首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existing different human activities and planned land uses put the groundwater resources in Jordan at considerable risk. There are evidences suggesting that the quality of groundwater supplies in north Jordan is under threat from a wide variety of point and non-point sources including agricultural, domestic, and industrial. Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. DRASTIC method incorporates the major geological and hydrogeological factors that affect and control groundwater movement: depth to groundwater (D), net recharge (R), lithology of the aquifer (A), soil texture (S), topography (T), lithology of vadose zone (I), and hydraulic conductivity (C). The main goal of this study is to produce vulnerability maps of groundwater resources in the Yarmouk River basin by applying the DRASTIC method to determine areas where groundwater protection or monitoring is critical. ArcGIS 9.2 was used to create the groundwater vulnerability maps by overlaying the available hydrogeological data. The resulting vulnerability maps were then integrated with lineament and land use maps as additional parameters in the DRASTIC model to assess more accurately the potential risk of groundwater to pollution. The general DRASTIC index indicates that the potential for polluting groundwater is low in the whole basin, whereas the resulting pesticide DRASTIC vulnerability map indicates that about 31% of the basin is classified as having moderate vulnerability, which may be attributed to agricultural activities in the area. Although high nitrate concentrations were found in areas of moderate vulnerability, DRASTIC method did not depict accurately the nitrate distribution in the area.  相似文献   

2.
Groundwater plays a key role in arid regions as the majority of water is supplied by it. Groundwater pollution is a major issue, because it is susceptible to contamination from land use and other anthropogenic impacts. A study was carried out to build a vulnerability map for the Ordos Plateau using the DRASTIC model in a GIS environment. The map was designed to show the areas of the highest potential for groundwater pollution based on hydrogeological conditions. Seven environmental parameters, such as depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer, were incorporated into the DRASTIC model and GIS was used to create a groundwater vulnerability map by overlaying the available data. The results of this study show that 24.8 % of the study area has high pollution potential, 24.2 % has moderate pollution potential, 19.7 % has low pollution potential, and the remaining 31.3 % of the area has no risk of groundwater pollution. The regional distribution of nitrate is well correlated with the DRASTIC vulnerability index. In contrast to this, although the DRASTIC model indicated that the western part had no risk, nitrate concentrations were higher in some of these areas. In particular, higher nitrate concentrations were recorded along river valleys and around lakes, such as the Mulin River valley. This is mainly caused by the intensive agricultural development and favorable conditions for recharge along river valleys.  相似文献   

3.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

4.
This study aims at identifying multi-source heavy metal pollution from natural and anthropogenic sources using a regression model, principal component analysis, and five different indices (geo-accumulation index (I geo), the modified degree of contamination, pollution load index (PLI), enrichment factor, and ecological risk factor. Results revealed that: (1) although the average concentrations of soil heavy metals (Cu, Cr, Pb, Hg, As, Zn) were generally low, Hg, As, and Cr concentrations exceeded national standard values by approximately 0.91, 1.84, and 0.91 times with maximum concentrations up to 0.41, 78.6, and 175.2 μg/g, respectively; (2) PLI results showed that the industrial park and Wucaiwan open coal mining area were the most polluted (PLI of 1.98, 1.71). The potential ecological hazards index indicated that the E i r of three heavy metals (Cu, Hg, As) in the soil were relatively high, presenting potential ecological risk factors of 74.89, 16.71, 4.15%, respectively; (3) stepwise regression model and principal component analysis suggest that Cu and Zn were primarily effected by the natural geological condition and atmospheric dust fall. Cr, Hg, Pb are mainly derived from anthropogenic sources, particularly coal mining activities and industrial sources. Results of this research have some significant implications for heavy metal pollution prevention and the sustainable development of the economy and ecology of arid regions in China.  相似文献   

