首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Locally, voluminous andesitic volcanism both preceded and followedlarge eruptions of silicic ash-flow tuff from many calderasin the San Juan volcanic field. The most voluminous post-collapselava suite of the central San Juan caldera cluster is the 28Ma Huerto Andesite, a diverse assemblage erupted from at least5–6 volcanic centres that were active around the southernmargins of the La Garita caldera shortly after eruption of theFish Canyon Tuff. These andesitic centres are inferred, in part,to represent eruptions of magma that ponded and differentiatedwithin the crust below the La Garita caldera, thereby providingthe thermal energy necessary for rejuvenation and remobilizationof the Fish Canyon magma body. The multiple Huerto eruptivecentres produced two magmatic series that differ in phenocrystmineralogy (hydrous vs anhydrous assemblages), whole-rock majorand trace element chemistry and isotopic compositions. Hornblende-bearinglavas from three volcanic centres located close to the southeasternmargin of the La Garita caldera (Eagle Mountain–FourmileCreek, West Fork of the San Juan River, Table Mountain) definea high-K calc-alkaline series (57–65 wt % SiO2) that isoxidized, hydrous and sulphur rich. Trachyandesitic lavas fromwidely separated centres at Baldy Mountain–Red Lake (westernmargin), Sugarloaf Mountain (southern margin) and Ribbon Mesa(20 km east of the La Garita caldera) are mutually indistinguishable(55–61 wt % SiO2); they are characterized by higher andmore variable concentrations of alkalis and many incompatibletrace elements (e.g. Zr, Nb, heavy rare earth elements), andthey contain anhydrous phenocryst assemblages (including olivine).These mildly alkaline magmas were less water rich and oxidizedthan the hornblende-bearing calc-alkaline suite. The same distinctionscharacterize the voluminous precaldera andesitic lavas of theConejos Formation, indicating that these contrasting suitesare long-term manifestations of San Juan volcanism. The favouredmodel for their origin involves contrasting ascent paths anddifferentiation histories through crustal columns with differentthermal and density gradients. Magmas ascending into the mainfocus of the La Garita caldera were impeded, and they evolvedat greater depths, retaining more of their primary volatileload. This model is supported by systematic differences in isotopiccompositions suggestive of crust–magma interactions withcontrasting lithologies. KEY WORDS: alkaline; calc-alkaline; petrogenesis; episodic magmatism; Fish Canyon system  相似文献   

2.
甘肃南祁连党河南山中奥陶世火山岩的地球化学特征   总被引:7,自引:2,他引:5  
赵虹  党犇  王崇礼 《现代地质》2004,18(1):64-69
甘肃南祁连褶皱带党河南山地区中奥陶世火山岩的岩石学和微量元素、稀土元素的地球化学等研究证明,本区火山岩由基性火山岩和中性火山岩组成。其中,基性火山岩分属碱性玄武岩系列和拉斑玄武岩系列;而中性火山岩为一套钙碱性安山岩,二者均具有低钾、高钠的特点。这些火山岩的稀上元素配分曲线均属于轻稀土富集型,(w(La)/W(Yb))N=2.73~7777,(w(La)/w(Sm))N=1.43~3.21,(w(Gd)/w(Yb))N=1.01~1.92.明显地表现为轻稀土元素配分曲线陡倾,而重稀土元素配分曲线相对平坦的特征。微量元素配分曲线图表现为大离子亲石元素的富集和Nb、Ta、Zr、Hf及Ti不同程度的亏损。这些岩石学和地球化学的特征证明本区火山岩形成于岛弧环境。  相似文献   

