首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
赵阳  陈昌富  王纯子 《岩土力学》2016,37(6):1649-1656
基于塑性极限理论的上限分析法,借鉴已有数值分析和室内模型试验所揭示的带帽刚性桩破坏模式,构建了其运动许可速度场,并引入统一强度理论,根据能量平衡原理,推导了能考虑中主应力影响的带帽刚性桩极限承载力上限计算公式。同时通过参数分析,得到了带帽刚性桩极限承载力随桩帽尺寸、土的黏聚力和内摩擦角的变化规律。研究发现:考虑中主应力影响的带帽刚性桩的上限解较不考虑时有较大的提高,对于带帽刚性桩承载力计算时,实际统一强度理论中反映中主应力影响的参数取0.1~0.2附近较为合理。带帽刚性桩承载力随着桩帽尺寸的增大而增大,且桩帽直径与桩径之比 时,承载力增大趋势较为明显;承载力随着土体黏聚力和内摩擦角的增大而增大。通过与已有理论方法和试验结果对比分析发现,本文提出的方法不仅在理论上更严密,而且可得到更符合实际的计算结果。  相似文献   

2.
夯实水泥土桩的荷载传递特性   总被引:8,自引:1,他引:7  
运用荷载传递法结合 Geddes 公式计算夯实水泥土单桩的荷载(Q)- 位移(s)曲线, 分析单桩 Q-s 曲线随桩长 l 、桩体极限强度 qu 、桩端土压缩模量 Es 的变化规律, 并研究桩身压缩、桩端阻力及位移随桩顶荷载的变化规律。  相似文献   

3.
悬臂排桩支护结构空间变形分析   总被引:9,自引:2,他引:7  
以矩形基坑悬臂排桩支护结构为研究对象,通过分析现场实测数据和数值计算,归纳出了冠梁和支护桩的空间变形模式,建立了整个支护系统的能量表达式。利用最小势能原理,推导了基坑中部桩顶最大位移的解析解,分析了各主要支护参数对该位移的影响。研究结果表明,桩顶最大位移随坡顶超载和桩间距的增大基本呈线性增大趋势;当嵌固深度系数逐渐增大时,桩顶最大位移也逐渐增大,但趋势渐缓;基坑长度对其影响也较大,当基坑长度超过一定数值后,最大位移值趋于稳定。最后利用所得的研究成果对某基坑进行了验证,并与现场实测结果进行了对比,计算结果能够满足工程要求。  相似文献   

4.
陈力恺  孔纲强  刘汉龙  金辉 《岩土力学》2012,33(Z1):200-204
软弱土及湿陷性黄土等地区桩基负摩阻力计算是桩基础设计与施工必须考虑的问题之一,目前针对群桩负摩阻力计算方面的研究相对较少。采用有效应力法计算单桩负摩阻力,基于极限平衡原理计算负摩阻力群桩效应系数,从而得到群桩负摩阻力计算公式。结合现场试验结果,对现浇X形桩群桩负摩阻力及桩身下拽力进行计算分析,并讨论了群桩基础中各基桩位置对桩身下拽力的影响,以及群桩效应系数随相关影响因素的变化规律。研究结果表明,文中计算结果与现场实测结果具有良好的一致性;地面堆载等级越高,群桩所受的桩身下拽力越大,且群桩效应系数随着桩间距的增大而增大,随着负摩阻力系数和中性点深度比的增大而减小。  相似文献   