5.
The Nubian Sandstone Aquifer (NSSA) is the main groundwater resource of the El-Bahariya Oasis, which is located in the middle of the Western Desert of Egypt. This aquifer is composed mainly of continental clastic sediments of sandstone with shale and clay intercalations of saturated thickness ranging between 100 and 1500 m. Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sustainable resources management and land use planning. Accordingly, this research aims to estimate the vulnerability of NSSA by applying the DRASTIC model as well as utilising sensitivity analyses to evaluate the relative importance of the model parameters for aquifer vulnerability in the study area. The main objective is to demonstrate the combined use of the DRASTIC and the GIS techniques as an effective method for groundwater pollution risk assessment, and mapping the areas that are prone to deterioration of groundwater quality and quantity. Based on DRASTIC index (DI) values, a groundwater vulnerability map was produced using the GIS. The aquifer analysis in the study area highlighted the following key points: the northeastern and western parts of the NSSA were dominated by ‘High’ vulnerability classes while the northwestern and southeastern parts were characterised by ‘Medium’ vulnerability classes. The elevated central part of the study area displayed ‘Low’ aquifer vulnerability. The vulnerability map shows a relatively greater risk imposed on the northeastern part of the NSSA due to the larger pollution potential of intensive vegetable cultivation. Depth-to-water, topography and hydraulic conductivity parameters were found to be more effective in assessing aquifer vulnerability.  相似文献   

6.
The correlation between sulfate concentrations in Finnish headwater streams and atmospheric sulfate deposition has been studied by using data from the streamwater chemistry in August–September 1990 and computed S deposition from the anthropogenic emissions. The sulfate concentrations and acidity in water are interpolated and smoothed into a deposition model grid. These data are compared with geological and pedogeochemical (glacial till) background information. The areas where the streamwater SO4 concentrations are mainly controlled by either anthropogenic S deposition or sulfur in till is estimated by applying the fuzzy Gustafsson-Kessel algorithm, which provides a soft clustering suitable for overlapping control factors. Residual areas can be well explained by the SO4-rich Littorina clay deposits. The higher overall background SO4 concentrations in streams in south Finland compared with central and northern Finland are an indisputable consequence of the heavier S deposition load in the south. However, anthropogenic sulfur deposition has a clear correlation with the sulfates in streamwaters only in northeastern Lapland impacted by the large industrial emissions in the Kola Peninsula. The secondary sulfide and sulfate minerals of marine Littorina sediments are dominating sources in the broad coastal belts, as are the primary sulfide minerals locally in the Pori-Vammala area, at the eastern end of the main sulfide ore belt between Lake Ladoga and the Gulf of Bothnia, in the Outokumpu area, and in the Peräpohja and central Lapland schist belts. Consequently, in addition to the anthropogenic deposition, there are natural sources of sulfur which cause acidity of streamwaters.  相似文献   

7.
Nitrogenous pollutants from intense human activities have become serious environmental and health problems worldwide, particularly in groundwater source areas used for public water supply. To investigate the genesis and pollution risks associated with elevated concentrations of ammonium nitrogen in a groundwater source area, investigations were undertaken in the Jinji groundwater source area, located in an arid loess plain in northwestern China where 16 groundwater samples were collected from an aquifer used for water supply. The investigation indicated that high concentrations of ammonium nitrogen originated mainly from: infiltration of water from the Yellow River; livestock; and the discharge of industrial wastes. Measured parameters including pH, the permanganate index and the oxidation reduction potential could be used as important indicators of the genesis of ammonium nitrogen. A modified DRTCLN model was applied to the observed distribution of ammonium nitrogen to assess pollution risk of regional groundwater. The model was optimized by rebuilding the index system, and the analytic hierarchy process was used to calculate the rating scale of each index. A Monte Carlo simulation was performed to analyze the uncertainty of results of the risk assessment. The result showed that the risk value is relatively low in most areas of the groundwater source area. Only an industrial area in the southwestern part of the groundwater source area was classified as high risk; it should be the key factor of pollution control.  相似文献   