3.
Tertiary collision-related volcanic rocks of the Eastern Rhodopes (37–25.5 Ma) display calc-alkaline and shoshonitic affinities, with (A) intermediate to basic and (B) acid compositions. (A) Latites, andesites, also shoshonites and basaltic andesites and scarce basalts, absarokites and ultrapotassic latites were emitted through different eruptive styles: lava flows often autobrecciated, domes, ash and scarce pumice falls and flows. Lahars are frequent. K2O contents of intermediate volcanics decrease from North to South towards the collision suture. (B) Rhyolites, trachyrhyolites and trachydacites show explosivity progressively decreasing with time. Several eruptive types can be distinguished: pyroclastic flows (weakly and strongly welded ignimbrite deposits), ash and lapilli falls, domes and lava flows. The large (30×10 km) Borovitza caldera is the result of a paroxysmic explosive phase.
  All rocks are characterized by high contents of Rb, Th and Y. Conversely, negative Ba and Ta–Nb anomalies are typical of collision-related magmatism.
  Intense hydrothermal episodes, contemporaneous with the volcanic activity, have converted large amounts of explosive products into bentonite and zeolites deposits. Typical metallogeny is associated with this collision-related volcanism: large Pb, Zn with Cu and Ag deposits and small U or Au deposits are exposed.  相似文献   

4.
Nugara volcanics are one of the northernmost outcrops of the Arabian?CNubian Shield. Two distinct volcanic successions are found in the Nugara basin: (1) old volcanic sequence composed of voluminous medium- to high-K calc-alkaline lavas and minor alkali basalt and (2) young volcanic sequence composed of subordinate tholeiitic mafic lavas. Their eruptions were punctuated by occasional volcaniclastic deposits that generated fall, flow, or reworked suites compositionally identical to the lava flows. These volcanics are a part of a post-subduction and extensional-related magmatic event in Northeastern Desert of Egypt. The volcanic rocks of the Nugara basin are characterized by strong enrichment in LILE relative to HESF, high LILE/HFSE ratios, and depletions of Nb on MORB-normalized multi-element diagrams. The geochemical features of the volcanic rocks suggest that they experienced fractional crystallization, along with mixing processes. Crustal contributions to the magma sources may also have occurred during magmatic evolution. These processes have resulted in scattered major and trace element variations with respect to increasing silica contents. The model proposed for their origin involves contrasting ascent paths and differentiation histories through crustal columns with different thermal and density gradients. The geochemical features of the most mafic samples suggest that the volcanic rocks in the region were derived from a mainly lithospheric mantle source that had been heterogeneously metasomatized by previous subduction events during convergence between the East and West Gondwanaland. The volcanic activity in the region is best explained by the delamination of lithospheric mantle slices that were heterogeneously enriched by previous subduction-related processes.  相似文献   

5.
《International Geology Review》2012,54(14):1684-1708
Volcanic rocks that make up Faial Island, Central Azores, consist of four volcano-stratigraphic units, with ages between 730 ka and the present. Lavas range from alkali basalts to trachyandesites and belong to the alkaline-sodic series. The oldest unit is the Ribeirinha Volcanic Complex, generally characterized by low MgO contents. The Cedros Volcanic Complex is composed of basalts to benmoreites with low MgO contents. The Almoxarife Formation represents fissure flows, containing MgO contents similar to to slightly higher than those of the underlying Cedros Volcanic Complex. The youngest unit, the Capelo Formation, consists of mafic rocks with MgO values higher than those of the other units. Bulk-rock major and trace element trends suggest that differentiation of the three earliest units were dominated by fractional crystallization of plagioclase ± clinopyroxene ± olivine ± titanomagnetite. Capelo bulk-rock compositions are the most primitive, and are related to a period when volcanic activity was fed by deep magmatic chambers, and melts ascended more rapidly. Comparison among geochemical patterns of the trace elements suggests a strong similarity between the lavas from Faial and Pico islands. Corvo Island volcanism contrasts with the geochemistry of Faial and Pico lavas, reflecting its strong K and Rb depletion, and Th, U, Ta, Nb, La, and Ce enrichment. Absence of the Daly gap in the Faial volcanics is attributed to early crystallization of Ti-Fe oxides. The probable source of the Faial magma coincides with the MORB-FOZO array, which implies the presence of ancient recycled oceanic crust in the mantle source. Ratios of incompatible trace elements suggest the similarity of Corvo volcanic rocks with magmas derived from HIMU sources, whereas the Faial and Pico volcanic rocks could have been produced from sources very close to EMII-type OIB.  相似文献   