5.
桩土应力比是桩网复合地基承载力和沉降计算的重要参数,其与地基的固结沉降相关,具有明显的时变特性。已有基于Terzarghi土拱模型的松动土压力计算理论是在滑动面土体均达到极限状态的假定上讨论的,不适用于桩网地基小变形条件下桩土应力的计算。为此,在Terzarghi模型的基础上,相对位移面摩阻力传递函数采用等刚度理想弹塑性模型,结合土体单元的平衡方程与变形协调方程,导出了桩土应力及土拱高度理论解,系统分析了桩土应力及拉膜效应随各设计参数的定量变化规律。分析结果表明,改进方法与现有土拱效应模型相比适用性较好,随着桩土差异沉降增加,土拱高度和桩土应力比逐渐增大,土拱率呈双曲线形减小,同时拉膜效应逐渐发挥。增加填筑荷载对土拱效应有显著削弱作用,桩土应力比随桩距增大而减小,随黏聚力增大而增大。结合改进方法与已有现场实测数据,分析了桩土应力的时变特性,验证了该方法的合理性,可为桩网地基桩土应力计算提供参考。  相似文献   

6.
注浆成型螺纹桩为一种利用施工工艺创新,结合钻孔灌注和二次注浆技术的新型螺纹抗拔桩型,目前已在软土地区开展应用。为了对其受力承载特性深入研究,使该桩型得到广泛推广,通过数值分析方法对其抗拔性能和承载机制进行了三维有限元数值模拟。首先,通过数值模拟桩-土界面室内大型直剪试验得到了有限元分析需要的桩-土接触面参数,而后将得到的参数带入注浆成型螺纹桩抗拔三维有限元数值模型,通过计算得到了不同距径比S/D(即螺距与桩径的比值)螺纹桩的抗拔荷载-位移曲线和轴力分布,并观察了抗拔过程中桩周土体塑性变形的发展。数值分析表明,螺纹桩与桩周土体的机械咬合作用增大了桩侧摩阻力,从而使桩体极限抗拔承载力较等截面圆桩提高约2~5倍;同时,其承载能力与桩体的S/D有关,当S/D取最优时,荷载-位移曲线的初始切向刚度最大,极限承载力最高,桩周土体形成的连续拱形破坏区域最大。  相似文献   

7.
桩土应力比是桩网复合地基承载力和沉降计算的重要参数,其与地基的固结沉降相关,具有明显的时变特性。已有基于Terzarghi土拱模型的松动土压力计算理论,是在滑动面土体均达到极限状态的假定上讨论的,不适用于桩网地基小变形条件下桩土应力的计算。为此,在Terzarghi模型的基础上,相对位移面摩阻力传递函数采用等刚度理想弹塑性模型,结合土体单元的平衡方程与变形协调方程,导出了桩土应力及土拱高度理论解,系统分析了桩土应力及拉膜效应随各设计参数的定量变化规律。分析结果表明,改进方法与现有土拱效应模型相比适用性较好,随着桩土差异沉降增加,土拱高度和桩土应力比逐渐增大,土拱率呈双曲线形减小,同时拉膜效应逐渐发挥。增加填筑荷载对土拱效应有显著削弱作用,桩土应力比随桩距增大而减小,随粘聚力增大而增大。结合改进方法与已有现场实测数据,分析了桩土应力的时变特性,验证了该方法的合理性,可为桩网地基桩土应力计算提供参考。  相似文献   

8.
陆清元  罗强  蒋良潍 《岩土力学》2018,39(7):2473-2482
路堤下刚性桩复合地基普遍存在的负摩阻力对桩-土相互作用特性影响显著。基于极限剪切位移受应力水平影响较小而受试样尺寸影响较大的试验结果,提出了桩-土界面剪切刚度随应力水平变化的等单位长度极限剪切位移理想弹塑性模型,针对桩-土相互作用的上部负摩阻力塑性区、中部协调变形弹性区和下部摩擦承载塑性区3区段模式,建立了塑性区非均匀、弹性区非线性的摩阻力分布图式;以均布路堤荷载下等桩长复合地基中单桩等效加固单元体为研究对象,利用单元体荷载传递微分方程,结合桩-土-垫层压缩变形协调条件,推导出了中性面位置及桩-土应力比的解析表达式,分析了路堤荷载及垫层柔度系数的影响。研究表明:中性面位置随垫层柔度系数增加而下移,随路堤荷载增大先下移后上抬;桩-土应力比随垫层柔度系数增加而减小,随路堤荷载提高先增大后降低,据此提出了采用最大桩-土应力比进行桩体布置和垫层设计的技术思路。  相似文献   