8.
Results of comprehensive geochemical mapping and thematic studies of the Slovak territory (rocks, soils, stream sediments, groundwaters, biomass, and radioactivity) in the first half of the 1990s led to several new research programmes in Slovakia, within the frame of which new methodologies for geochemical data evaluation and map visualization were elaborated. This study describes the application and elaboration of data from the Geochemical Atlas of the Slovak Republic at national and regional levels. Based on the index of environmental risk (IER = ΣPEC/PNEC), the level of contamination for the geological component of the environment in Slovakia was evaluated. Approximately 10.5% of Slovakia’s territory was characterized as being environmentally disturbed to highly disturbed. In the areas where environmental loadings have accumulated, 14 regions where environmental risks existed due to high element concentrations were defined. The model calculations of health risk estimates based on the databases of the Geochemical Atlas for groundwater and soils indicate that the possible risk occurrence of carcinogenic diseases from groundwater arsenic contents is high in more than 10% of Slovakia, whereas the chronic risk is negligible. To determinate the background and threshold levels a combined statistical–geochemical approach was developed and applied as an example for groundwater at the national level as well as for single groundwater bodies. The results of statistical method application for the whole groundwater body (GBW) were compared with the background values for anthropogenically non-influenced areas in GBW. Final background value took into account time variations and spatial distribution of the element in GBW. Furthermore, based on the database from the Geochemical Atlas for groundwater, groundwater bodies potentially at qualitative risk were delineated for the whole of Slovakia. From a total of 101 groundwater bodies 17 were characterized as being at risk and 22 as being at possible risk.  相似文献   

9.
The present study focuses on the hydrogeochemical composition of groundwater in Chhatarpur area with special focus on nitrate and fluoride contamination, considering the fact that groundwater is the only major source of drinking water here. Carbonate and silicate mineral weathering followed by ground water–surface water interactions, ion exchange and anthropogenic activities are mainly responsible for high concentrations of cations and anions in the groundwater in the region. The average concentration of nitrate and fluoride found in 27 samples is 1.08 and 61.4 mg/L, respectively. Nitrate enrichment mainly occurs in areas occupied with intense fertilizer practice in agricultural fields. Since the area is not dominated by industrialization, the possibility of anthropogenic input of fluoride is almost negligible, thus the enrichment of fluoride in groundwater is only possible due to rock–water interaction. The highly alkaline conditions, which favor the fluorite dissolution, are the main process responsible for high concentration of fluoride.  相似文献   

10.
Jordan Valley is one of the important areas in Jordan that involves dense agricultural activities, which depend on groundwater resources. The groundwater is exploited from an unconfined shallow aquifer which is mainly composed of alluvial deposits. In the vicinity of the Kafrein and South Shunah, the shallow aquifer shows signs of contamination from a wide variety of non-point sources. In this study, a vulnerability map was created as a tool to determine areas where groundwater is most vulnerable to contamination. One of the most widely used groundwater vulnerability mapping methods is SINTACS, which is a point count system model for the assessment of groundwater pollution hazards. SINTACS model is an adaptation for Mediterranean conditions of the well-known DRASTIC model. The model takes into account several environmental factors: these include topography, hydrology, geology, hydrogeology, and pedology. Spatial knowledge of all these factors and their mutual relationships is needed in order to properly model aquifer vulnerability using this model. Geographic information system was used to express each of SINTACS parameters as a spatial thematic layer with a specific weight and score. The final SINTACS thematic layer (intrinsic vulnerability index) was produced by taking the summation of each score parameter multiplied by its specific weight. The resultant SINTACS vulnerability map of the study area indicates that the highest potential sites for contamination are along the area between Er Ramah and Kafrein area. To the north of the study area there is a small, circular area which shows fairly high potential. Elsewhere, very low to low SINTACS index values are observed, indicating areas of low vulnerability potential.  相似文献   

11.
The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (\(I_\mathrm{geo}\)), contamination factors (CF), pollution load index (PLI), Nemerow index and ecological risk index (\(R_{I}\)). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and \(I_\mathrm{geo}\) values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, \(R_{I}\) and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.  相似文献   

