holocene.  相似文献   

4.
High-resolution pollen and magnetic susceptibility (MS) analyses have been carried out on a sediment core taken from a high-elevation alpine bog area located in Sierra Nevada, southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen record shows a progressive aridification since 7000 cal yr BP that occurred in two steps, first shown by a decrease in Pinus, replaced by Poaceae from 7000 to 4600 cal yr BP and then by Cyperaceae, Artemisia and Amaranthaceae from 4600 to 1200 cal yr BP. Pediastrum also decreased progressively and totally disappeared at ca. 3000 yr ago. The progressive aridification is punctuated by periodically enhanced drought at ca. 6500, 5200 and 4000 cal yr BP that coincide in timing and duration with well-known dry events in the Mediterranean and other areas. Since 1200 cal yr BP, several changes are observed in the vegetation that probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the bog, Pinus reforestation and Olea cultivation at lower elevations.  相似文献   

5.
Here we report results from a high-resolution palynological record and stratigraphic/geochronologic data related to a Neoglacial event in Torres del Paine National Park, southern Chile (51°S, 71°W), to investigate climatic variations in Southwest Patagonia during the last 5000 years. The record reveals a stepwise expansion of Nothofagus-dominated woodlands and forests with discrete pulses at 4400, 2900, 1300, and 570 cal yr BP. Superimposed upon this trend we identify a relative opening of the woodlands between 4100–2900 and 2300–1300 cal yr BP. Closed-canopy forests dominated the landscape between 570–60 cal yr BP, followed by a rapid decline at the end of the 19th century that coincided with intense fire activity and the appearance of Rumex cf. acetocella, an exotic species introduced by European settlers. We interpret these changes as variations in the intensity and/or position of the southern margin of the westerly winds, which culminated with a net eastward shift of the forest–steppe ecotone during the Little Ice Age. We propose that millennial-scale changes in either the latitudinal position and/or the overall strength of the southern westerlies may be responsible for vegetation changes, fire occurrence, and the dynamic behavior of Patagonian glaciers during the last 5000 years. Because the modern maximum in near-surface wind velocities and precipitation is located between 48° and 50°S, we suggest that the core of the southern westerlies may have achieved this modern position ~570 years ago.  相似文献   

6.
n-Alkane biomarker distributions in sediments from Swamp Lake (SL), in the central Sierra Nevada of California (USA), provide evidence for an increase in mean lake level ~ 3000 yr ago, in conjunction with widespread climatic change inferred from marine and continental records in the eastern North Pacific region. Length distributions of n-alkane chains in modern plants growing at SL were determined and compared to sedimentary distributions in a core spanning the last 13 ka. As a group, submerged and floating aquatic plants contained high proportions of short chain lengths (< nC25) compared to emergent, riparian and upland terrestrial species, for which chain lengths > nC27 were dominant. Changes in the sedimentary n-alkane distribution over time were driven by variable inputs from plant sources in response to changing lake level, sedimentation and plant community composition. A shift toward shorter chain lengths (nC21, nC23) occurred between 3.1 and 2.9 ka and is best explained by an increase in the abundance of aquatic plants and the availability of shallow-water habitat in response to rising lake level. The late Holocene expansion of SL following a dry mid-Holocene is consistent with previous evidence for increased effective moisture and the onset of wetter conditions in the Sierra Nevada between 4.0 and 3.0 ka.  相似文献   

7.
Germania Havn Sø is located at the outermost coast of northeastern Greenland. According to radiocarbon dating, the lake basin was deglaciated in the early Holocene, around 11,000 cal yr BP. At that time the lake was a marine bay, but the lake was isolated soon after deglaciation at ~ 10,600 cal yr BP. The marine fauna was species-poor, indicating harsh conditions with a high sedimentation rate and lowered salinity due to glacial meltwater supply. The pioneer vegetation around the lake was dominated by mosses and herbs. Deposition of relatively coarse sediments during the early Holocene indicates erosion of the newly deglaciated terrain. Remains of the first woody plant (Salix herbacea) appear at 7600 cal yr BP and remains of other woody plants (Salix arctica, Dryas octopetala, Cassiope tetragona and Empetrum nigrum) appear around one millennium later. Declining concentrations of D. octopetala and the caddis fly Apatania zonella in the late Holocene probably imply falling summer temperatures. Only moderate changes in the granulometric and geochemical record during the Holocene indicate relatively stable environmental settings in the lake, which can probably be explained by its location at the outer coast and the buffering effect of the neighboring ocean.  相似文献   