6.
In the Sierras Pampeanas of San Luis, Argentina, Late Tertiary volcanic rocks extend along a 80-km NW-SE-trending belt, between La Carolina and Sierra del Morro. Several gold deposits, among which those in the western end of the belt are better known, are genetically related to the volcanic rocks, formed during a volcanic episode that occurred between 9.5 Ma and 1.9 Ma. Located 600 km from the Peru-Chile trench, the volcanic belt represents the easternmost and youngest mineralized magmatic manifestation associated with the shallowing of the Nazca plate in the flat-slab Andean segment extending from 28° to 33° S Lat.

The volcanic complex includes lavas and volcaniclastic rocks. Small-volume lavas were emplaced as domes, flows, and dikes. Pyroclastic deposits are associated with them in certain areas, such as at La Carolina, Cerro Tiporco, and Sierra del Morro. At La Carolina, phreatomagmatic breccias and base-surge deposits define a maar-diatreme volcanic setting. At Cerro Tiporco and Sierra del Morro, the volcaniclastic units are related to the formation of calderas. Mesosilicic magmas (SiO2 = 59% to 68%) belong to normal to high-K calc-alkaline and shoshonitic magma types. At both local and regional scales, K enrichment accompanies progressively decreasing age. Although the volcanic rocks differ from the typical Andean series, some geochemical features, such as Ta and Ti depletion, high large-ion-lithophile-element (LILE) contents, and arc-like Ba/La and La/Ta ratios, indicate an arc signature.

In the La Carolina zone, the most important mineralization is the La Carolina volcanic-hosted, low-sulfidation, epithermal gold deposit. Here, several gold and base-metal-bearing epithermal veins cut basement rocks. In the Canada Honda district, the most important mineral deposits are the Diente Verde gold-rich porphyry copper deposit and low-sulfidation epithermal gold and base-metal veins hosted by both basement and coeval volcanics.

There is no strong evidence of gold-bearing mineral deposits on the eastern side of the volcanic belt. However, there are hydrothermal alteration zones at Cerros del Rosario and El Morro as well as traces of gold at the Santa Isabel calcareous onyx deposit and inside the Sierra del Morro caldera. In addition, favorable volcanic structures, such as the calderas at Tiporco, Cerro Lomita, and El Morro, make the eastern side of the belt an interesting target for mineral exploration.  相似文献   