9.
根据深厚多层软土地区地基土的力学性质,考虑桩侧土初始极限剪应力和软化特性、桩端土承载力分段发挥特性,采用一种新的桩侧和桩端模型模拟单桩荷载传递机理,并利用递推迭代方法计算单桩桩顶沉降。采取土工参数易于获取且适用于软土地区的经验p-y曲线描述桩-土界面力和位移的非线性关系,基于欧拉-伯努利梁和中心差分理论,考虑桩尖边界条件,采用数值计算方法对桩沿长度方向的转角、剪力、弯矩进行计算以获取在特定荷载下这些变量的变化特征。最后,结合工程案例,对上述方法进行了验证,其计算简洁且与实际测试结果吻合良好。  相似文献   

10.
蒋良潍  黄润秋  许强 《岩土力学》2008,29(5):1188-1194
分析探讨了锚索桩设计计算的几个力学问题及有关概念。传统上对于桩身嵌入段的计算,须根据桩身与桩周岩土的相对刚度划分为刚性桩和弹性桩两种不同的计算模型,并各自对应不同的算法及计算公式,通过对两种模型计算式的数学极限分析表明,刚性桩模型算式仅为弹性桩计算法中将嵌入段的桩身刚度取很大值下的特例,两种模型算法在力学本质上是统一的。由锚索桩嵌入段分别按弹、刚性桩模型算式的位移、转角的对比分析可知,基于弹性桩模型计算出的锚索受力大于按刚性桩模型,以弹性桩模型进行锚索设计偏于安全,而嵌入段的换算长度取1.3(“m法”)或0.8(“常数法”),从工程设计角度方可作为刚/弹性桩模型的划分判据,此时两种模型的最大位移或转角差别才小于5 %。桩上锚索倾角的力学效应除矢量分解作用影响水平锚拉力大小外,更重要的是将影响锚拉点处的水平约束刚度,进而改变锚索桩超静定结构的受力分担,因此锚索最优倾角的选取可使较好地控制桩身位移且降低锚索初拉力得以兼顾。力图令桩身正负弯矩峰值大致相等的所谓“平衡设计原则”实际上具有较强条件性,须依赖于锚索既要初拉力合适又能在正常工作状态下具备足够大的锚拉力。  相似文献   

11.
ABSTRACT

Short stubby piles like monopiles and large diameter drilled shafts undergo rigid body translation and rotation when subjected to a lateral force and/or a moment at the head. A method of analysis for these piles embedded in multi-layered elastic soil is developed using the variational principles of mechanics. Using this analysis, the soil resistance against pile movement can be rigorously related to the soil elastic constants, and the pile head displacement and rotation can be quickly calculated. The equilibrium equations for pile and soil displacements are obtained using the principle of virtual work and solved using an iterative algorithm. Pile responses obtained from the analysis match well with those obtained from three-dimensional finite element analyses in which the same inputs of loads, geometry, and material properties are given. Based on the new analysis, fitted equations for soil resistance parameters are developed, which can be used to directly calculate the pile head displacement and rotation without the use of the iterative algorithm. Numerical examples are provided that demonstrate how the method can be used to analyse practical problems.  相似文献   