8.
A paleomagnetic study has been conducted on a formation dated as Autunian in the Nekheila area (31.4°N, 1.5°W) in the Mezarif basin. ChRM was thermally isolated in 117 samples from seven sites. This ChRM (D = 131.8°, I = 15.7°, k = 196, α95 = 3.8° after dip correction; corresponding pole 29.3°S, 56.4°E) is very similar to that obtained in the neighboring Abadla basin from a formation of the same age. Fold tests associated with progressive unfolding applied to the full merged data from the dated formations of these two basins clearly indicate that the magnetization acquisition predates the deformation, which is attributed to the last phase of the late-Hercynian. The magnetization in these basins is therefore primary or acquired just after deposition. For the African Apparent Polar Wander Path, the age of the paleomagnetic poles of the Autunian part is now confirmed by paleomagnetic test.  相似文献   

9.
This study focuses on the morphometry and taxonomy of the Late Cretaceous coccolith genus Arkhangelskiella. Sixty samples from the Campanian–Maastrichtian interval of DSDP Hole 390A (Blake Nose) were investigated for their contents of Arkhangelskiella spp. In each sample one hundred specimens of Arkhangelskiella spp. were examined by measuring the coccolith length and width, as well as the length and width of the central area. In the samples investigated the Arkhangelskiella group exhibits a large size variation, specimens length varies from 4.95 μm to 14.52 μm. Former taxonomic concepts, based on morphometry, subdivided the Arkhangelskiella group into three species: Arkhangelskiella maastrichtiana, Arkhangelskiella confusa and Arkhangelskiella cymbiformis. Our data show a large variability of the morphometric data (coccolith length, width of the outer rim). There is no indication for three independant species; two of the quoted taxa (1. thick outer rim = Arkhangelskiella maastrichtiana; 2. very thin outer rim = Arkkhangelskiella cymbiformis) seem to be extreme forms of a continuous morphometric lineage. The lower part of the investigated succession (139.92–133.42 mbsf) is dominated by small specimens with an average length of 6.8 μm whereas the upper part (132.86–126.15 mbsf) is characterized by larger specimens (mean 8.7 μm). In DSDP Hole 390A the size increase appears to be very abrupt, within two samples (samples 133.42 mbsf, 132.86 mbsf) the mean size increases by 1.51 μm. Previous morphometric studies of Arkhangelskiella indicate a more continuous size increase throughout the late Campanian–Maastrichtian. The abrupt size increase observed here hints toward a minor hiatus in DSDP Hole 390A separating upper Campanian from lower Maastrichtian sediments. It seems likely that the size increase of Arkhangelskiella reflects changes of various environmental factors like nutrient supply and sea water chemistry (Mg/Ca ratio; Ca concentration). A comparison of morphometric results with previous palaeoecological studies documents a nutrient control for the growth of Arkhangelskiella. Small specimens can be related to more mesotrophic conditions whereas large specimens are linked to oligotrophic surface waters.  相似文献   

10.
We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests (Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic (Ficus carica–Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000–6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilexO. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region.  相似文献   

11.
《Chemical Geology》2006,225(3-4):222-229
First principles phase diagram calculations were performed for the system NaCl–KCl. Plane-wave pseudopotential calculations of formation energies were used as a basis for fitting cluster expansion Hamiltonians, both with and without an approximation for the excess vibrational entropy (SVIB). Including SVIB dramatically improves the agreement between calculated and experimental phase diagrams: experimentally, the consolute point is {XC = 0.348, TC = 765 K}Exp; without SVIB, it is {XC = 0.46, TC  1630 K}Calc; with SVIB, it is {XC = 0.43, TC  930 K}Calc.  相似文献   