7.
The late Pleistocene caldera complex of the Sierra La Primavera, Jalisco, México, contains well-exposed lava flows and domes, ash-flow tuff, air-fall pumice, and caldera-lake sediments. All eruptive units are high-silica rhyolites, but systematic chemical differences correlate with age and eruptive mode. The caldera-producing unit, the 45-km3 Tala Tuff, is zoned from a mildly peralkaline first-erupted portion enriched in Na, Rb, Cs, Cl, F, Zn, Y, Zr, Hf, Ta, Nb, Sb, HREE, Pb, Th, and U to a metaluminous last-erupted part enriched in K, LREE, Sc, and Ti; Al, Ca, Mg, Mn, Fe, and Eu are constant within analytical errors. The earliest post-caldera lava, the south-central dome, is nearly identical to the last-erupted portion of the Tala Tuff, whereas the slightly younger north-central dome is chemically transitional from the south-central dome to later, moremafic, ring domes. This sequence of ash-flow tuff and domes represents the tapping of progressively deeper levels of a zoned magma chamber 95,000 ± 5,000 years ago. Since that time, the lavas that erupted 75,000, 60,000, and 30,000 years ago have become decreasingly peralkaline and progressively enriched only in Si, Rb, Cs, and possibly U. They represent successive eruption of the uppermost magma in the post-95,000-year magma chamber.Eruptive units of La Primavera are either aphyric or contain up to 15% phenocrysts of sodic sanidine quartz >ferrohedenbergite >fayalite>ilmenite±titanomagnetite. Whereas major-element compositions of sanidine, clinopyroxene, and fayalite phenocrysts changed only slightly between eruptive groups, concentrations of many trace elements changed by factors of 5 to 10, resulting in crystal/glass partition coefficients that differ by factors of up to 20 between successively erupted units. The extreme variations in partitioning behavior are attributed to small changes in bulk composition of the melt because major-element compositions of the phenocrysts and temperature, pressure, and oxygen fugacity of the magma all remained essentially constant.Crystal settling and incremental partial melting by themselves appear incapable of producing either the chemical gradients within the Tala Tuff magma chamber or the trends with time in the post-caldera lavas. Transport of trace metals as volatile complexes within the thermal and gravitational gradient in volatilerich but water-undersaturated magma is considered the dominant process responsible for compositional zonation in the Tala Tuff. The evolution of the post-caldera lavas with time is thought to involve the diffusive emigration of trace elements from a relatively dry magma as a decreasing proportion of network modifiers and/or a decreasing concentration of complexing ligands progressively reduced trace-metal-site availability in the silicate melt.  相似文献   

8.
The Middle Cenozoic lava sequence of the Lake Kizi region was studied. It characterizes the activity of sources in the Northern zone of the eastern Sikhote Alin: a Middle Eocene pulse of slab-related magmatism and prolonged injection of magmas from the sublithospheric convecting mantle in the Late Oligocene. Low contents of high field strength elements (Nb and Ta) with low Nb/Ta, Ce/Pb, and Nb/La and high K/Nb ratios and a low (87Sr/86Sr)0 of 0.703399 were determined in a Middle Eocene dacite with an age of ∼43.5 Ma. Three phases of Late Oligocene volcanic eruptions were distinguished: (1) basaltic andesites (29–27 Ma), (2) basaltic trachyandesites and trachyandesites (27–24 Ma), and (3) andesites (∼23 Ma). The lavas of the first and third phases showed low Ce/Pb, Nb/La, and Ba/La and high K/Nb ratios, which are also characteristic of supraslab processes. The lavas of the second phase are shifted with respect to these ratios toward ocean island basalt compositions. The entire Late Oligocene volcanic sequence falls within a narrow range of the initial strontium isotope ratios, (87Sr/86Sr)0, from 0.703661 to 0.703853. Such ratios are characteristic of volcanic and subvolcanic rocks with ages of ∼37, 31–23, and ∼16 Ma over the whole region of the Tatar Strait coast.  相似文献   