12.
This study determined copper, nickel and zinc concentrations in soils within the precincts of a copper-nickel mining and urban landfilling environments, and used obtained values to appraise the degree of soil contamination and pollution based on geoaccumulation index, contamination factor and pollution load index. Mean concentrations of copper (252.4?mg/kg), nickel (153.0?mg/kg) and zinc (30.4?mg/kg) in soils around the mining area were considerably higher than those around the landfill (4.3, 0.91, and 13.7?mg/kg, respectively, for copper, nickel and zinc). The mining area was moderate to heavily contaminated with copper, nickel and zinc (1?<?I geo?<?4), whereas the landfill area was moderately contaminated (1?<?I geo?<?3). In both areas, the level of copper contamination was higher than that of nickel and zinc. Contamination around the mining environment was attributed to mining activities whereas around the landfill area, migration of leachate from the disposed waste could have been responsible.  相似文献   

13.
A DRASTIC-model method based on a geographic information system (GIS) was used to study groundwater vulnerability in Egirdir Lake basin (Isparta, Turkey), an alluvial area that has suffered agricultural pollution. ‘Lineament’ and ‘land use’ were added to the DRASTIC parameters, and an analytic hierarchy process (AHP) method determined the rating coefficients of each parameter. The effect of lineament and land-use parameters on the resulting vulnerability maps was determined with a single-parameter sensitivity analysis. Of the DRASTIC parameters, land use affects the aquifer vulnerability map most and lineament affects it least, after topography. A simple linear regression analysis assessed the statistical relation between groundwater nitrate concentration and the aquifer vulnerability areas; the highest R 2 value was obtained with the modified-DRASTIC-AHP method. The DRASTIC vulnerability map shows that only the shoreline of Egirdir Lake and the alluvium units have high contamination potential. In this respect, the modified DRASTIC vulnerability map is quite similar. According to the modified-DRASTIC-AHP method, the lakeshore areas of Senirkent-Uluborlu and Hoyran plains, and all of the Yalvaç-Gelendost plain, have high contamination potential. Analyses confirm that groundwater nitrate content is high in these areas. By comparison, the modified-DRASTIC-AHP method has provided more valid results.  相似文献   

14.
A three-dimensional steady-state finite difference groundwater flow model is used to quantify the groundwater fluxes and analyze the subsurface hydrodynamics in the basaltic terrain by giving particular emphasis to the well field that supplies domestic, agricultural, and industrial needs. The alluvial aquifer of the Ghatprabha River comprises shallow tertiary sediment deposits underlain by peninsular gneissic complex of Archean age, located in the central–eastern part of the Karnataka in southern India. Integrated hydrochemical, geophysical, and hydrogeological investigations have been helped in the conceptualization of groundwater flow model. Hydrochemical study has revealed that groundwater chemistry mainly controlled by silicate weathering in the study area. Higher concentration of TDS and NO3-N are observed, due to domestic, agriculture, and local anthropogenic activities are directed into the groundwater, which would have increased the concentration of the ions in the water. Groundwater flow model is calibrated using head observations from 23 wells. The calibrated model is used to forecast groundwater flow pattern, and anthropogenic contamination migration under different scenarios. The result indicates that the groundwater flows regionally towards the south of catchment area and the migration of contamination would be reached in the nearby well field in less than 10 years time. The findings of these studies are of strong relevance to addressing the groundwater pollution due to indiscriminate disposal practices of hazardous waste in areas located within the phreatic aquifer. This study has laid the foundation for developing detailed predictive groundwater model, which can be readily used for groundwater management practices.  相似文献   