12.
Vertical loads effect on the lateral response of a 3×5 pile group embedded in sand is studied through a two-dimensional finite element analysis. The soil-pile interaction in three-dimensional type is idealized in the two-dimensional analysis using soil-pile interaction springs with a hysteretic nonlinear load displacement relationship. Vertical loads inducing a vertical pile head displacement of 0.1-pile diameter increase the lateral resistance of the single pile at a 60 mm lateral deflection by 8%. Vertical loads inducing the same vertical displacement applied to a pile group spaced at 3.92-pile diameter increase the overall lateral resistance by 9%. The effect on individual piles, however, depends on the pile position. The vertical load decreases the lateral resistance of the leading pile (pile 1) by 10% and increases the lateral resistances of piles 2, 3, 4, and 5 by 9%, 14%, 17%, and 35%, respectively. Vertical loads applied to the pile group increase the confining pressures in the sand deposit confined by the piles but the rate of increase in those outside the group is relatively small, resulting in the difference in a balance of lateral soil pressures acting at the back of and in front of the individual pile.  相似文献   

13.
An analytical approach using a Winkler model based on two lateral soil displacement components in a three‐dimensional soil is investigated to provide analytical solutions of horizontal response of a rectangular pile subjected to lateral loads in nonhomogeneous soil. The two lateral displacement components of a soil surrounding the rectangular pile are represented by the Fourier series of displacement potential functions in the elastic three‐dimensional analysis. The lateral stiffness coefficient of the rectangular pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force for the rectangular pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of lateral displacement and rotation for a rectangular pile subjected to lateral loads on the pile base in nonhomogeneous soil is proposed by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. The difference of lateral behavior between square and circular piles subjected to lateral loads is insignificant. The effect of aspect ratio of the rectangular pile on the lateral behavior is great for the lower stiffness ratio between pile and soil and the larger length–equivalent diameter ratio. The effect of the value of Poisson's ratio of soil on lateral stiffness coefficient is relatively small except Poisson's ratio close to 0.5. The comparison of the results calculated by the current method for a rectangular pile subjected to lateral loads in nonhomogeneous soil has shown good agreement with those obtained from the analytical methods and the finite element method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
An investigation is made to present analytical solutions provided by a Winkler model approach for the analysis of single piles and pile groups subjected to vertical and lateral loads in nonhomogeneous soils. The load transfer parameter of a single pile in nonhomogeneous soils is derived from the displacement influence factor obtained from Mindlin's solution for an elastic continuum analysis, without using the conventional form of the load transfer parameter adopting the maximum radius of the influence of the pile proposed by Randolph and Wroth. The modulus of the subgrade reaction along the pile in nonhomogeneous soils is expressed by using the displacement influence factor related to Mindlin's equation for an elastic continuum analysis to combine the elastic continuum approach with the subgrade reaction approach. The relationship between settlement and vertical load for a single pile in nonhomogeneous soils is obtained by using the recurrence equation for each layer. Using the modulus of the subgrade reaction represented by the displacement influence factor related to Mindlin's solution for the lateral load, the relationship between horizontal displacement, rotation, moment, and shear force for a single pile subjected to lateral loads in nonhomogeneous soils is available in the form of the recurrence equation. The comparison of the results calculated by the present method for single piles and pile groups in nonhomogeneous soils has shown good agreement with those obtained from the more rigorous finite element and boundary element methods. It is found that the present procedure gives a good prediction on the behavior of piles in nonhomogeneous soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
崔新壮  丁桦 《岩土力学》2004,25(11):1744-1748
为解释横向载荷作用下刚性桩的失稳机理,针对桩头自由的刚性桩做了一系列横向加载试验。基础土为粉质粘土,含水量介于9.85 %~13.85 %之间。由载荷-位移全过程曲线发现,刚性桩在横向载荷达到一定值时会失稳;由试验录像及土体剖面发现,由于土体的软化破坏,在桩后土体内会出现贯穿的局部破坏并形成一楔体,同时在土面伴随一不完全的椭圆形鼓包及一条平行于加载方向的拉伸裂缝,而在桩前土中,由于桩的挤压会形成一条侵彻沟。分析认为,对大位移刚性桩桩后土体的破坏是桩失稳的根本原因。  相似文献   