12.
Our study provides detailed information on the Lateglacial landscape and vegetation development of Tibet. Based on a suite of geomorphological and palynological proxy data from the Nianbaoyeze Shan on the eastern margin of the Tibetan Plateau (33°N/101°E, 3300–4500 m asl.), we reconstruct the current state as a function of climate history and the longevity of human influence. Study results constrain several major phases of aeolian sedimentation between 50–15 ka and various glacier advances during the Late Pleistocene, the Holocene and the Little Ice Age. Increased aeolian deposition was primarily associated with periods of more extensive glacial ice extent. Fluvial and alluvial sediment pulses document an increase of erosion starting at 3926 ± 79 cal yr B.P., coinciding with cooling (Neoglacial) and a growing anthropo-zoogenic influence. Evidence for periglacial mass movements indicate that the late Holocene cooling started at around 2000 cal yr B.P., demonstrating increased surface activity under the combined effects of human influence and climate deterioration. The onset of peat growth generally depended on local conditions that include relief, meso-climate and in more recent times also on soil compaction due to animal trampling. We distinguish three initiation periods of peat growth: 12,700–10,400 cal yr B.P. for flat basins inside last glacial terminal moraines; 7000–5000 cal yr B.P. for the main valley floors; and 3000–1000 cal yr B.P. for the higher terrace surfaces.The Holocene vegetation history started with an open landscape dominated by pioneer shrubs along braided rivers (<10,600–9800 cal yr B.P.), followed by the spreading of conifers (Picea, Juniperus, Abies) and Betula-trees accompanied by a successive closing of the vegetation cover by Poaceae, Cyperaceae and herbs (9800–8300 cal yr B.P.). First signs of nomadic presence appear as early as 7200 cal yr B.P., when temperatures were up to 2 °C warmer than today. Forest remained very patchy with strong local contrasts. During the following cooling phase (5900–2750 cal yr B.P.) the natural vegetation was transformed by nomadic grazing to Bistorta-rich Kobresia pygmaea-pastures. Modern nomadic migration routes were established at least 2200 years ago. Overgrazing and trampling led to the shrinking of Bistorta and the spreading of annual weeds. Short-lived cold events (8000, 6200, 3500 cal yr B.P.) impacted on the vegetation only temporarily.As the transformation of the natural Poaceae-rich vegetation into Kobresia-pastures modified the influence of the Tibetan Plateau (“hot plate”) on the monsoon system, our data even point to an early start of a nomadic (!) Anthropocene nearly 6000 years ago. Against the background of a very long grazing history, modern Tibet must be seen as a cultural landscape.  相似文献   

13.
Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D1–D2, D3 and D4. The garnet-bearing assemblages crystallized in course of the deformation stage D1–D2 which led to the formation of the regional main foliation S2. In XCaXMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational PT path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise PT trends. The PT evolution started at ~450 °C/7 kbar, passed high-pressure conditions at 11–12 kbar at variable temperatures (600–700 °C) and involved a marked decompression toward 6–7 kbar at high temperatures (700–750 °C). Th–U–Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature–intermediate pressure stage at the end of the prograde PT path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise PT evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.  相似文献   