9.
Bransfield Strait is a narrow basin separating the South Shetland Islands from the Antarctic Peninsula and is attributed to recent back-arc extension behind the South Shetland volcanic arc. The volcanic islands of Deception and Bridgeman are situated close to the axis of spreading, whereas Penguin Island lies slightly to the north of this axis. The mineralogy, petrology and geochemistry of the lavas of the three volcanoes have been studied in order to provide information on the nature of magmatism associated with the initial stages of back-arc spreading.Deception Island lavas range from olivine basalt to dacite, and all are highly sodic, with high Na/K, K/Rb, Ba/Rb and Zr/Nb ratios and with CeN/YbN = 2. Incompatible elements increase systematically between basalt and rhyodacite, while Sr decreases, suggesting that fractional crystallisation is the dominant process relating lava compositions. The rhyodacites have high concentrations of Zr, Y and the REE and negative Eu anomalies and are compositionally similar to oceanic plagiogranite. Bridgeman Island lavas are mostly basaltic andesites, but the levels of many incompatible elements, including REE, are significantly lower than those of Deception lavas, although CeN/YbN ratios and 87Sr/86Sr ratios (0.7035) are the same. Penguin Island lavas are magnesian, mildly alkaline olivine basalts with a small range of composition that can be accommodated by fractional crystallisation of olivine, clinopyroxene and/or chromite. Penguin lavas have higher 87Sr/86Sr (0.7039) and CeN/ YbN (4) ratios than Deception and Bridgeman lavas. The Rb/Sr ratios of Deception and Penguin basalts (ca. 0.01) are much too low to account for their present 87Sr/86Sr ratios.Modelling suggests that the source regions of the lavas of the three volcanoes share many geochemical features, but there are also some significant differences, which probably reflects the complex nature of the mantle under an active island arc combined with complex melting relationships attending the initial stages of back-arc spreading. Favoured models suggest that Bridgeman lavas represent 10–20% melting and the more primitive Deception lavas 5–10% melting of spinel-peridotite, whereas Penguin lavas represent less then 5% melting of a garnet-peridotite source. The mantle source for Bridgeman lavas seems to have undergone short-term enrichment in K, Rb and Ba, possibly resulting from dewatering of the subducted slab. Hydrous melting conditions may also account for the more siliceous, high-alumina nature and low trace element contents of Bridgeman lavas.  相似文献   

10.
 This paper uses the geochemistry of primitive mafic lavas from the Rungwe volcanic province (southwestern Tanzania) to infer the source mineralogy and melting history. Post-Miocene mafic lavas from Rungwe include alkali basalts, basanites, nephelinites and picrites with up to 18.9 wt% MgO; nephelinites (>13.5% normative nepheline) are restricted to Kiejo volcano in the southern portion of the province. Rungwe lavas differ from most Western Rift volcanics in that they are not unusually potassic (K2O/Na2O ca. 0.40). Sparsely phyric mafic lavas contain phenocrysts and xenocrysts of plagioclase (An82–90), clinopyroxene (4.5–9.5 wt% Al2O3), and olivine (Fo79–88); one basanite contains a 1 mm xenocryst of apatite included in magnesian clinopyroxene. All samples have high abundances of incompatible elements (e.g., 0.7–2.2 wt% P2O5) and are enriched in REE relative to HFSE (Hf, Zr, Ti, Y), Cs, Ba, and K. Some incompatible element ratios are constant throughout the Rungwe suite (e.g., Zr/Nb, Sr/Ce, K/Rb), but other ratios are extremely variable and exceed the range measured in global Ocean Island Basalts (OIB) (e.g., Ba/Nb, Sm/Zr, La/Nb, Pb/Ce, Nb/U). The range in degree of silica saturation, and its excellent correlation with P2O5/Al2O3, indicate that the Rungwe suite records variable degrees of melting. Variations of individual incompatible trace element abundances in nephelinite and basanite samples suggest that the source contains metasomatic amphibole, ilmenite, apatite, and zircon. The Rungwe suite is interpreted as a series of low-percentage melts of CO2-rich peridotite at pressures that span the garnet-spinel transition. A geochemical comparison of Rungwe samples to lavas from other Western Rift volcanic centers requires that the source mineralogy varies along the rift axis, although each province is underlain by metasomatized peridotite. The incompatible trace element signatures of Western Rift lavas indicate that the source area is typically homogeneous on the scale of individual volcanoes, although lavas from each volcano reflect a range in degree of melting. Significantly, volcanoes with distinct geochemistry are always separated by major rift faults, suggesting that volcanic and tectonic surface features may correspond to metasomatic provinces within the subcontinental lithospheric mantle. Received: 30 May 1994 / Accepted: 5 April 1995  相似文献   