16.
为探讨斜坡地基刚性桩水平极限承载力的计算方法,介绍柔性桩的等效刚性桩有效嵌入深度并引入极限水平地基反力分布形式。根据荷载指向坡外及坡内两种情况,提出适用于斜坡地基桩前土体的两种极限破坏模式。然后,基于极限分析上限定理,推导出两种荷载方向下的刚性桩极限承载力,并引入多组现场试验,验证了理论方法的合理性。探讨了边坡坡角、内摩擦角、黏聚力及荷载方向对极限承载力的影响,得出了一些规律性结论,并基于以上分析结果,提出斜坡地基刚性桩水平极限承载力随坡角变化的拟合公式。这些分析为斜坡地基上基桩设计提供了一定的参考,具有理论及工程应用价值。  相似文献   

17.
An analytical approach using the three‐dimensional displacement of a soil is investigated to provide analytical solutions of the horizontal response of a circular pile subjected to lateral loads in nonhomogeneous soil. The rocking stiffness coefficient of the pile shaft in homogeneous soil is derived from the analytical solution taking into account the three‐dimensional displacement represented in terms of scalar potentials in the elastic three‐dimensional analysis. The lateral stiffness coefficient of the pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account the rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force of a pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of the lateral displacement and rotation of the pile base subjected to lateral loads in nonhomogeneous soils is presented by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. There is little difference between lateral, rocking, and couple stiffness coefficients each obtained from both the two‐dimensional and three‐dimensional methods except for the case of Poisson's ratio near 0.5. The comparison of results calculated by the current method for a pile subjected to lateral loads in homogeneous and nonhomogeneous soils has shown good agreement with those obtained from analytical and numerical methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
张爱军  莫海鸿  向玮 《岩土力学》2012,33(9):2719-2723
在开挖、降雨或地震等外部因素作用下,边坡土体很容易进入局部或瞬态大变形乃至失稳滑动,使抗滑桩产生附加位移及弯矩。基于两阶段分析方法,采用Winkler模型模拟抗滑单桩与土之间的相互作用,建立单桩水平位移控制方程组,根据内力与位移的连续条件得到考虑不同土体侧移模式下求解桩身响应的矩阵解析表达式,并采用现场监测数据及Poulos弹性理论进行验证,证明该方法是合理可行的,并通过参数分析土体侧移对抗滑桩水平承载性状的影响程度。分析结果表明,土体侧移模式包括最大侧移值、分布形状及重心、侧移势等,对抗滑桩的挠度和弯矩均有显著影响,在工程设计中应予以充分重视。  相似文献   

19.
Static and dynamic lateral load tests were carried out on model aluminium single piles embedded in soft clay to study its bending behaviour. Model aluminium piles with length to diameter ratios of 10, 20, 30 and 40 were used. Static lateral load tests were conducted on piles by rope and pulley arrangement upto failure and load–deflection curves were obtained. Dynamic lateral load tests were carried out for different magnitudes of load ranging from 7 to 30 N at wide range of frequencies from 2 to 50 Hz. The load transferred to the pile, pile head displacement and the strain variation along the pile length were measured using a Data Acquisition System. Safe static lateral load capacity for all piles is interpreted from load–deflection curves. Dynamic characteristics of the soil–pile system were arrived from the acquired experimental data. The soil–pile system behaves predominantly in nonlinear fashion even at low frequency under dynamic load. The displacement amplitude under dynamic load is magnified by 4.5–6.5 times the static deflection for all piles embedded in soft clay. But, the peak magnification factor reduces with an increase in the magnitude of lateral load mainly because of increase of hysteretic damping at very soft consistency. The maximum BM occurs at the fundamental frequency of the soil–pile system. Even the lower part of the pile affects the pile head response to the inertial load applied at the pile head. The maximum dynamic BM is magnified by about 1.5 times the maximum static BM for model piles in tested consistency of clay. The maximum dynamic BM occurs at a depth of about 1.5 times the depth of maximum static BM for model piles, which indicates an increase of active pile length under dynamic load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号