14.
《Quaternary Science Reviews》2007,26(3-4):415-435
The Orce fossil quarries, in the Baza Basin of southeastern Spain, are a rich source of Early Pleistocene Palaeolithic tools and vertebrate remains. Geologic fieldwork during the last decade has placed these fossiliferous strata within the context of a thick Neogene continental sequence. Detailed lithostratigraphic and magnetostratigraphic results indicate that at least the upper 60 m of this sequence are of Early Pleistocene age. The quarried strata (Venta Micena, Barranco León and Fuentenueva-3) are from a narrow time span (<100 ka) starting before 1.3 Ma. A new, lower excavation at ∼1.5 Ma (Fuentenueva-1 quarry) has a distinctly older fauna. These Orce strata provide a high resolution, Early Pleistocene record of grassland fauna that shows the end of Mammal Neogene fauna (MN17) in the Fuentenueva-1 site (with Gazella borbonica, Equus stenonis) and the beginning of more characteristic Pleistocene fauna in the Venta Micena site (with Hippopotamus antiquus, Equus granatensis, Homo sp.). Thus far, no evidence for human occupation has been found within the earlier Fuentenueva-1 quarry, although many of the same terminal MN17 species have been found with hominids on the other side of Europe at the Dmanisi site (earliest Pleistocene) in the Republic of Georgia.  相似文献   

15.
A ~6.35 m core (06SD) was retrieved from Lake Shudu, Yunnan Province, China. The sediments spanning the period ~22.6–10.5 kcal. yr BP (6.35–1.44 m) were analysed using a combination of variables including pollen, charcoal, particle size, magnetic susceptibility and loss-on-ignition. The resulting palaeorecord provides a high-resolution reconstruction of Late Pleistocene to Early Holocene climatic and environmental changes in southwestern China. Our findings indicate that from c. 22.6 to 17.7 kcal. yr BP, vegetation assemblages were primarily aligned to sparse xerophytic grassland/tundra or cold-tolerant boreal Pinus forest, indicating that climatic conditions in southwestern China were cold and dry. However, from c. 17.7 to 17.4 kcal. yr BP, the Lake Shudu record is punctuated by marked environmental changes. These include the establishment of denser vegetation cover, a marked expansion of boreal Pinus forest and enhanced hydrological activity in the catchment over centennial timescales, perhaps suggesting that stepwise variations in the Asian Monsoon were triggering fundamental environmental changes over sub-millennial timescales. Thereafter, the pollen record captures a period of environmental instability reflected in fluctuations across all of the variables, which persists until c. 17.1 kcal. yr BP. After c. 17.1 kcal. yr BP, the expansion of steppe vegetation cover and cold–cool mixed forest consisting of mesophilous vegetation such as Tsuga and Picea, thermophilous trees including Ulmus and deciduous Quercus inferred from the Lake Shudu pollen record point to the establishment of warmer, wetter and perhaps more seasonal conditions associated with a strengthening Asian Summer Monsoon during the shift from Pleistocene to Holocene climatic conditions.  相似文献   

16.
Jurassic to Cretaceous red sandstones were sampled at 33 sites from the Khlong Min and Lam Thap formations of the Trang Syncline (7.6°N, 99.6°E), the Peninsular Thailand. Rock magnetic experiments generally revealed hematite as a carrier of natural remanent magnetization. Stepwise thermal demagnetization isolates remanent components with unblocking temperatures of 620–690 °C. An easterly deflected declination (D = 31.1°, I = 12.2°, α95 = 13.9°, N = 9, in stratigraphic coordinates) is observed as pre-folding remanent magnetization from North Trang Syncline, whereas westerly deflected declination (D = 342.8°, I = 22.3°, α95 = 12.7°, N = 13 in geographic coordinates) appears in the post-folding remanent magnetization from West Trang Syncline. These observations suggest an occurrence of two opposite tectonic rotations in the Trang area, which as a part of Thai–Malay Peninsula received clockwise rotation after Jurassic together with Shan-Thai and Indochina blocks. Between the Late Cretaceous and Middle Miocene, this area as a part of southern Sundaland Block experienced up to 24.5° ± 11.5° counter-clockwise rotation with respect to South China Block. This post-Cretaceous tectonic rotation in Trang area is considered as a part of large scale counter-clockwise rotation experienced by the southern Sundaland Block (including the Peninsular Malaysia, Borneo and south Sulawesi areas) as a result of Australian Plate collision with southeast Asia. Within the framework of Sundaland Block, the northern boundary of counter-clockwise rotated zone lies between the Trang area and the Khorat Basin.  相似文献   