11.
Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines. The island consists of four volcanic centers which have erupted basaltic to rhyolitic calcalkaline lavas during the last ∼400 ka. Major element, trace element and Sr, Nd and Pb isotopic data indicate that the volcanic centers have produced a single lava series from a common mantle source. Modeling results indicate that Camiguin lavas were produced by periodic injection of a parental magma into shallow magma chambers allowing assimilation and fractional crystallization (AFC) processes to take place. The chemical and isotopic composition of Camiguin lavas bears strong resemblance to the majority of lavas from the central Mindanao volcanic field confirming that Camiguin is an extension of the tectonically complex Central Mindanao Arc (CMA). The most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab. Some Camiguin high-silica lavas are similar to high-silica lavas from Mindanao, which have been identified as “adakites” derived from direct melting of a subducted basaltic crust. More detailed comparison of Camiguin and Mindanao adakites with silicic slab-derived melts and magnesian andesites from the western Aleutians, southernmost Chile and Batan Island in northern Philippines indicates that the Mindanao adakites are not pure slab melts. Rather, the CMA adakites are similar to Camiguin high-silica lavas which are products of an AFC process and have negligible connection to melting of subducted basaltic crust. Received: 27 February 1998 / Accepted: 27 August 1998  相似文献   

12.
青海鄂拉山地区陆相火山岩地球化学特征及构造环境   总被引:2,自引:0,他引:2  
鄂拉山岩浆岩带晚三叠世火山岩为中-中酸性火山岩组合,由玄武安山岩、安山岩、英安岩、流纹岩及少量火山碎屑岩等组成,岩石蚀变强烈,成层性差,柱状节理发育,具典型的陆相喷发特点.火山岩属铝饱和类型,里特曼指数(δ)及岩石学等显示具钙碱性特征, (FeO/MgO)、K2 O/Na2O显示可能具有陆缘岛弧环境的特性;轻稀土元素分馏程度高且富集,δEu小于1,为弱负异常,稀土元素配分模式曲线与岛弧型稀土元素配分模式图相似;微量元素Rb、Ba、Th等元素明显富集,而Ti、Y、Yb、Sc、Cr等元素较亏损.Nb/Zr、La/Nb、Th/Ta、Th×Ta/Hf2等特征反映鄂拉山组火山岩产于陆缘火山弧环境.结合区域地质背景、岩石地球化学及构造环境等特征,认为鄂拉山地区晚三叠世火山岩产于大陆碰撞与陆缘弧并存的环境.  相似文献   

13.
We studied a large debris-avalanche deposit of Pleistocene age in the Tenteniguada Basin, Gran Canaria Island, Spain. This deposit, which is well preserved because it is mostly covered by basanite lava flows, has distinctive matrix and block facies, hummocky topography and internal structures typical of debris avalanches. However, neither syneruptive lavas nor some characteristic features of volcanic debris-avalanche deposits, such as a stratovolcano edifice or a horseshoe-shaped crater, are present. The occurrence of internal features characteristic of volcanic avalanche deposits could be attributed to the volcanic materials involved in the movement rather than to the triggering of the avalanche during a volcanic eruption. The conditioning factors are shown to be associated with specific structural and hydrological conditions, such as the presence of old volcanic domes, strength reduction of the rocks, effective stress decrease, active gully erosion and water table rise during Pleistocene humid episodes. We finally suggest that the possible triggering factor of the avalanche was a neighbouring volcanic or tectonic earthquake.  相似文献   

14.
The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces, with compound flows at the base and simple flows in the upper portions. The detailed field work allied with petrography and geochemical data are extremely important to identify heterogeneities inside the volcanic pile and allows the construction of a detailed lithostratigraphical framework.  相似文献   