15.
The main aims of this study were to examine the sources of pollution with an emphasis on geogenic sources and to predict the groundwater quality with reasonable accuracy. For this purpose, factor analysis/principal component analysis and partial least squares regression were used to analyze a data set of groundwater quality containing 17 parameters measured at 45 different sampling wells in Andimeshk Aquifer during 2006–2013 time period. Factor analysis identified three factors, which were responsible for the data structure explaining 78.3 % of the total variance of the data set. There were various sources of groundwater contamination, based on factor analysis, in which geological formations next to agricultural activities had the most influential effects. Partial least squares regression could predict the quality of groundwater according to the value of water quality index. The amounts of R-squared (0.79) and MSE (0.21) using seven PLS components showed that this method has been successful in the prediction of water quality in the study area.  相似文献   

16.
This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually the complex phenomena affecting nitrate concentrations in soil, subsoil and groundwater. In particular, the traditional methods for vulnerability analysis do not analyze physical processes in aquifers, such as denitrification and nitrate dilution. According to a recent study in the shallow unconfined aquifer of the Piemonte plain, dilution can be considered as the main cause for nitrate attenuation in groundwater.  相似文献   

17.
The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.  相似文献   

18.
赵岩 《地质与资源》2015,24(4):388-393
随着城市规模和城市化进程的扩大与加快,工业化程度的不断提高,区域地表水和地下水受到不同程度的污染,人类赖以生存的淡水资源面临威胁.20世纪90年代以来,我国开始关注农业污染和有机污染的研究工作.结合研究区研究情况,本次评价主要应用单因子污染指数法及综合污染指数法.综合分析了地下水评价的各种方法后,本次评价选择了单指标污染指数评价法和地下水污染综合评价法对该区进行评价.在研究区展开了野外调查,采集了浅层地下水样品110组(其中包括平行样、加标样和监控样合计20组),每个样品测试了35项指标.评价结果表明,研究区67.4%浅层地下水受到不同程度的污染.根据本次评价,基本上反映了研究区地下水污染状况,并为有针对性的治理提供依据.  相似文献   

19.
Chemical compositions and stable isotope ratios of water and sulphate were used to characterise sources and processes responsible for elevated concentrations of sulphate and other constituents in groundwater from aquifers at Colima State along Mexico’s Pacific Coast. The δ18O and δ2H values of the groundwater were similar to those of precipitation indicating a meteoric origin, and recharge processes are relatively uniform in large parts of the study area with only slight local evaporation effects. δ34Ssulphate and δ18Osulphate analyses indicated that high sulphate concentrations of up to 1,480 mg/l are mainly due to dissolution of evaporites and volcanic exhalations. Chloride is largely related to sources other than seawater. The Marabasco sub basin is affected by anthropogenic contamination through manganese and iron ore mining activities. The obtained knowledge regarding sources and areas of contamination will be essential for the development and design of a water quality monitoring program in the study area.  相似文献   

20.
Multivariate statistical analysis has been widely used for hydrogeochemical characterization of groundwater quality. In this study, hydrochemical data from three hydrological basins were used and two methods (factor and cluster analyses) were applied. The first area is the coastal area of Eastern Thermaikos Gulf where groundwater is influenced by seawater intrusion and geothermal fluids. The other two areas are the inland basins of Gallikos and Perdikas in which agricultural and industrial activities constitute the main anthropogenic pollution sources of groundwater. Initially, the aforementioned methods were applied for each area separately and resulted in a different number of significant factors and clusters, while the natural and anthropogenic influences were spatially determined in each area. Additionally, factor and cluster analyses were applied coupling data from all areas. Therefore, five clusters and three major factors were determined distinguishing the hydrochemical processes and impacts from anthropogenic activities in more detail. It is worth mentioning that the application of cluster analysis in the coupled groundwater samples of all studied areas resulted beneficially in the most hydrochemically complex area. Salinization dominates in the coastal area, while in Gallikos and Perdikas basins high concentrations of NO3 occur mainly due to agricultural activities and small livestock units. The numerous hydrochemical samples are identified as the main issue for the higher discretization and reliability of the second approach. Nevertheless, this study is associated with a number of limitations of multivariable statistical analysis regarding extreme concentrations of Cl and Na. This issue stimulates further research in overcoming and understanding these drawbacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号