17.
Understanding past human–climate–environment interactions is essential for assessing the vulnerability of landscapes and ecosystems to future climate change. This is particularly important in southern Morocco where the current vegetation is impacted by pastoralism, and the region is highly sensitive to climate variability. Here, we present a 2000-year record of vegetation, sedimentation rate, XRF chemical element intensities, and particle size from two decadal-resolved, marine sediment cores, raised from offshore Cape Ghir, southern Morocco. The results show that between 650 and 850 AD the sedimentation rate increased dramatically from 100 cm/1000 years to 300 cm/1000 years, and the Fe/Ca and pollen flux doubled, together indicating higher inputs of terrestrial sediment. Particle size measurements and end-member modelling suggest increased fluvial transport of the sediment. Beginning at 650 AD pollen levels from Cichorioideae species show a sharp rise from 10% to 20%. Pollen from Atemisia and Plantago, also increase from this time. Deciduous oak pollen percentages show a decline, whereas those of evergreen oak barely change. The abrupt increase in terrestrial/fluvial input from 650 to 850 AD occurs, within the age uncertainty, of the arrival of Islam (Islamisation) in Morocco at around 700 AD. Historical evidence suggests Islamisation led to population increase and development of southern Morocco, including expanded pastoralism, deforestation and agriculture. Livestock pressure may have changed the vegetation structure, accounting for the increase in pollen from Cichorioideae, Plantago, and Artemisia, which include many weedy species. Goats in particular may have played a dominant role as agents of erosion, and intense browsing may have led to the decline in deciduous oak; evergreen oak is more likely to survive as it re-sprouts more vigorously after browsing. From 850 AD to present sedimentation rates, Fe/Ca ratios and fluvial discharge remain stable, whereas pollen results suggest continued degradation. Pollen results from the past 150 years suggest expanded cultivation of olives and the native argan tree, and the introduction of Australian eucalyptus trees. The rapidly increasing population in southern Morocco is causing continued pressure to expand pastoralism and agriculture. The history of land degradation presented here suggests that the vegetation in southern Morocco may have been degraded for a longer period than previously thought and may be particularly sensitive to further land use changes. These results should be included in land management strategies for southern Morocco.  相似文献   

18.
Palynology, texture, mineralogy, geochemistry, and magnetic susceptibility analysis of a 2 m deep sediment core from Padauna Swamp, southeastern Madhya Pradesh infers that between 8600 and 7500 cal yr BP a warm and relatively less-humid climate prevailed with open tree-savannahs dominated by grasses followed by sedges, Artemisia and members of Chenopodiaceae/Amaranthaceae with scanty trees viz., Schrebera, Aegle marmelos and Sterculia urens. This is well supported by lower organic to carbonate carbon ratio, coarser texture having relatively low CIA and magnetic susceptibility values and presence of some primary minerals. Between 7500 and 6250 cal yr BP the tree-savannahs were succeeded by open mixed deciduous forests with the invasion of a few more trees viz., Madhuca indica, Holoptelea, Emblica officinalis, Mitragyna parvifolia and members of Anacardiaceae in response to onset of a warm and humid climate. A considerable rise in organic carbon generated from the degradation of plentiful biomass along with increase in clay content with signs of kaolinite and increase in immobile over mobile elements with slightly higher CIA and magnetic susceptibility values also suggest climatic amelioration. The presence of ruderal plants such as Artemisia, Cannabis sativa and Cheno/Am further infers initiation of human activities in the region. Between 6250 and 2800 cal yr BP, the mixed deciduous forests became more diverse and dense, subduing grasses and other herbaceous elements. Sporadic incursion of Shorea robusta (Sal) in forest floristic was recorded around 5000 cal yr BP. The overall change in the vegetation mosaic reflects that a warm and more-humid climate prevailed in the region, probably on account of invigoration of southwest monsoon. This observation is further corroborated by other proxy data showing a spurt in organic/inorganic carbon ratio, increase in clay content with matured mineralogy, significantly higher CIA and magnetic susceptibility values. Since 2800 cal yr BP onwards, the modern Sal dominated deciduous forests were established indicating continuation of warm and more-humid climate including timely arrival of SW monsoon coinciding with the shedding of Sal seeds as they are viable for a very short period.  相似文献   