15.
Recent pantelleritic lavas comprise the whole of the isolated and outlying volcano of Mayor Island. Mineralogically, they are characterised by phenocrystic anorthoclase-sodic27 sanidine, quartz, sodic ferrohedenbergite, and cossyrite. Nine new chemical analyses of the lavas are presented (including one residual glass), confirming their strongly sodic and peralkaline nature. One analysis is also given of trachybasalt, which occurs as common inclusions in the mantling pumice deposits. These inclusions are characterised by abundant feldspar phenocrysts. Detailed trace element data is presented for five of the lava samples, representing the mam volcanic phases and the trachybasalt inclusions. The following conclusions are presented:
  1. The lavas exhibit a marked enrichment (relative to “average” granitic compositions) of the alkalis; rare earths; highly charged cations (e.g. Nb, Zr, Hf, Mo, U, Th); Ga, Be, and Cl. In contrast, they show a spectacular depletion of Sr, Ba, and Mg, and a less intense depletion of Ca, Sc, V, and Cr.
  2. The pantelleritic rare earth patterns show a similar degree of fractionation to the sedimentary pattern, and are dominated by a very strong Eu depletion. This suggests feldspar subtraction. The trachybasalt pattern shows a similar degree of fractionation, but exhibits enrichment of Eu.
  3. The trachybasalt inclusions are characterised by a trace element assemblage comparable to alkali basalts, except for higher Ba and exceedingly high K/Rb and K/Cs ratios. The chemical and mineralogical data suggest that they represent partial feldspar accumulate rocks.
  4. There is a progressive enrichment of nearly all trace and minor elements in the youngest lavas. This includes those elements that show an overall depletion in the lavas. The younger lavas are also enriched in Na and Fe, but further depleted in Al.
The data is interpreted to indicate that the pantellerites were derived by crystal differentiation from a postulated mildly alkali olivine basalt parent — feldspar fractionation is considered to have been extremely important in this process. It is shown that the element enrichment occurring in the younger lavas may not be wholely explained by crystallisation differentiation alone — it is possible that some additional process is required. It is also shown that the observed enrichment of sodium in the youngest lavas can only occur during crystal fractionation if quartz, as well as anorthoclase, separate from the magma. This is due to the higher alkali abundances of the anorthoclase phenocrysts, relative to the pantellerite compositions. There is limited evidence that post-eruptive devitrification of some of the lavas has resulted in some modification of the lava chemistry, notably sodium loss.  相似文献   

16.
The Dir-Utror volcanic series forms a NE–SW trending belt within the northwestern portion of the Kohistan island arc terrane in the western Himalayas of northern Pakistan. The Kohistan arc terrane comprises a diverse suite of volcanic, plutonic, and subordinate sedimentary rocks of late Mesozoic to Tertiary age, developed prior to and after suturing of the Indo-Pakistan and Asiatic continental blocks. The Dir-Utror volcanic series near Dir is dominated by basaltic-andesite and andesite, with subordinate basalt, high-MgO basalt, dacite, and rhyolite. Porphyritic textures are dominant, with less common aphyric and seriate textures. Plagioclase is the dominant phenocryst in mafic to intermediate rocks, K-feldspar and quartz phenocrysts predominate in the dacites and rhyolites. Chlorite, epidote, albite, and actinolite are the most common metamorphic phases; blue-green amphibole, andesine, muscovite, biotite, kaolinite, sericite, carbonate, and opaques are widespread but less abundant. Phase assemblages and chemistry suggest predominant greenschist facies metamorphism with epidote-amphibolite facies conditions attained locally.Whole rock major element compositions define a calc-alkaline trend: CaO, FeO, MgO, TiO2, Al2O3, V, Cr, Ni, and Sc all decrease with increasing silica, whereas alkalis, Rb, Ba, and Y increase. MORB-normalized trace element concentrations show enrichment of the low-field strength incompatible elements (Ce, La, Ba, Rb, K) and deep negative Nb, P, and Ti anomalies—patterns typical of subduction related magmas. Mafic volcanic rocks plot in fields for calc-alkaline volcanics on trace element discrimination diagrams, showing that pre-existing oceanic crust is not preserved here. All rocks are LREE-enriched, with La=16–112×chondrite, La/Lu=2.6–9.8×chondrite, and Eu/Eu*=0.5–0.9. Dacites and rhyolites have the lowest La/Lu and Eu/Eu* ratios, reflecting the dominant role of plagioclase fractionation in their formation. Some andesites have La/Lu ratios which are too high to result from fractionation of the more mafic lavas; chondrite-normalized REE patterns for these andesites cross those of the basaltic andesites, indicating that these lavas cannot be related to a common parent.The high proportion of mafic lavas rules out older continental crust as the main source of the volcanic rocks. The scarcity of more evolved felsic volcanics (dacite, rhyolite) can be explained by the nature of the underlying crust, which consists of accreted intra-oceanic arc volcanic and plutonic rocks, and is mafic relative to normal continental margins. Andesites with high La, La/Lu, K2O, and Rb may be crustal melts; we suggest that garnet-rich high-pressure granulites similar to those exposed in the Jijal complex may be restites formed during partial melting of the crust.  相似文献   