19.
New field work, in addition to zircon geochronology, Nd isotopes and reconnaissance geochemical data allow the recognition of Paleoproterozoic volcanic and metavolcanic sequences in the São Luís Craton of northern Brazil. These sequences record at least five volcanic pulses occurring probably in three distinct epochs and in different tectonic settings. (1) The Pirocaua Formation of the Aurizona Group comprises early arc-related calc-alkaline metapyroclastic rocks of 2240 ± 5 Ma formed from juvenile protoliths in addition to minor older crustal components. (2) The Matará Formation of the Aurizona Group holds mafic tholeiitic and ultramafic metavolcanic rocks of back arc and/or island arc setting, which are likely coeval to the Pirocaua Formation. (3) The Serra do Jacaré volcanic unit is composed of tholeiitic basalts and predominantly metaluminous, normal- to high-K calc-alkaline andesites of 2164 ± 3 Ma formed in mature arc or active continental margin from juvenile protoliths along with subordinate older (Paleoproterozoic) materials and associated to the main calc-alkaline orogenic stage. (4) The Rio Diamante Formation consists of late-orogenic metaluminous, medium-K, calc-alkaline rhyolite to dacite and tuffs of 2160 ± 8 Ma formed in continental margin setting from reworked Paleoproterozoic crust (island arc) with incipient Archean contribution. (5) The Rosilha volcanic unit is composed of weakly peraluminous, medium-K, calc-alkaline dacite and tuff formed probably at about 2068 Ma from reworked crustal protoliths. As a whole the volcanic and metavolcanic rocks record and characterized better the previously proposed orogenic evolution of the São Luís Craton.  相似文献   

20.
(Ni-Sb)-bearing Cu-arsenides are rare minerals within the Mlakva and Kram mining sectors (Boranja ore field) one of the less-known Serbian Cu deposits. (Ni-Sb)-bearing Cu-arsenides were collected from the Mlakva skarn-replacement Cu(Ag,Bi)-FeS polymetallic deposit. The identified phases include β-domeykite, Ni-bearing koutekite and (Ni-Sb)-bearing α-domeykite. (Ni-Sb)-bearing Cu-arsenides are associated with nickeline, arsenical breithauptite, chalcocite, native Ag, native Pb and litharge. Pyrrhotite, pyrite, chalcopyrite, cubanite, bismuthinite, molybdenite, sphalerite, galena, Pb(Cu)-Bi sulfosalts and native Bi, as well as minor magnetite, scheelite and powellite are associated with the sulfide paragenesis. The electron microprobe analyses of the (Ni-Sb)-bearing Cu-arsenides yielded the following average formulae: (Cu2.73,Ni0.17,Fe0.03,Ag0.01) 2.94(As0.98,Sb0.05,S0.02) 1.06–β-domeykite (simplified formula (Cu2.7,Ni0.2) 2.9As1.1); (Cu3.40,Ni1.40,Fe0.11) 4.91(As1.94,Sb0.13,S0.02) 2.08–Ni-bearing koutekite (simplified formula (Cu3.4Ni1.5) 4.9As2.1); and Cu1.97(Ni0.98,Fe0.03) 1.01(As0.81,Sb0.22) 1.03–(Ni–Sb)-bearing α-domeykite (simplified formula Cu2NiAs). The Rietveld refinement yielded the following unit-cell parameters for β-domeykite and Ni–bearing koutekite: a = 7.1331(4); c = 7.3042(5) Å; V = 321.86(2) Å3, and a = 5.922(4); b = 11.447(9); c = 5.480(4) Å; V = 371.48(5) Å3, respectively. Ore geology, paragenetic assemblages and genesis of the Mlakva deposit are discussed in detail and the Cu-As-Ni-Sb-Pb mineralization has been compared with similar well-known global deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号