17.
藏北湖区拉弄蛇绿岩枕状玄武岩地球化学特征及其成因   总被引:4,自引:2,他引:2  
微量元素分析结果表明,藏北湖区拉弄蛇绿岩中枕状玄武岩富集大离子亲石元素Sr、Ba和放射性生热元素Th,且Rb变化混乱;Nb、Ta、Ti亏损,显示出TNT(Ta、Nb和Ti)的负异常现象,具有岛弧型火山岩的特点;而在稀土元素球粒陨石标准化配分图中显示平坦型曲线,玄武岩的(La/Yb)N和(Ce/Yb)N比值同N-MORB接近,表现出N-MORB的特征。通过对其构造环境的判别,并结合蛇绿岩与相邻地质体的关系,提出拉弄蛇绿岩可能是北侧的新特提斯洋在中晚侏罗世向南俯冲消减过程中,在其后缘诱发拉张作用引起次级弧后扩张,形成了新的俯冲带之上的弧后盆地大洋岩石圈,并在后来的拼贴过程中蛇绿岩构造就位于此。  相似文献   

18.
The summit region of Ben Nevis, Britain's highest mountain, consists of late Silurian to Early Devonian age volcanic rocks originally interpreted as a thick sequence (> 600 m) of andesite lavas and agglomerates that were down‐faulted during caldera subsidence. New digital field mapping of the Ben Nevis area, including both the steep north and south faces of the mountain, has revealed that the volcanic rocks consist largely of volcaniclastic debris flows, and extensive block and ash flow deposits with minor air‐fall tuff units. There is no evidence of any andesite lava flows or a volcanic vent. The volcanic detritus was derived from a volcanic centre situated to the NW of Ben Nevis, perhaps several tens of kilometres away. The rocks forming the summit region of the mountain have been re‐interpreted as a large roof pendant or keel of the former late Silurian to Early Devonian volcanic land surface that once covered much of the SW Highlands of Scotland.  相似文献   

19.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

20.
浙江新昌复合式火成杂岩包括复合火山岩流和复合侵入杂岩。复合火山岩流由玄武岩和流纹岩/流纹质熔结凝灰岩组成,有的含少量安山质-英安质岩流和岩石包体;复合侵入杂岩由辉绿岩和花岗岩复合而成,含闪长质-石英闪长质岩石包体。它们在空间上紧密伴生,同位素年龄为96~113 Ma;地球化学上,它们统属钙碱性岩系,具有轻稀土元素和大离子亲石元素富集、高场强元素亏损等特点,稀土元素、微量元素配分型式基本相同,Sr=0.7069~0.7079,εNd (t ) = -2.3~-5.3,指示它们的微量元素和同位素发生过充分的交换。这些特点与浙闽沿海其他复合岩流和复合侵入杂岩的特点基本一致。它们形成在伸展构造背景,由起源于受消减作用影响的岩石圈地幔部分熔融而产生的玄武岩岩浆底侵,并与深熔的壳源花岗岩浆发生不同程度的岩浆混合而形成。新昌复合式火成杂岩的研究,为更深入研究中国东南部沿海地区晚中生代地球动力学环境变化和构造-岩浆作用提供了一个典型实例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号